1 // SPDX-License-Identifier: GPL-2.0
3 * NTP state machine interfaces and logic.
5 * This code was mainly moved from kernel/timer.c and kernel/time.c
6 * Please see those files for relevant copyright info and historical
9 #include <linux/capability.h>
10 #include <linux/clocksource.h>
11 #include <linux/workqueue.h>
12 #include <linux/hrtimer.h>
13 #include <linux/jiffies.h>
14 #include <linux/math64.h>
15 #include <linux/timex.h>
16 #include <linux/time.h>
18 #include <linux/module.h>
19 #include <linux/rtc.h>
20 #include <linux/audit.h>
22 #include "ntp_internal.h"
23 #include "timekeeping_internal.h"
27 * NTP timekeeping variables:
29 * Note: All of the NTP state is protected by the timekeeping locks.
33 /* USER_HZ period (usecs): */
34 unsigned long tick_usec
= USER_TICK_USEC
;
36 /* SHIFTED_HZ period (nsecs): */
37 unsigned long tick_nsec
;
39 static u64 tick_length
;
40 static u64 tick_length_base
;
42 #define SECS_PER_DAY 86400
43 #define MAX_TICKADJ 500LL /* usecs */
44 #define MAX_TICKADJ_SCALED \
45 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
46 #define MAX_TAI_OFFSET 100000
49 * phase-lock loop variables
53 * clock synchronization status
55 * (TIME_ERROR prevents overwriting the CMOS clock)
57 static int time_state
= TIME_OK
;
59 /* clock status bits: */
60 static int time_status
= STA_UNSYNC
;
62 /* time adjustment (nsecs): */
63 static s64 time_offset
;
65 /* pll time constant: */
66 static long time_constant
= 2;
68 /* maximum error (usecs): */
69 static long time_maxerror
= NTP_PHASE_LIMIT
;
71 /* estimated error (usecs): */
72 static long time_esterror
= NTP_PHASE_LIMIT
;
74 /* frequency offset (scaled nsecs/secs): */
77 /* time at last adjustment (secs): */
78 static time64_t time_reftime
;
80 static long time_adjust
;
82 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
83 static s64 ntp_tick_adj
;
85 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
86 static time64_t ntp_next_leap_sec
= TIME64_MAX
;
91 * The following variables are used when a pulse-per-second (PPS) signal
92 * is available. They establish the engineering parameters of the clock
93 * discipline loop when controlled by the PPS signal.
95 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
96 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
97 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
98 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
99 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
100 increase pps_shift or consecutive bad
101 intervals to decrease it */
102 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
104 static int pps_valid
; /* signal watchdog counter */
105 static long pps_tf
[3]; /* phase median filter */
106 static long pps_jitter
; /* current jitter (ns) */
107 static struct timespec64 pps_fbase
; /* beginning of the last freq interval */
108 static int pps_shift
; /* current interval duration (s) (shift) */
109 static int pps_intcnt
; /* interval counter */
110 static s64 pps_freq
; /* frequency offset (scaled ns/s) */
111 static long pps_stabil
; /* current stability (scaled ns/s) */
114 * PPS signal quality monitors
116 static long pps_calcnt
; /* calibration intervals */
117 static long pps_jitcnt
; /* jitter limit exceeded */
118 static long pps_stbcnt
; /* stability limit exceeded */
119 static long pps_errcnt
; /* calibration errors */
122 /* PPS kernel consumer compensates the whole phase error immediately.
123 * Otherwise, reduce the offset by a fixed factor times the time constant.
