]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/posix-cpu-timers.c
rcu: Allow for page faults in NMI handlers
[mirror_ubuntu-artful-kernel.git] / kernel / time / posix-cpu-timers.c
1 /*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5 #include <linux/sched/signal.h>
6 #include <linux/sched/cputime.h>
7 #include <linux/posix-timers.h>
8 #include <linux/errno.h>
9 #include <linux/math64.h>
10 #include <linux/uaccess.h>
11 #include <linux/kernel_stat.h>
12 #include <trace/events/timer.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15 #include <linux/compat.h>
16
17 #include "posix-timers.h"
18
19 static void posix_cpu_timer_rearm(struct k_itimer *timer);
20
21 /*
22 * Called after updating RLIMIT_CPU to run cpu timer and update
23 * tsk->signal->cputime_expires expiration cache if necessary. Needs
24 * siglock protection since other code may update expiration cache as
25 * well.
26 */
27 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
28 {
29 u64 nsecs = rlim_new * NSEC_PER_SEC;
30
31 spin_lock_irq(&task->sighand->siglock);
32 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
33 spin_unlock_irq(&task->sighand->siglock);
34 }
35
36 static int check_clock(const clockid_t which_clock)
37 {
38 int error = 0;
39 struct task_struct *p;
40 const pid_t pid = CPUCLOCK_PID(which_clock);
41
42 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
43 return -EINVAL;
44
45 if (pid == 0)
46 return 0;
47
48 rcu_read_lock();
49 p = find_task_by_vpid(pid);
50 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
51 same_thread_group(p, current) : has_group_leader_pid(p))) {
52 error = -EINVAL;
53 }
54 rcu_read_unlock();
55
56 return error;
57 }
58
59 /*
60 * Update expiry time from increment, and increase overrun count,
61 * given the current clock sample.
62 */
63 static void bump_cpu_timer(struct k_itimer *timer, u64 now)
64 {
65 int i;
66 u64 delta, incr;
67
68 if (timer->it.cpu.incr == 0)
69 return;
70
71 if (now < timer->it.cpu.expires)
72 return;
73
74 incr = timer->it.cpu.incr;
75 delta = now + incr - timer->it.cpu.expires;
76
77 /* Don't use (incr*2 < delta), incr*2 might overflow. */
78 for (i = 0; incr < delta - incr; i++)
79 incr = incr << 1;
80
81 for (; i >= 0; incr >>= 1, i--) {
82 if (delta < incr)
83 continue;
84
85 timer->it.cpu.expires += incr;
86 timer->it_overrun += 1 << i;
87 delta -= incr;
88 }
89 }
90
91 /**
92 * task_cputime_zero - Check a task_cputime struct for all zero fields.
93 *
94 * @cputime: The struct to compare.
95 *
96 * Checks @cputime to see if all fields are zero. Returns true if all fields
97 * are zero, false if any field is nonzero.
98 */
99 static inline int task_cputime_zero(const struct task_cputime *cputime)
100 {
101 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
102 return 1;
103 return 0;
104 }
105
106 static inline u64 prof_ticks(struct task_struct *p)
107 {
108 u64 utime, stime;
109
110 task_cputime(p, &utime, &stime);
111
112 return utime + stime;
113 }
114 static inline u64 virt_ticks(struct task_struct *p)
115 {
116 u64 utime, stime;
117
118 task_cputime(p, &utime, &stime);
119
120 return utime;
121 }
122
123 static int
124 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
125 {
126 int error = check_clock(which_clock);
127 if (!error) {
128 tp->tv_sec = 0;
129 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
130 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
131 /*
132 * If sched_clock is using a cycle counter, we
133 * don't have any idea of its true resolution
134 * exported, but it is much more than 1s/HZ.
135 */
136 tp->tv_nsec = 1;
137 }
138 }
139 return error;
140 }
141
142 static int
143 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
144 {
145 /*
146 * You can never reset a CPU clock, but we check for other errors
147 * in the call before failing with EPERM.
148 */
149 int error = check_clock(which_clock);
150 if (error == 0) {
151 error = -EPERM;
152 }
153 return error;
154 }
155
156
157 /*
158 * Sample a per-thread clock for the given task.
