]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/posix-cpu-timers.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / kernel / time / posix-cpu-timers.c
1 /*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5 #include <linux/sched/signal.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <linux/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/tick.h>
13 #include <linux/workqueue.h>
14
15 /*
16 * Called after updating RLIMIT_CPU to run cpu timer and update
17 * tsk->signal->cputime_expires expiration cache if necessary. Needs
18 * siglock protection since other code may update expiration cache as
19 * well.
20 */
21 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
22 {
23 u64 nsecs = rlim_new * NSEC_PER_SEC;
24
25 spin_lock_irq(&task->sighand->siglock);
26 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
27 spin_unlock_irq(&task->sighand->siglock);
28 }
29
30 static int check_clock(const clockid_t which_clock)
31 {
32 int error = 0;
33 struct task_struct *p;
34 const pid_t pid = CPUCLOCK_PID(which_clock);
35
36 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
37 return -EINVAL;
38
39 if (pid == 0)
40 return 0;
41
42 rcu_read_lock();
43 p = find_task_by_vpid(pid);
44 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
45 same_thread_group(p, current) : has_group_leader_pid(p))) {
46 error = -EINVAL;
47 }
48 rcu_read_unlock();
49
50 return error;
51 }
52
53 /*
54 * Update expiry time from increment, and increase overrun count,
55 * given the current clock sample.
56 */
57 static void bump_cpu_timer(struct k_itimer *timer, u64 now)
58 {
59 int i;
60 u64 delta, incr;
61
62 if (timer->it.cpu.incr == 0)
63 return;
64
65 if (now < timer->it.cpu.expires)
66 return;
67
68 incr = timer->it.cpu.incr;
69 delta = now + incr - timer->it.cpu.expires;
70
71 /* Don't use (incr*2 < delta), incr*2 might overflow. */
72 for (i = 0; incr < delta - incr; i++)
73 incr = incr << 1;
74
75 for (; i >= 0; incr >>= 1, i--) {
76 if (delta < incr)
77 continue;
78
79 timer->it.cpu.expires += incr;
80 timer->it_overrun += 1 << i;
81 delta -= incr;
82 }
83 }
84
85 /**
86 * task_cputime_zero - Check a task_cputime struct for all zero fields.
87 *
88 * @cputime: The struct to compare.
89 *
90 * Checks @cputime to see if all fields are zero. Returns true if all fields
91 * are zero, false if any field is nonzero.
92 */
93 static inline int task_cputime_zero(const struct task_cputime *cputime)
94 {
95 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
96 return 1;
97 return 0;
98 }
99
100 static inline u64 prof_ticks(struct task_struct *p)
101 {
102 u64 utime, stime;
103
104 task_cputime(p, &utime, &stime);
105
106 return utime + stime;
107 }
108 static inline u64 virt_ticks(struct task_struct *p)
109 {
110 u64 utime, stime;
111
112 task_cputime(p, &utime, &stime);
113
114 return utime;
115 }
116
117 static int
118 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
119 {
120 int error = check_clock(which_clock);
121 if (!error) {
122 tp->tv_sec = 0;
123 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
124 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
125 /*
126 * If sched_clock is using a cycle counter, we
127 * don't have any idea of its true resolution
128 * exported, but it is much more than 1s/HZ.
129 */
130 tp->tv_nsec = 1;
131 }
132 }
133 return error;
134 }
135
136 static int
137 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
138 {
139 /*
140 * You can never reset a CPU clock, but we check for other errors
141 * in the call before failing with EPERM.
142 */
143 int error = check_clock(which_clock);
144 if (error == 0) {
145 error = -EPERM;
146 }
147 return error;
148 }
149
150
151 /*
152 * Sample a per-thread clock for the given task.
153 */
154 static int cpu_clock_sample(const clockid_t which_clock,
155 struct task_struct *p, u64 *sample)
156 {
157 switch (CPUCLOCK_WHICH(which_clock)) {
158 default:
159 return -EINVAL;
160 case CPUCLOCK_PROF:
161 *sample = prof_ticks(p);
162 break;
163 case CPUCLOCK_VIRT:
164 *sample = virt_ticks(p);
165 break;
166 case CPUCLOCK_SCHED:
167 *sample = task_sched_runtime(p);
168 break;
169 }
170 return 0;
171 }
172
173 /*
174 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
175 * to avoid race conditions with concurrent updates to cputime.
176 */
177 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
178 {
179 u64 curr_cputime;
180 retry:
181 curr_cputime = atomic64_read(cputime);
182 if (sum_cputime > curr_cputime) {
183 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
184 goto retry;
185 }
186 }
187
188 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
189 {
190 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
191 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
192 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
193 }
194
195 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
196 static inline void sample_cputime_atomic(struct task_cputime *times,
197 struct task_cputime_atomic *atomic_times)
198 {
199 times->utime = atomic64_read(&atomic_times->utime);
200 times->stime = atomic64_read(&atomic_times->stime);
201 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
202 }
203
204 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
205 {
206 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
207 struct task_cputime sum;
208
209 /* Check if cputimer isn't running. This is accessed without locking. */
210 if (!READ_ONCE(cputimer->running)) {
211 /*
212 * The POSIX timer interface allows for absolute time expiry
213 * values through the TIMER_ABSTIME flag, therefore we have
214 * to synchronize the timer to the clock every time we start it.