125 static inline s64
ntp_offset_chunk(s64 offset
)
127 if (time_status
& STA_PPSTIME
&& time_status
& STA_PPSSIGNAL
)
130 return shift_right(offset
, SHIFT_PLL
+ time_constant
);
133 static inline void pps_reset_freq_interval(void)
135 /* the PPS calibration interval may end
136 surprisingly early */
137 pps_shift
= PPS_INTMIN
;
142 * pps_clear - Clears the PPS state variables
144 static inline void pps_clear(void)
146 pps_reset_freq_interval();
150 pps_fbase
.tv_sec
= pps_fbase
.tv_nsec
= 0;
154 /* Decrease pps_valid to indicate that another second has passed since
155 * the last PPS signal. When it reaches 0, indicate that PPS signal is
158 static inline void pps_dec_valid(void)
163 time_status
&= ~(STA_PPSSIGNAL
| STA_PPSJITTER
|
164 STA_PPSWANDER
| STA_PPSERROR
);
169 static inline void pps_set_freq(s64 freq
)
174 static inline int is_error_status(int status
)
176 return (status
& (STA_UNSYNC
|STA_CLOCKERR
))
177 /* PPS signal lost when either PPS time or
178 * PPS frequency synchronization requested
180 || ((status
& (STA_PPSFREQ
|STA_PPSTIME
))
181 && !(status
& STA_PPSSIGNAL
))
182 /* PPS jitter exceeded when
183 * PPS time synchronization requested */
184 || ((status
& (STA_PPSTIME
|STA_PPSJITTER
))
185 == (STA_PPSTIME
|STA_PPSJITTER
))
186 /* PPS wander exceeded or calibration error when
187 * PPS frequency synchronization requested
189 || ((status
& STA_PPSFREQ
)
190 && (status
& (STA_PPSWANDER
|STA_PPSERROR
)));
193 static inline void pps_fill_timex(struct __kernel_timex
*txc
)
195 txc
->ppsfreq
= shift_right((pps_freq
>> PPM_SCALE_INV_SHIFT
) *
196 PPM_SCALE_INV
, NTP_SCALE_SHIFT
);
197 txc
->jitter
= pps_jitter
;
198 if (!(time_status
& STA_NANO
))
199 txc
->jitter
= pps_jitter
/ NSEC_PER_USEC
;
200 txc
->shift
= pps_shift
;
201 txc
->stabil
= pps_stabil
;
202 txc
->jitcnt
= pps_jitcnt
;
203 txc
->calcnt
= pps_calcnt
;
204 txc
->errcnt
= pps_errcnt
;
205 txc
->stbcnt
= pps_stbcnt
;
208 #else /* !CONFIG_NTP_PPS */
210 static inline s64
ntp_offset_chunk(s64 offset
)
212 return shift_right(offset
, SHIFT_PLL
+ time_constant
);
215 static inline void pps_reset_freq_interval(void) {}
216 static inline void pps_clear(void) {}
217 static inline void pps_dec_valid(void) {}
218 static inline void pps_set_freq(s64 freq
) {}
220 static inline int is_error_status(int status
)
222 return status
& (STA_UNSYNC
|STA_CLOCKERR
);
225 static inline void pps_fill_timex(struct __kernel_timex
*txc
)
227 /* PPS is not implemented, so these are zero */
238 #endif /* CONFIG_NTP_PPS */
242 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
245 static inline int ntp_synced(void)
247 return !(time_status
& STA_UNSYNC
);
256 * Update (tick_length, tick_length_base, tick_nsec), based
257 * on (tick_usec, ntp_tick_adj, time_freq):
259 static void ntp_update_frequency(void)
264 second_length
= (u64
)(tick_usec
* NSEC_PER_USEC
* USER_HZ
)
267 second_length
+= ntp_tick_adj
;
268 second_length
+= time_freq
;
270 tick_nsec
= div_u64(second_length
, HZ
) >> NTP_SCALE_SHIFT
;
271 new_base
= div_u64(second_length
, NTP_INTERVAL_FREQ
);
274 * Don't wait for the next second_overflow, apply
275 * the change to the tick length immediately:
277 tick_length
+= new_base
- tick_length_base
;
278 tick_length_base
= new_base
;
281 static inline s64
ntp_update_offset_fll(s64 offset64
, long secs
)
283 time_status
&= ~STA_MODE
;
288 if (!(time_status
& STA_FLL
) && (secs
<= MAXSEC
))
291 time_status
|= STA_MODE
;
293 return div64_long(offset64
<< (NTP_SCALE_SHIFT
- SHIFT_FLL
), secs
);
296 static void ntp_update_offset(long offset
)
302 if (!(time_status
& STA_PLL
))
305 if (!(time_status
& STA_NANO
)) {
306 /* Make sure the multiplication below won't overflow */
307 offset
= clamp(offset
, -USEC_PER_SEC
, USEC_PER_SEC
);
308 offset
*= NSEC_PER_USEC
;
312 * Scale the phase adjustment and
313 * clamp to the operating range.