159 */
160 static int cpu_clock_sample(const clockid_t which_clock,
161 struct task_struct *p, u64 *sample)
162 {
163 switch (CPUCLOCK_WHICH(which_clock)) {
164 default:
165 return -EINVAL;
166 case CPUCLOCK_PROF:
167 *sample = prof_ticks(p);
168 break;
169 case CPUCLOCK_VIRT:
170 *sample = virt_ticks(p);
171 break;
172 case CPUCLOCK_SCHED:
173 *sample = task_sched_runtime(p);
174 break;
175 }
176 return 0;
177 }
178
179 /*
180 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
181 * to avoid race conditions with concurrent updates to cputime.
182 */
183 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
184 {
185 u64 curr_cputime;
186 retry:
187 curr_cputime = atomic64_read(cputime);
188 if (sum_cputime > curr_cputime) {
189 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
190 goto retry;
191 }
192 }
193
194 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
195 {
196 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
197 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
198 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
199 }
200
201 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
202 static inline void sample_cputime_atomic(struct task_cputime *times,
203 struct task_cputime_atomic *atomic_times)
204 {
205 times->utime = atomic64_read(&atomic_times->utime);
206 times->stime = atomic64_read(&atomic_times->stime);
207 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
208 }
209
210 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
211 {
212 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
213 struct task_cputime sum;
214
215 /* Check if cputimer isn't running. This is accessed without locking. */
216 if (!READ_ONCE(cputimer->running)) {
217 /*
218 * The POSIX timer interface allows for absolute time expiry
219 * values through the TIMER_ABSTIME flag, therefore we have
220 * to synchronize the timer to the clock every time we start it.
221 */
222 thread_group_cputime(tsk, &sum);
223 update_gt_cputime(&cputimer->cputime_atomic, &sum);
224
225 /*
226 * We're setting cputimer->running without a lock. Ensure
227 * this only gets written to in one operation. We set
228 * running after update_gt_cputime() as a small optimization,
229 * but barriers are not required because update_gt_cputime()
230 * can handle concurrent updates.
231 */
232 WRITE_ONCE(cputimer->running, true);
233 }
234 sample_cputime_atomic(times, &cputimer->cputime_atomic);
235 }
236
237 /*
238 * Sample a process (thread group) clock for the given group_leader task.
239 * Must be called with task sighand lock held for safe while_each_thread()
240 * traversal.
241 */
242 static int cpu_clock_sample_group(const clockid_t which_clock,
243 struct task_struct *p,
244 u64 *sample)
245 {
246 struct task_cputime cputime;
247
248 switch (CPUCLOCK_WHICH(which_clock)) {
249 default:
250 return -EINVAL;
251 case CPUCLOCK_PROF:
252 thread_group_cputime(p, &cputime);
253 *sample = cputime.utime + cputime.stime;
254 break;
255 case CPUCLOCK_VIRT:
256 thread_group_cputime(p, &cputime);
257 *sample = cputime.utime;
258 break;
259 case CPUCLOCK_SCHED:
260 thread_group_cputime(p, &cputime);
261 *sample = cputime.sum_exec_runtime;
262 break;
263 }
264 return 0;
265 }
266
267 static int posix_cpu_clock_get_task(struct task_struct *tsk,
268 const clockid_t which_clock,
269 struct timespec64 *tp)
270 {
271 int err = -EINVAL;
272 u64 rtn;
273
274 if (CPUCLOCK_PERTHREAD(which_clock)) {
275 if (same_thread_group(tsk, current))
276 err = cpu_clock_sample(which_clock, tsk, &rtn);
277 } else {
278 if (tsk == current || thread_group_leader(tsk))
279 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
280 }
281
282 if (!err)
283 *tp = ns_to_timespec64(rtn);
284
285 return err;
286 }
287
288
289 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
290 {
291 const pid_t pid = CPUCLOCK_PID(which_clock);
292 int err = -EINVAL;
293
294 if (pid == 0) {
295 /*
296 * Special case constant value for our own clocks.
297 * We don't have to do any lookup to find ourselves.
298 */
299 err = posix_cpu_clock_get_task(current, which_clock, tp);
300 } else {
301 /*
302 * Find the given PID, and validate that the caller
303 * should be able to see it.
304 */
305 struct task_struct *p;
306 rcu_read_lock();
307 p = find_task_by_vpid(pid);
308 if (p)
309 err = posix_cpu_clock_get_task(p, which_clock, tp);
310 rcu_read_unlock();
311 }
312
313 return err;
314 }
315
316 /*
317 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
318 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
319 * new timer already all-zeros initialized.