215 */
216 thread_group_cputime(tsk, &sum);
217 update_gt_cputime(&cputimer->cputime_atomic, &sum);
218
219 /*
220 * We're setting cputimer->running without a lock. Ensure
221 * this only gets written to in one operation. We set
222 * running after update_gt_cputime() as a small optimization,
223 * but barriers are not required because update_gt_cputime()
224 * can handle concurrent updates.
225 */
226 WRITE_ONCE(cputimer->running, true);
227 }
228 sample_cputime_atomic(times, &cputimer->cputime_atomic);
229 }
230
231 /*
232 * Sample a process (thread group) clock for the given group_leader task.
233 * Must be called with task sighand lock held for safe while_each_thread()
234 * traversal.
235 */
236 static int cpu_clock_sample_group(const clockid_t which_clock,
237 struct task_struct *p,
238 u64 *sample)
239 {
240 struct task_cputime cputime;
241
242 switch (CPUCLOCK_WHICH(which_clock)) {
243 default:
244 return -EINVAL;
245 case CPUCLOCK_PROF:
246 thread_group_cputime(p, &cputime);
247 *sample = cputime.utime + cputime.stime;
248 break;
249 case CPUCLOCK_VIRT:
250 thread_group_cputime(p, &cputime);
251 *sample = cputime.utime;
252 break;
253 case CPUCLOCK_SCHED:
254 thread_group_cputime(p, &cputime);
255 *sample = cputime.sum_exec_runtime;
256 break;
257 }
258 return 0;
259 }
260
261 static int posix_cpu_clock_get_task(struct task_struct *tsk,
262 const clockid_t which_clock,
263 struct timespec *tp)
264 {
265 int err = -EINVAL;
266 u64 rtn;
267
268 if (CPUCLOCK_PERTHREAD(which_clock)) {
269 if (same_thread_group(tsk, current))
270 err = cpu_clock_sample(which_clock, tsk, &rtn);
271 } else {
272 if (tsk == current || thread_group_leader(tsk))
273 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
274 }
275
276 if (!err)
277 *tp = ns_to_timespec(rtn);
278
279 return err;
280 }
281
282
283 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
284 {
285 const pid_t pid = CPUCLOCK_PID(which_clock);
286 int err = -EINVAL;
287
288 if (pid == 0) {
289 /*
290 * Special case constant value for our own clocks.
291 * We don't have to do any lookup to find ourselves.
292 */
293 err = posix_cpu_clock_get_task(current, which_clock, tp);
294 } else {
295 /*
296 * Find the given PID, and validate that the caller
297 * should be able to see it.
298 */
299 struct task_struct *p;
300 rcu_read_lock();
301 p = find_task_by_vpid(pid);
302 if (p)
303 err = posix_cpu_clock_get_task(p, which_clock, tp);
304 rcu_read_unlock();
305 }
306
307 return err;
308 }
309
310 /*
311 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
312 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
313 * new timer already all-zeros initialized.
314 */
315 static int posix_cpu_timer_create(struct k_itimer *new_timer)
316 {
317 int ret = 0;
318 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
319 struct task_struct *p;
320
321 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
322 return -EINVAL;
323
324 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
325
326 rcu_read_lock();
327 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
328 if (pid == 0) {
329 p = current;
330 } else {
331 p = find_task_by_vpid(pid);
332 if (p && !same_thread_group(p, current))
333 p = NULL;
334 }
335 } else {
336 if (pid == 0) {
337 p = current->group_leader;
338 } else {
339 p = find_task_by_vpid(pid);
340 if (p && !has_group_leader_pid(p))
341 p = NULL;
342 }
343 }
344 new_timer->it.cpu.task = p;
345 if (p) {
346 get_task_struct(p);
347 } else {
348 ret = -EINVAL;
349 }
350 rcu_read_unlock();
351
352 return ret;
353 }
354
355 /*
356 * Clean up a CPU-clock timer that is about to be destroyed.
357 * This is called from timer deletion with the timer already locked.
358 * If we return TIMER_RETRY, it's necessary to release the timer's lock
359 * and try again. (This happens when the timer is in the middle of firing.)
360 */
361 static int posix_cpu_timer_del(struct k_itimer *timer)
362 {
363 int ret = 0;
364 unsigned long flags;
365 struct sighand_struct *sighand;
366 struct task_struct *p = timer->it.cpu.task;
367
368 WARN_ON_ONCE(p == NULL);
369
370 /*
371 * Protect against sighand release/switch in exit/exec and process/
372 * thread timer list entry concurrent read/writes.
373 */
374 sighand = lock_task_sighand(p, &flags);
375 if (unlikely(sighand == NULL)) {
376 /*
377 * We raced with the reaping of the task.
378 * The deletion should have cleared us off the list.
379 */
380 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
381 } else {
382 if (timer->it.cpu.firing)
383 ret = TIMER_RETRY;
384 else
385 list_del(&timer->it.cpu.entry);
386
387 unlock_task_sighand(p, &flags);
388 }
389
390 if (!ret)
391 put_task_struct(p);
392
393 return ret;
394 }
395
396 static void cleanup_timers_list(struct list_head *head)
397 {
398 struct cpu_timer_list *timer, *next;
399
400 list_for_each_entry_safe(timer, next, head, entry)
401 list_del_init(&timer->entry);
402 }
403
404 /*
405 * Clean out CPU timers still ticking when a thread exited. The task
406 * pointer is cleared, and the expiry time is replaced with the residual
407 * time for later timer_gettime calls to return.