315 offset
= clamp(offset
, -MAXPHASE
, MAXPHASE
);
318 * Select how the frequency is to be controlled
319 * and in which mode (PLL or FLL).
321 secs
= (long)(__ktime_get_real_seconds() - time_reftime
);
322 if (unlikely(time_status
& STA_FREQHOLD
))
325 time_reftime
= __ktime_get_real_seconds();
328 freq_adj
= ntp_update_offset_fll(offset64
, secs
);
331 * Clamp update interval to reduce PLL gain with low
332 * sampling rate (e.g. intermittent network connection)
333 * to avoid instability.
335 if (unlikely(secs
> 1 << (SHIFT_PLL
+ 1 + time_constant
)))
336 secs
= 1 << (SHIFT_PLL
+ 1 + time_constant
);
338 freq_adj
+= (offset64
* secs
) <<
339 (NTP_SCALE_SHIFT
- 2 * (SHIFT_PLL
+ 2 + time_constant
));
341 freq_adj
= min(freq_adj
+ time_freq
, MAXFREQ_SCALED
);
343 time_freq
= max(freq_adj
, -MAXFREQ_SCALED
);
345 time_offset
= div_s64(offset64
<< NTP_SCALE_SHIFT
, NTP_INTERVAL_FREQ
);
349 * ntp_clear - Clears the NTP state variables
353 time_adjust
= 0; /* stop active adjtime() */
354 time_status
|= STA_UNSYNC
;
355 time_maxerror
= NTP_PHASE_LIMIT
;
356 time_esterror
= NTP_PHASE_LIMIT
;
358 ntp_update_frequency();
360 tick_length
= tick_length_base
;
363 ntp_next_leap_sec
= TIME64_MAX
;
364 /* Clear PPS state variables */
369 u64
ntp_tick_length(void)
375 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
377 * Provides the time of the next leapsecond against CLOCK_REALTIME in
378 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
380 ktime_t
ntp_get_next_leap(void)
384 if ((time_state
== TIME_INS
) && (time_status
& STA_INS
))
385 return ktime_set(ntp_next_leap_sec
, 0);
391 * this routine handles the overflow of the microsecond field
393 * The tricky bits of code to handle the accurate clock support
394 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
395 * They were originally developed for SUN and DEC kernels.
396 * All the kudos should go to Dave for this stuff.
398 * Also handles leap second processing, and returns leap offset
400 int second_overflow(time64_t secs
)
407 * Leap second processing. If in leap-insert state at the end of the
408 * day, the system clock is set back one second; if in leap-delete
409 * state, the system clock is set ahead one second.
411 switch (time_state
) {
413 if (time_status
& STA_INS
) {
414 time_state
= TIME_INS
;
415 div_s64_rem(secs
, SECS_PER_DAY
, &rem
);
416 ntp_next_leap_sec
= secs
+ SECS_PER_DAY
- rem
;
417 } else if (time_status
& STA_DEL
) {
418 time_state
= TIME_DEL
;
419 div_s64_rem(secs
+ 1, SECS_PER_DAY
, &rem
);
420 ntp_next_leap_sec
= secs
+ SECS_PER_DAY
- rem
;
424 if (!(time_status
& STA_INS
)) {
425 ntp_next_leap_sec
= TIME64_MAX
;
426 time_state
= TIME_OK
;
427 } else if (secs
== ntp_next_leap_sec
) {
429 time_state
= TIME_OOP
;
431 "Clock: inserting leap second 23:59:60 UTC\n");
435 if (!(time_status
& STA_DEL
)) {
436 ntp_next_leap_sec
= TIME64_MAX
;
437 time_state
= TIME_OK
;
438 } else if (secs
== ntp_next_leap_sec
) {
440 ntp_next_leap_sec
= TIME64_MAX
;
441 time_state
= TIME_WAIT
;
443 "Clock: deleting leap second 23:59:59 UTC\n");
447 ntp_next_leap_sec
= TIME64_MAX
;
448 time_state
= TIME_WAIT
;
451 if (!(time_status
& (STA_INS
| STA_DEL
)))
452 time_state
= TIME_OK
;
457 /* Bump the maxerror field */
458 time_maxerror
+= MAXFREQ
/ NSEC_PER_USEC
;
459 if (time_maxerror
> NTP_PHASE_LIMIT
) {
460 time_maxerror
= NTP_PHASE_LIMIT
;
461 time_status
|= STA_UNSYNC
;
464 /* Compute the phase adjustment for the next second */
465 tick_length
= tick_length_base
;
467 delta
= ntp_offset_chunk(time_offset
);
468 time_offset
-= delta
;
469 tick_length
+= delta
;
471 /* Check PPS signal */
477 if (time_adjust
> MAX_TICKADJ
) {
478 time_adjust
-= MAX_TICKADJ
;
479 tick_length
+= MAX_TICKADJ_SCALED
;
483 if (time_adjust
< -MAX_TICKADJ
) {
484 time_adjust
+= MAX_TICKADJ
;
485 tick_length
-= MAX_TICKADJ_SCALED
;
489 tick_length
+= (s64
)(time_adjust
* NSEC_PER_USEC
/ NTP_INTERVAL_FREQ
)
497 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
498 static void sync_hw_clock(struct work_struct
*work
);
499 static DECLARE_WORK(sync_work
, sync_hw_clock
);
500 static struct hrtimer sync_hrtimer
;
501 #define SYNC_PERIOD_NS (11UL * 60 * NSEC_PER_SEC)
503 static enum hrtimer_restart
sync_timer_callback(struct hrtimer
*timer
)
505 queue_work(system_power_efficient_wq
, &sync_work
);
507 return HRTIMER_NORESTART
;
510 static void sched_sync_hw_clock(unsigned long offset_nsec
, bool retry
)
512 ktime_t exp
= ktime_set(ktime_get_real_seconds(), 0);
515 exp
= ktime_add_ns(exp
, 2 * NSEC_PER_SEC
- offset_nsec
);
517 exp
= ktime_add_ns(exp
, SYNC_PERIOD_NS
- offset_nsec
);
519 hrtimer_start(&sync_hrtimer
, exp
, HRTIMER_MODE_ABS
);
523 * Check whether @now is correct versus the required time to update the RTC
524 * and calculate the value which needs to be written to the RTC so that the
525 * next seconds increment of the RTC after the write is aligned with the next
526 * seconds increment of clock REALTIME.
528 * tsched t1 write(t2.tv_sec - 1sec)) t2 RTC increments seconds
531 * tsched = t2 - set_offset_nsec
532 * newval = t2 - NSEC_PER_SEC
534 * ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC
536 * As the execution of this code is not guaranteed to happen exactly at
537 * tsched this allows it to happen within a fuzzy region:
539 * abs(now - tsched) < FUZZ
541 * If @now is not inside the allowed window the function returns false.
543 static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec
,
544 struct timespec64
*to_set
,
545 const struct timespec64
*now
)
547 /* Allowed error in tv_nsec, arbitarily set to 5 jiffies in ns. */
548 const unsigned long TIME_SET_NSEC_FUZZ
= TICK_NSEC
* 5;
549 struct timespec64 delay
= {.tv_sec
= -1,
550 .tv_nsec
= set_offset_nsec
};
552 *to_set
= timespec64_add(*now
, delay
);
554 if (to_set
->tv_nsec
< TIME_SET_NSEC_FUZZ
) {
559 if (to_set
->tv_nsec
> NSEC_PER_SEC
- TIME_SET_NSEC_FUZZ
) {
567 #ifdef CONFIG_GENERIC_CMOS_UPDATE
568 int __weak
update_persistent_clock64(struct timespec64 now64
)
573 static inline int update_persistent_clock64(struct timespec64 now64
)
579 #ifdef CONFIG_RTC_SYSTOHC
580 /* Save NTP synchronized time to the RTC */
581 static int update_rtc(struct timespec64
*to_set
, unsigned long *offset_nsec
)
583 struct rtc_device
*rtc
;
587 rtc
= rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE
);
591 if (!rtc
->ops
|| !rtc
->ops
->set_time
)
594 /* First call might not have the correct offset */
595 if (*offset_nsec
== rtc
->set_offset_nsec
) {
596 rtc_time64_to_tm(to_set
->tv_sec
, &tm
);
597 err
= rtc_set_time(rtc
, &tm
);
599 /* Store the update offset and let the caller try again */
600 *offset_nsec
= rtc
->set_offset_nsec
;
604 rtc_class_close(rtc
);
608 static inline int update_rtc(struct timespec64
*to_set
, unsigned long *offset_nsec
)
615 * If we have an externally synchronized Linux clock, then update RTC clock
616 * accordingly every ~11 minutes. Generally RTCs can only store second
617 * precision, but many RTCs will adjust the phase of their second tick to
618 * match the moment of update. This infrastructure arranges to call to the RTC
619 * set at the correct moment to phase synchronize the RTC second tick over
620 * with the kernel clock.