408 * This must be called with the siglock held.
409 */
410 static void cleanup_timers(struct list_head *head)
411 {
412 cleanup_timers_list(head);
413 cleanup_timers_list(++head);
414 cleanup_timers_list(++head);
415 }
416
417 /*
418 * These are both called with the siglock held, when the current thread
419 * is being reaped. When the final (leader) thread in the group is reaped,
420 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
421 */
422 void posix_cpu_timers_exit(struct task_struct *tsk)
423 {
424 cleanup_timers(tsk->cpu_timers);
425 }
426 void posix_cpu_timers_exit_group(struct task_struct *tsk)
427 {
428 cleanup_timers(tsk->signal->cpu_timers);
429 }
430
431 static inline int expires_gt(u64 expires, u64 new_exp)
432 {
433 return expires == 0 || expires > new_exp;
434 }
435
436 /*
437 * Insert the timer on the appropriate list before any timers that
438 * expire later. This must be called with the sighand lock held.
439 */
440 static void arm_timer(struct k_itimer *timer)
441 {
442 struct task_struct *p = timer->it.cpu.task;
443 struct list_head *head, *listpos;
444 struct task_cputime *cputime_expires;
445 struct cpu_timer_list *const nt = &timer->it.cpu;
446 struct cpu_timer_list *next;
447
448 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
449 head = p->cpu_timers;
450 cputime_expires = &p->cputime_expires;
451 } else {
452 head = p->signal->cpu_timers;
453 cputime_expires = &p->signal->cputime_expires;
454 }
455 head += CPUCLOCK_WHICH(timer->it_clock);
456
457 listpos = head;
458 list_for_each_entry(next, head, entry) {
459 if (nt->expires < next->expires)
460 break;
461 listpos = &next->entry;
462 }
463 list_add(&nt->entry, listpos);
464
465 if (listpos == head) {
466 u64 exp = nt->expires;
467
468 /*
469 * We are the new earliest-expiring POSIX 1.b timer, hence
470 * need to update expiration cache. Take into account that
471 * for process timers we share expiration cache with itimers
472 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
473 */
474
475 switch (CPUCLOCK_WHICH(timer->it_clock)) {
476 case CPUCLOCK_PROF:
477 if (expires_gt(cputime_expires->prof_exp, exp))
478 cputime_expires->prof_exp = exp;
479 break;
480 case CPUCLOCK_VIRT:
481 if (expires_gt(cputime_expires->virt_exp, exp))
482 cputime_expires->virt_exp = exp;
483 break;
484 case CPUCLOCK_SCHED:
485 if (expires_gt(cputime_expires->sched_exp, exp))
486 cputime_expires->sched_exp = exp;
487 break;
488 }
489 if (CPUCLOCK_PERTHREAD(timer->it_clock))
490 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
491 else
492 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
493 }
494 }
495
496 /*
497 * The timer is locked, fire it and arrange for its reload.
498 */
499 static void cpu_timer_fire(struct k_itimer *timer)
500 {
501 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
502 /*
503 * User don't want any signal.
504 */
505 timer->it.cpu.expires = 0;
506 } else if (unlikely(timer->sigq == NULL)) {
507 /*
508 * This a special case for clock_nanosleep,
509 * not a normal timer from sys_timer_create.
510 */
511 wake_up_process(timer->it_process);
512 timer->it.cpu.expires = 0;
513 } else if (timer->it.cpu.incr == 0) {
514 /*
515 * One-shot timer. Clear it as soon as it's fired.
516 */
517 posix_timer_event(timer, 0);
518 timer->it.cpu.expires = 0;
519 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
520 /*
521 * The signal did not get queued because the signal
522 * was ignored, so we won't get any callback to
523 * reload the timer. But we need to keep it
524 * ticking in case the signal is deliverable next time.
525 */
526 posix_cpu_timer_schedule(timer);
527 }
528 }
529
530 /*
531 * Sample a process (thread group) timer for the given group_leader task.
532 * Must be called with task sighand lock held for safe while_each_thread()
533 * traversal.
534 */
535 static int cpu_timer_sample_group(const clockid_t which_clock,
536 struct task_struct *p, u64 *sample)
537 {
538 struct task_cputime cputime;
539
540 thread_group_cputimer(p, &cputime);
541 switch (CPUCLOCK_WHICH(which_clock)) {
542 default:
543 return -EINVAL;
544 case CPUCLOCK_PROF:
545 *sample = cputime.utime + cputime.stime;
546 break;
547 case CPUCLOCK_VIRT:
548 *sample = cputime.utime;
549 break;
550 case CPUCLOCK_SCHED:
551 *sample = cputime.sum_exec_runtime;
552 break;
553 }
554 return 0;
555 }
556
557 /*
558 * Guts of sys_timer_settime for CPU timers.
559 * This is called with the timer locked and interrupts disabled.
560 * If we return TIMER_RETRY, it's necessary to release the timer's lock
561 * and try again. (This happens when the timer is in the middle of firing.)