622 static void sync_hw_clock(struct work_struct
*work
)
625 * The default synchronization offset is 500ms for the deprecated
626 * update_persistent_clock64() under the assumption that it uses
627 * the infamous CMOS clock (MC146818).
629 static unsigned long offset_nsec
= NSEC_PER_SEC
/ 2;
630 struct timespec64 now
, to_set
;
634 * Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer()
635 * managed to schedule the work between the timer firing and the
636 * work being able to rearm the timer. Wait for the timer to expire.
638 if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer
))
641 ktime_get_real_ts64(&now
);
642 /* If @now is not in the allowed window, try again */
643 if (!rtc_tv_nsec_ok(offset_nsec
, &to_set
, &now
))
646 /* Take timezone adjusted RTCs into account */
647 if (persistent_clock_is_local
)
648 to_set
.tv_sec
-= (sys_tz
.tz_minuteswest
* 60);
650 /* Try the legacy RTC first. */
651 res
= update_persistent_clock64(to_set
);
655 /* Try the RTC class */
656 res
= update_rtc(&to_set
, &offset_nsec
);
660 sched_sync_hw_clock(offset_nsec
, res
!= 0);
663 void ntp_notify_cmos_timer(void)
666 * When the work is currently executed but has not yet the timer
667 * rearmed this queues the work immediately again. No big issue,
668 * just a pointless work scheduled.
670 if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer
))
671 queue_work(system_power_efficient_wq
, &sync_work
);
674 static void __init
ntp_init_cmos_sync(void)
676 hrtimer_init(&sync_hrtimer
, CLOCK_REALTIME
, HRTIMER_MODE_ABS
);
677 sync_hrtimer
.function
= sync_timer_callback
;
679 #else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
680 static inline void __init
ntp_init_cmos_sync(void) { }
681 #endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
684 * Propagate a new txc->status value into the NTP state:
686 static inline void process_adj_status(const struct __kernel_timex
*txc
)
688 if ((time_status
& STA_PLL
) && !(txc
->status
& STA_PLL
)) {
689 time_state
= TIME_OK
;
690 time_status
= STA_UNSYNC
;
691 ntp_next_leap_sec
= TIME64_MAX
;
692 /* restart PPS frequency calibration */
693 pps_reset_freq_interval();
697 * If we turn on PLL adjustments then reset the
698 * reference time to current time.