562 */
563 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
564 struct itimerspec *new, struct itimerspec *old)
565 {
566 unsigned long flags;
567 struct sighand_struct *sighand;
568 struct task_struct *p = timer->it.cpu.task;
569 u64 old_expires, new_expires, old_incr, val;
570 int ret;
571
572 WARN_ON_ONCE(p == NULL);
573
574 new_expires = timespec_to_ns(&new->it_value);
575
576 /*
577 * Protect against sighand release/switch in exit/exec and p->cpu_timers
578 * and p->signal->cpu_timers read/write in arm_timer()
579 */
580 sighand = lock_task_sighand(p, &flags);
581 /*
582 * If p has just been reaped, we can no
583 * longer get any information about it at all.
584 */
585 if (unlikely(sighand == NULL)) {
586 return -ESRCH;
587 }
588
589 /*
590 * Disarm any old timer after extracting its expiry time.
591 */
592 WARN_ON_ONCE(!irqs_disabled());
593
594 ret = 0;
595 old_incr = timer->it.cpu.incr;
596 old_expires = timer->it.cpu.expires;
597 if (unlikely(timer->it.cpu.firing)) {
598 timer->it.cpu.firing = -1;
599 ret = TIMER_RETRY;
600 } else
601 list_del_init(&timer->it.cpu.entry);
602
603 /*
604 * We need to sample the current value to convert the new
605 * value from to relative and absolute, and to convert the
606 * old value from absolute to relative. To set a process
607 * timer, we need a sample to balance the thread expiry
608 * times (in arm_timer). With an absolute time, we must
609 * check if it's already passed. In short, we need a sample.
610 */
611 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
612 cpu_clock_sample(timer->it_clock, p, &val);
613 } else {
614 cpu_timer_sample_group(timer->it_clock, p, &val);
615 }
616
617 if (old) {
618 if (old_expires == 0) {
619 old->it_value.tv_sec = 0;
620 old->it_value.tv_nsec = 0;
621 } else {
622 /*
623 * Update the timer in case it has
624 * overrun already. If it has,
625 * we'll report it as having overrun
626 * and with the next reloaded timer
627 * already ticking, though we are
628 * swallowing that pending
629 * notification here to install the
630 * new setting.
631 */
632 bump_cpu_timer(timer, val);
633 if (val < timer->it.cpu.expires) {
634 old_expires = timer->it.cpu.expires - val;
635 old->it_value = ns_to_timespec(old_expires);
636 } else {
637 old->it_value.tv_nsec = 1;
638 old->it_value.tv_sec = 0;
639 }
640 }
641 }
642
643 if (unlikely(ret)) {
644 /*
645 * We are colliding with the timer actually firing.
646 * Punt after filling in the timer's old value, and
647 * disable this firing since we are already reporting
648 * it as an overrun (thanks to bump_cpu_timer above).
649 */
650 unlock_task_sighand(p, &flags);
651 goto out;
652 }
653
654 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
655 new_expires += val;
656 }
657
658 /*
659 * Install the new expiry time (or zero).
660 * For a timer with no notification action, we don't actually
661 * arm the timer (we'll just fake it for timer_gettime).
662 */
663 timer->it.cpu.expires = new_expires;
664 if (new_expires != 0 && val < new_expires) {
665 arm_timer(timer);
666 }
667
668 unlock_task_sighand(p, &flags);
669 /*
670 * Install the new reload setting, and
671 * set up the signal and overrun bookkeeping.
672 */
673 timer->it.cpu.incr = timespec_to_ns(&new->it_interval);
674
675 /*
676 * This acts as a modification timestamp for the timer,
677 * so any automatic reload attempt will punt on seeing
678 * that we have reset the timer manually.
679 */
680 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
681 ~REQUEUE_PENDING;
682 timer->it_overrun_last = 0;
683 timer->it_overrun = -1;
684
685 if (new_expires != 0 && !(val < new_expires)) {
686 /*
687 * The designated time already passed, so we notify
688 * immediately, even if the thread never runs to
689 * accumulate more time on this clock.
690 */
691 cpu_timer_fire(timer);
692 }
693
694 ret = 0;
695 out:
696 if (old)
697 old->it_interval = ns_to_timespec(old_incr);
698
699 return ret;
700 }
701
702 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
703 {
704 u64 now;
705 struct task_struct *p = timer->it.cpu.task;
706
707 WARN_ON_ONCE(p == NULL);
708
709 /*
710 * Easy part: convert the reload time.
711 */
712 itp->it_interval = ns_to_timespec(timer->it.cpu.incr);
713
714 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */
715 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
716 return;
717 }
718
719 /*
720 * Sample the clock to take the difference with the expiry time.
721 */
722 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
723 cpu_clock_sample(timer->it_clock, p, &now);
724 } else {
725 struct sighand_struct *sighand;
726 unsigned long flags;
727
728 /*
729 * Protect against sighand release/switch in exit/exec and
730 * also make timer sampling safe if it ends up calling
731 * thread_group_cputime().
732 */
733 sighand = lock_task_sighand(p, &flags);
734 if (unlikely(sighand == NULL)) {
735 /*
736 * The process has been reaped.
737 * We can't even collect a sample any more.
738 * Call the timer disarmed, nothing else to do.
739 */
740 timer->it.cpu.expires = 0;
741 itp->it_value = ns_to_timespec(timer->it.cpu.expires);
742 return;
743 } else {
744 cpu_timer_sample_group(timer->it_clock, p, &now);
745 unlock_task_sighand(p, &flags);
746 }
747 }
748
749 if (now < timer->it.cpu.expires) {
750 itp->it_value = ns_to_timespec(timer->it.cpu.expires - now);
751 } else {
752 /*
753 * The timer should have expired already, but the firing
754 * hasn't taken place yet. Say it's just about to expire.
755 */
756 itp->it_value.tv_nsec = 1;
757 itp->it_value.tv_sec = 0;
758 }
759 }
760
761 static unsigned long long
762 check_timers_list(struct list_head *timers,
763 struct list_head *firing,
764 unsigned long long curr)
765 {
766 int maxfire = 20;
767
768 while (!list_empty(timers)) {
769 struct cpu_timer_list *t;
770
771 t = list_first_entry(timers, struct cpu_timer_list, entry);
772
773 if (!--maxfire || curr < t->expires)
774 return t->expires;
775
776 t->firing = 1;
777 list_move_tail(&t->entry, firing);
778 }
779
780 return 0;
781 }
782
783 /*
784 * Check for any per-thread CPU timers that have fired and move them off
785 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
786 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
787 */
788 static void check_thread_timers(struct task_struct *tsk,
789 struct list_head *firing)
790 {
791 struct list_head *timers = tsk->cpu_timers;
792 struct signal_struct *const sig = tsk->signal;
793 struct task_cputime *tsk_expires = &tsk->cputime_expires;
794 u64 expires;
795 unsigned long soft;
796
797 /*
798 * If cputime_expires is zero, then there are no active
799 * per thread CPU timers.
800 */
801 if (task_cputime_zero(&tsk->cputime_expires))
802 return;
803
804 expires = check_timers_list(timers, firing, prof_ticks(tsk));
805 tsk_expires->prof_exp = expires;
806
807 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
808 tsk_expires->virt_exp = expires;
809
810 tsk_expires->sched_exp = check_timers_list(++timers, firing,
811 tsk->se.sum_exec_runtime);
812
813 /*
814 * Check for the special case thread timers.
815 */
816 soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
817 if (soft != RLIM_INFINITY) {
818 unsigned long hard =
819 READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
820
821 if (hard != RLIM_INFINITY &&
822 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
823 /*
824 * At the hard limit, we just die.
825 * No need to calculate anything else now.
826 */
827 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
828 return;
829 }
830 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
831 /*
832 * At the soft limit, send a SIGXCPU every second.
833 */
834 if (soft < hard) {
835 soft += USEC_PER_SEC;
836 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
837 }
838 printk(KERN_INFO
839 "RT Watchdog Timeout: %s[%d]\n",
840 tsk->comm, task_pid_nr(tsk));
841 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
842 }
843 }
844 if (task_cputime_zero(tsk_expires))
845 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
846 }
847
848 static inline void stop_process_timers(struct signal_struct *sig)
849 {
850 struct thread_group_cputimer *cputimer = &sig->cputimer;
851
852 /* Turn off cputimer->running. This is done without locking. */
853 WRITE_ONCE(cputimer->running, false);
854 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
855 }
856
857 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
858 u64 *expires, u64 cur_time, int signo)
859 {
860 if (!it->expires)
861 return;
862
863 if (cur_time >= it->expires) {
864 if (it->incr)
865 it->expires += it->incr;
866 else
867 it->expires = 0;
868
869 trace_itimer_expire(signo == SIGPROF ?
870 ITIMER_PROF : ITIMER_VIRTUAL,
871 tsk->signal->leader_pid, cur_time);
872 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
873 }
874
875 if (it->expires && (!*expires || it->expires < *expires))
876 *expires = it->expires;
877 }
878
879 /*
880 * Check for any per-thread CPU timers that have fired and move them
881 * off the tsk->*_timers list onto the firing list. Per-thread timers
882 * have already been taken off.
883 */
884 static void check_process_timers(struct task_struct *tsk,
885 struct list_head *firing)
886 {
887 struct signal_struct *const sig = tsk->signal;
888 u64 utime, ptime, virt_expires, prof_expires;
889 u64 sum_sched_runtime, sched_expires;
890 struct list_head *timers = sig->cpu_timers;
891 struct task_cputime cputime;
892 unsigned long soft;
893
894 /*
895 * If cputimer is not running, then there are no active
896 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
897 */
898 if (!READ_ONCE(tsk->signal->cputimer.running))
899 return;
900
901 /*
902 * Signify that a thread is checking for process timers.
903 * Write access to this field is protected by the sighand lock.
904 */
905 sig->cputimer.checking_timer = true;
906
907 /*
908 * Collect the current process totals.
909 */
910 thread_group_cputimer(tsk, &cputime);
911 utime = cputime.utime;
912 ptime = utime + cputime.stime;
913 sum_sched_runtime = cputime.sum_exec_runtime;
914
915 prof_expires = check_timers_list(timers, firing, ptime);
916 virt_expires = check_timers_list(++timers, firing, utime);
917 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
918
919 /*
920 * Check for the special case process timers.
921 */
922 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
923 SIGPROF);
924 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
925 SIGVTALRM);
926 soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
927 if (soft != RLIM_INFINITY) {
928 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
929 unsigned long hard =
930 READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
931 u64 x;
932 if (psecs >= hard) {
933 /*
934 * At the hard limit, we just die.