700 if (!(time_status
& STA_PLL
) && (txc
->status
& STA_PLL
))
701 time_reftime
= __ktime_get_real_seconds();
703 /* only set allowed bits */
704 time_status
&= STA_RONLY
;
705 time_status
|= txc
->status
& ~STA_RONLY
;
709 static inline void process_adjtimex_modes(const struct __kernel_timex
*txc
,
712 if (txc
->modes
& ADJ_STATUS
)
713 process_adj_status(txc
);
715 if (txc
->modes
& ADJ_NANO
)
716 time_status
|= STA_NANO
;
718 if (txc
->modes
& ADJ_MICRO
)
719 time_status
&= ~STA_NANO
;
721 if (txc
->modes
& ADJ_FREQUENCY
) {
722 time_freq
= txc
->freq
* PPM_SCALE
;
723 time_freq
= min(time_freq
, MAXFREQ_SCALED
);
724 time_freq
= max(time_freq
, -MAXFREQ_SCALED
);
725 /* update pps_freq */
726 pps_set_freq(time_freq
);
729 if (txc
->modes
& ADJ_MAXERROR
)
730 time_maxerror
= txc
->maxerror
;
732 if (txc
->modes
& ADJ_ESTERROR
)
733 time_esterror
= txc
->esterror
;
735 if (txc
->modes
& ADJ_TIMECONST
) {
736 time_constant
= txc
->constant
;
737 if (!(time_status
& STA_NANO
))
739 time_constant
= min(time_constant
, (long)MAXTC
);
740 time_constant
= max(time_constant
, 0l);
743 if (txc
->modes
& ADJ_TAI
&&
744 txc
->constant
>= 0 && txc
->constant
<= MAX_TAI_OFFSET
)
745 *time_tai
= txc
->constant
;
747 if (txc
->modes
& ADJ_OFFSET
)
748 ntp_update_offset(txc
->offset
);
750 if (txc
->modes
& ADJ_TICK
)
751 tick_usec
= txc
->tick
;
753 if (txc
->modes
& (ADJ_TICK
|ADJ_FREQUENCY
|ADJ_OFFSET
))
754 ntp_update_frequency();
759 * adjtimex mainly allows reading (and writing, if superuser) of
760 * kernel time-keeping variables. used by xntpd.
762 int __do_adjtimex(struct __kernel_timex
*txc
, const struct timespec64
*ts
,
763 s32
*time_tai
, struct audit_ntp_data
*ad
)
767 if (txc
->modes
& ADJ_ADJTIME
) {
768 long save_adjust
= time_adjust
;
770 if (!(txc
->modes
& ADJ_OFFSET_READONLY
)) {
771 /* adjtime() is independent from ntp_adjtime() */
772 time_adjust
= txc
->offset
;
773 ntp_update_frequency();
775 audit_ntp_set_old(ad
, AUDIT_NTP_ADJUST
, save_adjust
);
776 audit_ntp_set_new(ad
, AUDIT_NTP_ADJUST
, time_adjust
);
778 txc
->offset
= save_adjust
;
780 /* If there are input parameters, then process them: */
782 audit_ntp_set_old(ad
, AUDIT_NTP_OFFSET
, time_offset
);
783 audit_ntp_set_old(ad
, AUDIT_NTP_FREQ
, time_freq
);
784 audit_ntp_set_old(ad
, AUDIT_NTP_STATUS
, time_status
);
785 audit_ntp_set_old(ad
, AUDIT_NTP_TAI
, *time_tai
);
786 audit_ntp_set_old(ad
, AUDIT_NTP_TICK
, tick_usec
);
788 process_adjtimex_modes(txc
, time_tai
);
790 audit_ntp_set_new(ad
, AUDIT_NTP_OFFSET
, time_offset
);
791 audit_ntp_set_new(ad
, AUDIT_NTP_FREQ
, time_freq
);
792 audit_ntp_set_new(ad
, AUDIT_NTP_STATUS
, time_status
);
793 audit_ntp_set_new(ad
, AUDIT_NTP_TAI
, *time_tai
);
794 audit_ntp_set_new(ad
, AUDIT_NTP_TICK
, tick_usec
);
797 txc
->offset
= shift_right(time_offset
* NTP_INTERVAL_FREQ
,
799 if (!(time_status
& STA_NANO
))
800 txc
->offset
= (u32
)txc
->offset
/ NSEC_PER_USEC
;
803 result
= time_state
; /* mostly `TIME_OK' */
804 /* check for errors */
805 if (is_error_status(time_status
))
808 txc
->freq
= shift_right((time_freq
>> PPM_SCALE_INV_SHIFT
) *
809 PPM_SCALE_INV
, NTP_SCALE_SHIFT
);
810 txc
->maxerror
= time_maxerror
;
811 txc
->esterror
= time_esterror
;
812 txc
->status
= time_status
;
813 txc
->constant
= time_constant
;
815 txc
->tolerance
= MAXFREQ_SCALED
/ PPM_SCALE
;
816 txc
->tick
= tick_usec
;
817 txc
->tai
= *time_tai
;
819 /* fill PPS status fields */
822 txc
->time
.tv_sec
= ts
->tv_sec
;
823 txc
->time
.tv_usec
= ts
->tv_nsec
;
824 if (!(time_status
& STA_NANO
))
825 txc
->time
.tv_usec
= ts
->tv_nsec
/ NSEC_PER_USEC
;
827 /* Handle leapsec adjustments */
828 if (unlikely(ts
->tv_sec
>= ntp_next_leap_sec
)) {
829 if ((time_state
== TIME_INS
) && (time_status
& STA_INS
)) {
834 if ((time_state
== TIME_DEL
) && (time_status
& STA_DEL
)) {
839 if ((time_state
== TIME_OOP
) &&