935 * No need to calculate anything else now.
936 */
937 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
938 return;
939 }
940 if (psecs >= soft) {
941 /*
942 * At the soft limit, send a SIGXCPU every second.
943 */
944 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
945 if (soft < hard) {
946 soft++;
947 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
948 }
949 }
950 x = soft * NSEC_PER_SEC;
951 if (!prof_expires || x < prof_expires)
952 prof_expires = x;
953 }
954
955 sig->cputime_expires.prof_exp = prof_expires;
956 sig->cputime_expires.virt_exp = virt_expires;
957 sig->cputime_expires.sched_exp = sched_expires;
958 if (task_cputime_zero(&sig->cputime_expires))
959 stop_process_timers(sig);
960
961 sig->cputimer.checking_timer = false;
962 }
963
964 /*
965 * This is called from the signal code (via do_schedule_next_timer)
966 * when the last timer signal was delivered and we have to reload the timer.
967 */
968 void posix_cpu_timer_schedule(struct k_itimer *timer)
969 {
970 struct sighand_struct *sighand;
971 unsigned long flags;
972 struct task_struct *p = timer->it.cpu.task;
973 u64 now;
974
975 WARN_ON_ONCE(p == NULL);
976
977 /*
978 * Fetch the current sample and update the timer's expiry time.
979 */
980 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
981 cpu_clock_sample(timer->it_clock, p, &now);
982 bump_cpu_timer(timer, now);
983 if (unlikely(p->exit_state))
984 goto out;
985
986 /* Protect timer list r/w in arm_timer() */
987 sighand = lock_task_sighand(p, &flags);
988 if (!sighand)
989 goto out;
990 } else {
991 /*
992 * Protect arm_timer() and timer sampling in case of call to
993 * thread_group_cputime().
994 */
995 sighand = lock_task_sighand(p, &flags);
996 if (unlikely(sighand == NULL)) {
997 /*
998 * The process has been reaped.
999 * We can't even collect a sample any more.
1000 */
1001 timer->it.cpu.expires = 0;
1002 goto out;
1003 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1004 unlock_task_sighand(p, &flags);
1005 /* Optimizations: if the process is dying, no need to rearm */
1006 goto out;
1007 }
1008 cpu_timer_sample_group(timer->it_clock, p, &now);
1009 bump_cpu_timer(timer, now);
1010 /* Leave the sighand locked for the call below. */
1011 }
1012
1013 /*
1014 * Now re-arm for the new expiry time.
1015 */
1016 WARN_ON_ONCE(!irqs_disabled());
1017 arm_timer(timer);
1018 unlock_task_sighand(p, &flags);
1019
1020 out:
1021 timer->it_overrun_last = timer->it_overrun;
1022 timer->it_overrun = -1;
1023 ++timer->it_requeue_pending;
1024 }
1025
1026 /**
1027 * task_cputime_expired - Compare two task_cputime entities.
1028 *
1029 * @sample: The task_cputime structure to be checked for expiration.
1030 * @expires: Expiration times, against which @sample will be checked.
1031 *
1032 * Checks @sample against @expires to see if any field of @sample has expired.
1033 * Returns true if any field of the former is greater than the corresponding
1034 * field of the latter if the latter field is set. Otherwise returns false.
1035 */
1036 static inline int task_cputime_expired(const struct task_cputime *sample,
1037 const struct task_cputime *expires)
1038 {
1039 if (expires->utime && sample->utime >= expires->utime)
1040 return 1;
1041 if (expires->stime && sample->utime + sample->stime >= expires->stime)
1042 return 1;
1043 if (expires->sum_exec_runtime != 0 &&
1044 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1045 return 1;
1046 return 0;
1047 }
1048
1049 /**
1050 * fastpath_timer_check - POSIX CPU timers fast path.
1051 *
1052 * @tsk: The task (thread) being checked.
1053 *
1054 * Check the task and thread group timers. If both are zero (there are no
1055 * timers set) return false. Otherwise snapshot the task and thread group
1056 * timers and compare them with the corresponding expiration times. Return
1057 * true if a timer has expired, else return false.
1058 */
1059 static inline int fastpath_timer_check(struct task_struct *tsk)
1060 {
1061 struct signal_struct *sig;
1062
1063 if (!task_cputime_zero(&tsk->cputime_expires)) {
1064 struct task_cputime task_sample;
1065
1066 task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1067 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1068 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1069 return 1;
1070 }
1071
1072 sig = tsk->signal;
1073 /*
1074 * Check if thread group timers expired when the cputimer is
1075 * running and no other thread in the group is already checking
1076 * for thread group cputimers. These fields are read without the
1077 * sighand lock. However, this is fine because this is meant to
1078 * be a fastpath heuristic to determine whether we should try to
1079 * acquire the sighand lock to check/handle timers.
1080 *
1081 * In the worst case scenario, if 'running' or 'checking_timer' gets
1082 * set but the current thread doesn't see the change yet, we'll wait
1083 * until the next thread in the group gets a scheduler interrupt to
1084 * handle the timer. This isn't an issue in practice because these
1085 * types of delays with signals actually getting sent are expected.
1086 */
1087 if (READ_ONCE(sig->cputimer.running) &&
1088 !READ_ONCE(sig->cputimer.checking_timer)) {
1089 struct task_cputime group_sample;
1090
1091 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1092
1093 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1094 return 1;
1095 }
1096
1097 return 0;
1098 }
1099
1100 /*
1101 * This is called from the timer interrupt handler. The irq handler has
1102 * already updated our counts. We need to check if any timers fire now.
1103 * Interrupts are disabled.
1104 */
1105 void run_posix_cpu_timers(struct task_struct *tsk)
1106 {
1107 LIST_HEAD(firing);
1108 struct k_itimer *timer, *next;
1109 unsigned long flags;
1110
1111 WARN_ON_ONCE(!irqs_disabled());
1112
1113 /*
1114 * The fast path checks that there are no expired thread or thread
1115 * group timers. If that's so, just return.
1116 */
1117 if (!fastpath_timer_check(tsk))
1118 return;
1119
1120 if (!lock_task_sighand(tsk, &flags))
1121 return;
1122 /*
1123 * Here we take off tsk->signal->cpu_timers[N] and
1124 * tsk->cpu_timers[N] all the timers that are firing, and
1125 * put them on the firing list.
1126 */
1127 check_thread_timers(tsk, &firing);
1128
1129 check_process_timers(tsk, &firing);
1130
1131 /*
1132 * We must release these locks before taking any timer's lock.
1133 * There is a potential race with timer deletion here, as the
1134 * siglock now protects our private firing list. We have set
1135 * the firing flag in each timer, so that a deletion attempt
1136 * that gets the timer lock before we do will give it up and
1137 * spin until we've taken care of that timer below.
1138 */
1139 unlock_task_sighand(tsk, &flags);
1140
1141 /*
1142 * Now that all the timers on our list have the firing flag,
1143 * no one will touch their list entries but us. We'll take
1144 * each timer's lock before clearing its firing flag, so no
1145 * timer call will interfere.
1146 */
1147 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1148 int cpu_firing;
1149
1150 spin_lock(&timer->it_lock);
1151 list_del_init(&timer->it.cpu.entry);
1152 cpu_firing = timer->it.cpu.firing;
1153 timer->it.cpu.firing = 0;
1154 /*
1155 * The firing flag is -1 if we collided with a reset
1156 * of the timer, which already reported this
1157 * almost-firing as an overrun. So don't generate an event.
1158 */
1159 if (likely(cpu_firing >= 0))
1160 cpu_timer_fire(timer);
1161 spin_unlock(&timer->it_lock);
1162 }
1163 }
1164
1165 /*
1166 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1167 * The tsk->sighand->siglock must be held by the caller.
1168 */
1169 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1170 u64 *newval, u64 *oldval)
1171 {
1172 u64 now;
1173
1174 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1175 cpu_timer_sample_group(clock_idx, tsk, &now);
1176
1177 if (oldval) {
1178 /*
1179 * We are setting itimer. The *oldval is absolute and we update
1180 * it to be relative, *newval argument is relative and we update
1181 * it to be absolute.
1182 */
1183 if (*oldval) {
1184 if (*oldval <= now) {
1185 /* Just about to fire. */
1186 *oldval = TICK_NSEC;
1187 } else {
1188 *oldval -= now;
1189 }
1190 }
1191
1192 if (!*newval)
1193 return;
1194 *newval += now;
1195 }
1196
1197 /*
1198 * Update expiration cache if we are the earliest timer, or eventually
1199 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1200 */
1201 switch (clock_idx) {
1202 case CPUCLOCK_PROF:
1203 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1204 tsk->signal->cputime_expires.prof_exp = *newval;
1205 break;
1206 case CPUCLOCK_VIRT:
1207 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1208 tsk->signal->cputime_expires.virt_exp = *newval;
1209 break;
1210 }
1211
1212 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1213 }
1214
1215 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1216 struct timespec *rqtp, struct itimerspec *it)
1217 {
1218 struct k_itimer timer;
1219 int error;
1220
1221 /*
1222 * Set up a temporary timer and then wait for it to go off.
1223 */
1224 memset(&timer, 0, sizeof timer);
1225 spin_lock_init(&timer.it_lock);
1226 timer.it_clock = which_clock;
1227 timer.it_overrun = -1;
1228 error = posix_cpu_timer_create(&timer);
1229 timer.it_process = current;
1230 if (!error) {
1231 static struct itimerspec zero_it;
1232
1233 memset(it, 0, sizeof *it);
1234 it->it_value = *rqtp;
1235
1236 spin_lock_irq(&timer.it_lock);
1237 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1238 if (error) {
1239 spin_unlock_irq(&timer.it_lock);
1240 return error;
1241 }
1242
1243 while (!signal_pending(current)) {
1244 if (timer.it.cpu.expires == 0) {
1245 /*
1246 * Our timer fired and was reset, below
1247 * deletion can not fail.
1248 */
1249 posix_cpu_timer_del(&timer);
1250 spin_unlock_irq(&timer.it_lock);
1251 return 0;
1252 }
1253
1254 /*
1255 * Block until cpu_timer_fire (or a signal) wakes us.
1256 */
1257 __set_current_state(TASK_INTERRUPTIBLE);
1258 spin_unlock_irq(&timer.it_lock);
1259 schedule();
1260 spin_lock_irq(&timer.it_lock);
1261 }
1262
1263 /*
1264 * We were interrupted by a signal.