840 (ts
->tv_sec
== ntp_next_leap_sec
)) {
848 #ifdef CONFIG_NTP_PPS
850 /* actually struct pps_normtime is good old struct timespec, but it is
851 * semantically different (and it is the reason why it was invented):
852 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
853 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
854 struct pps_normtime
{
855 s64 sec
; /* seconds */
856 long nsec
; /* nanoseconds */
859 /* normalize the timestamp so that nsec is in the
860 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
861 static inline struct pps_normtime
pps_normalize_ts(struct timespec64 ts
)
863 struct pps_normtime norm
= {
868 if (norm
.nsec
> (NSEC_PER_SEC
>> 1)) {
869 norm
.nsec
-= NSEC_PER_SEC
;
876 /* get current phase correction and jitter */
877 static inline long pps_phase_filter_get(long *jitter
)
879 *jitter
= pps_tf
[0] - pps_tf
[1];
883 /* TODO: test various filters */
887 /* add the sample to the phase filter */
888 static inline void pps_phase_filter_add(long err
)
890 pps_tf
[2] = pps_tf
[1];
891 pps_tf
[1] = pps_tf
[0];
895 /* decrease frequency calibration interval length.
896 * It is halved after four consecutive unstable intervals.
898 static inline void pps_dec_freq_interval(void)
900 if (--pps_intcnt
<= -PPS_INTCOUNT
) {
901 pps_intcnt
= -PPS_INTCOUNT
;
902 if (pps_shift
> PPS_INTMIN
) {
909 /* increase frequency calibration interval length.
910 * It is doubled after four consecutive stable intervals.
912 static inline void pps_inc_freq_interval(void)
914 if (++pps_intcnt
>= PPS_INTCOUNT
) {
915 pps_intcnt
= PPS_INTCOUNT
;
916 if (pps_shift
< PPS_INTMAX
) {
923 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
926 * At the end of the calibration interval the difference between the
927 * first and last MONOTONIC_RAW clock timestamps divided by the length
928 * of the interval becomes the frequency update. If the interval was
929 * too long, the data are discarded.
930 * Returns the difference between old and new frequency values.
932 static long hardpps_update_freq(struct pps_normtime freq_norm
)
934 long delta
, delta_mod
;
937 /* check if the frequency interval was too long */
938 if (freq_norm
.sec
> (2 << pps_shift
)) {
939 time_status
|= STA_PPSERROR
;
941 pps_dec_freq_interval();
942 printk_deferred(KERN_ERR
943 "hardpps: PPSERROR: interval too long - %lld s\n",
948 /* here the raw frequency offset and wander (stability) is
949 * calculated. If the wander is less than the wander threshold
950 * the interval is increased; otherwise it is decreased.
952 ftemp
= div_s64(((s64
)(-freq_norm
.nsec
)) << NTP_SCALE_SHIFT
,
954 delta
= shift_right(ftemp
- pps_freq
, NTP_SCALE_SHIFT
);
956 if (delta
> PPS_MAXWANDER
|| delta
< -PPS_MAXWANDER
) {
957 printk_deferred(KERN_WARNING
958 "hardpps: PPSWANDER: change=%ld\n", delta
);
959 time_status
|= STA_PPSWANDER
;
961 pps_dec_freq_interval();
962 } else { /* good sample */
963 pps_inc_freq_interval();
966 /* the stability metric is calculated as the average of recent
967 * frequency changes, but is used only for performance
972 delta_mod
= -delta_mod
;
973 pps_stabil
+= (div_s64(((s64
)delta_mod
) <<
974 (NTP_SCALE_SHIFT
- SHIFT_USEC
),
975 NSEC_PER_USEC
) - pps_stabil
) >> PPS_INTMIN
;
977 /* if enabled, the system clock frequency is updated */
978 if ((time_status
& STA_PPSFREQ
) != 0 &&
979 (time_status
& STA_FREQHOLD
) == 0) {
980 time_freq
= pps_freq
;
981 ntp_update_frequency();
987 /* correct REALTIME clock phase error against PPS signal */
988 static void hardpps_update_phase(long error
)
990 long correction
= -error
;
993 /* add the sample to the median filter */
994 pps_phase_filter_add(correction
);
995 correction
= pps_phase_filter_get(&jitter
);
997 /* Nominal jitter is due to PPS signal noise. If it exceeds the
998 * threshold, the sample is discarded; otherwise, if so enabled,
999 * the time offset is updated.
1001 if (jitter
> (pps_jitter
<< PPS_POPCORN
)) {
1002 printk_deferred(KERN_WARNING
1003 "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
1004 jitter
, (pps_jitter
<< PPS_POPCORN
));
1005 time_status
|= STA_PPSJITTER
;
1007 } else if (time_status
& STA_PPSTIME
) {
1008 /* correct the time using the phase offset */
1009 time_offset
= div_s64(((s64
)correction
) << NTP_SCALE_SHIFT
,
1011 /* cancel running adjtime() */
1015 pps_jitter
+= (jitter
- pps_jitter
) >> PPS_INTMIN
;
1019 * __hardpps() - discipline CPU clock oscillator to external PPS signal
1021 * This routine is called at each PPS signal arrival in order to
1022 * discipline the CPU clock oscillator to the PPS signal. It takes two
1023 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
1024 * is used to correct clock phase error and the latter is used to
1025 * correct the frequency.
1027 * This code is based on David Mills's reference nanokernel
1028 * implementation. It was mostly rewritten but keeps the same idea.
1030 void __hardpps(const struct timespec64
*phase_ts
, const struct timespec64
*raw_ts
)
1032 struct pps_normtime pts_norm
, freq_norm
;
1034 pts_norm
= pps_normalize_ts(*phase_ts
);
1036 /* clear the error bits, they will be set again if needed */
1037 time_status
&= ~(STA_PPSJITTER
| STA_PPSWANDER
| STA_PPSERROR
);
1039 /* indicate signal presence */
1040 time_status
|= STA_PPSSIGNAL
;
1041 pps_valid
= PPS_VALID
;
1043 /* when called for the first time,
1044 * just start the frequency interval */
1045 if (unlikely(pps_fbase
.tv_sec
== 0)) {
1046 pps_fbase
= *raw_ts
;
1050 /* ok, now we have a base for frequency calculation */
1051 freq_norm
= pps_normalize_ts(timespec64_sub(*raw_ts
, pps_fbase
));
1053 /* check that the signal is in the range
1054 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
1055 if ((freq_norm
.sec
== 0) ||
1056 (freq_norm
.nsec
> MAXFREQ
* freq_norm
.sec
) ||
1057 (freq_norm
.nsec
< -MAXFREQ
* freq_norm
.sec
)) {
1058 time_status
|= STA_PPSJITTER
;
1059 /* restart the frequency calibration interval */
1060 pps_fbase
= *raw_ts
;
1061 printk_deferred(KERN_ERR
"hardpps: PPSJITTER: bad pulse\n");
1067 /* check if the current frequency interval is finished */
1068 if (freq_norm
.sec
>= (1 << pps_shift
)) {
1070 /* restart the frequency calibration interval */
1071 pps_fbase
= *raw_ts
;
1072 hardpps_update_freq(freq_norm
);
1075 hardpps_update_phase(pts_norm
.nsec
);
1078 #endif /* CONFIG_NTP_PPS */
1080 static int __init
ntp_tick_adj_setup(char *str
)
1082 int rc
= kstrtos64(str
, 0, &ntp_tick_adj
);
1086 ntp_tick_adj
<<= NTP_SCALE_SHIFT
;
1090 __setup("ntp_tick_adj=", ntp_tick_adj_setup
);
1092 void __init
ntp_init(void)
1095 ntp_init_cmos_sync();