1265 */
1266 *rqtp = ns_to_timespec(timer.it.cpu.expires);
1267 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1268 if (!error) {
1269 /*
1270 * Timer is now unarmed, deletion can not fail.
1271 */
1272 posix_cpu_timer_del(&timer);
1273 }
1274 spin_unlock_irq(&timer.it_lock);
1275
1276 while (error == TIMER_RETRY) {
1277 /*
1278 * We need to handle case when timer was or is in the
1279 * middle of firing. In other cases we already freed
1280 * resources.
1281 */
1282 spin_lock_irq(&timer.it_lock);
1283 error = posix_cpu_timer_del(&timer);
1284 spin_unlock_irq(&timer.it_lock);
1285 }
1286
1287 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1288 /*
1289 * It actually did fire already.
1290 */
1291 return 0;
1292 }
1293
1294 error = -ERESTART_RESTARTBLOCK;
1295 }
1296
1297 return error;
1298 }
1299
1300 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1301
1302 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1303 struct timespec *rqtp, struct timespec __user *rmtp)
1304 {
1305 struct restart_block *restart_block = &current->restart_block;
1306 struct itimerspec it;
1307 int error;
1308
1309 /*
1310 * Diagnose required errors first.
1311 */
1312 if (CPUCLOCK_PERTHREAD(which_clock) &&
1313 (CPUCLOCK_PID(which_clock) == 0 ||
1314 CPUCLOCK_PID(which_clock) == current->pid))
1315 return -EINVAL;
1316
1317 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1318
1319 if (error == -ERESTART_RESTARTBLOCK) {
1320
1321 if (flags & TIMER_ABSTIME)
1322 return -ERESTARTNOHAND;
1323 /*
1324 * Report back to the user the time still remaining.
1325 */
1326 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1327 return -EFAULT;
1328
1329 restart_block->fn = posix_cpu_nsleep_restart;
1330 restart_block->nanosleep.clockid = which_clock;
1331 restart_block->nanosleep.rmtp = rmtp;
1332 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1333 }
1334 return error;
1335 }
1336
1337 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1338 {
1339 clockid_t which_clock = restart_block->nanosleep.clockid;
1340 struct timespec t;
1341 struct itimerspec it;
1342 int error;
1343
1344 t = ns_to_timespec(restart_block->nanosleep.expires);
1345
1346 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1347
1348 if (error == -ERESTART_RESTARTBLOCK) {
1349 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1350 /*
1351 * Report back to the user the time still remaining.
1352 */
1353 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1354 return -EFAULT;
1355
1356 restart_block->nanosleep.expires = timespec_to_ns(&t);
1357 }
1358 return error;
1359
1360 }
1361
1362 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1363 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1364
1365 static int process_cpu_clock_getres(const clockid_t which_clock,
1366 struct timespec *tp)
1367 {
1368 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1369 }
1370 static int process_cpu_clock_get(const clockid_t which_clock,
1371 struct timespec *tp)
1372 {
1373 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1374 }
1375 static int process_cpu_timer_create(struct k_itimer *timer)
1376 {
1377 timer->it_clock = PROCESS_CLOCK;
1378 return posix_cpu_timer_create(timer);
1379 }
1380 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1381 struct timespec *rqtp,
1382 struct timespec __user *rmtp)
1383 {
1384 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1385 }
1386 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1387 {
1388 return -EINVAL;
1389 }
1390 static int thread_cpu_clock_getres(const clockid_t which_clock,
1391 struct timespec *tp)
1392 {
1393 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1394 }
1395 static int thread_cpu_clock_get(const clockid_t which_clock,
1396 struct timespec *tp)
1397 {
1398 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1399 }
1400 static int thread_cpu_timer_create(struct k_itimer *timer)
1401 {
1402 timer->it_clock = THREAD_CLOCK;
1403 return posix_cpu_timer_create(timer);
1404 }
1405
1406 struct k_clock clock_posix_cpu = {
1407 .clock_getres = posix_cpu_clock_getres,
1408 .clock_set = posix_cpu_clock_set,
1409 .clock_get = posix_cpu_clock_get,
1410 .timer_create = posix_cpu_timer_create,
1411 .nsleep = posix_cpu_nsleep,
1412 .nsleep_restart = posix_cpu_nsleep_restart,
1413 .timer_set = posix_cpu_timer_set,
1414 .timer_del = posix_cpu_timer_del,
1415 .timer_get = posix_cpu_timer_get,
1416 };
1417
1418 static __init int init_posix_cpu_timers(void)
1419 {
1420 struct k_clock process = {
1421 .clock_getres = process_cpu_clock_getres,
1422 .clock_get = process_cpu_clock_get,
1423 .timer_create = process_cpu_timer_create,
1424 .nsleep = process_cpu_nsleep,
1425 .nsleep_restart = process_cpu_nsleep_restart,
1426 };
1427 struct k_clock thread = {
1428 .clock_getres = thread_cpu_clock_getres,
1429 .clock_get = thread_cpu_clock_get,
1430 .timer_create = thread_cpu_timer_create,
1431 };
1432
1433 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1434 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1435
1436 return 0;
1437 }
1438 __initcall(init_posix_cpu_timers);