320 */
321 static int posix_cpu_timer_create(struct k_itimer *new_timer)
322 {
323 int ret = 0;
324 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
325 struct task_struct *p;
326
327 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
328 return -EINVAL;
329
330 new_timer->kclock = &clock_posix_cpu;
331
332 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
333
334 rcu_read_lock();
335 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
336 if (pid == 0) {
337 p = current;
338 } else {
339 p = find_task_by_vpid(pid);
340 if (p && !same_thread_group(p, current))
341 p = NULL;
342 }
343 } else {
344 if (pid == 0) {
345 p = current->group_leader;
346 } else {
347 p = find_task_by_vpid(pid);
348 if (p && !has_group_leader_pid(p))
349 p = NULL;
350 }
351 }
352 new_timer->it.cpu.task = p;
353 if (p) {
354 get_task_struct(p);
355 } else {
356 ret = -EINVAL;
357 }
358 rcu_read_unlock();
359
360 return ret;
361 }
362
363 /*
364 * Clean up a CPU-clock timer that is about to be destroyed.
365 * This is called from timer deletion with the timer already locked.
366 * If we return TIMER_RETRY, it's necessary to release the timer's lock
367 * and try again. (This happens when the timer is in the middle of firing.)
368 */
369 static int posix_cpu_timer_del(struct k_itimer *timer)
370 {
371 int ret = 0;
372 unsigned long flags;
373 struct sighand_struct *sighand;
374 struct task_struct *p = timer->it.cpu.task;
375
376 WARN_ON_ONCE(p == NULL);
377
378 /*
379 * Protect against sighand release/switch in exit/exec and process/
380 * thread timer list entry concurrent read/writes.
381 */
382 sighand = lock_task_sighand(p, &flags);
383 if (unlikely(sighand == NULL)) {
384 /*
385 * We raced with the reaping of the task.
386 * The deletion should have cleared us off the list.
387 */
388 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
389 } else {
390 if (timer->it.cpu.firing)
391 ret = TIMER_RETRY;
392 else
393 list_del(&timer->it.cpu.entry);
394
395 unlock_task_sighand(p, &flags);
396 }
397
398 if (!ret)
399 put_task_struct(p);
400
401 return ret;
402 }
403
404 static void cleanup_timers_list(struct list_head *head)
405 {
406 struct cpu_timer_list *timer, *next;
407
408 list_for_each_entry_safe(timer, next, head, entry)
409 list_del_init(&timer->entry);
410 }
411
412 /*
413 * Clean out CPU timers still ticking when a thread exited. The task
414 * pointer is cleared, and the expiry time is replaced with the residual
415 * time for later timer_gettime calls to return.
416 * This must be called with the siglock held.
417 */
418 static void cleanup_timers(struct list_head *head)
419 {
420 cleanup_timers_list(head);
421 cleanup_timers_list(++head);
422 cleanup_timers_list(++head);
423 }
424
425 /*
426 * These are both called with the siglock held, when the current thread
427 * is being reaped. When the final (leader) thread in the group is reaped,
428 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
429 */
430 void posix_cpu_timers_exit(struct task_struct *tsk)
431 {
432 cleanup_timers(tsk->cpu_timers);
433 }
434 void posix_cpu_timers_exit_group(struct task_struct *tsk)
435 {
436 cleanup_timers(tsk->signal->cpu_timers);
437 }
438
439 static inline int expires_gt(u64 expires, u64 new_exp)
440 {
441 return expires == 0 || expires > new_exp;
442 }
443
444 /*
445 * Insert the timer on the appropriate list before any timers that
446 * expire later. This must be called with the sighand lock held.
447 */
448 static void arm_timer(struct k_itimer *timer)
449 {
450 struct task_struct *p = timer->it.cpu.task;
451 struct list_head *head, *listpos;
452 struct task_cputime *cputime_expires;
453 struct cpu_timer_list *const nt = &timer->it.cpu;
454 struct cpu_timer_list *next;
455
456 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
457 head = p->cpu_timers;
458 cputime_expires = &p->cputime_expires;
459 } else {
460 head = p->signal->cpu_timers;
461 cputime_expires = &p->signal->cputime_expires;
462 }
463 head += CPUCLOCK_WHICH(timer->it_clock);
464
465 listpos = head;
466 list_for_each_entry(next, head, entry) {
467 if (nt->expires < next->expires)
468 break;
469 listpos = &next->entry;
470 }
471 list_add(&nt->entry, listpos);
472
473 if (listpos == head) {
474 u64 exp = nt->expires;
475
476 /*
477 * We are the new earliest-expiring POSIX 1.b timer, hence
478 * need to update expiration cache. Take into account that
479 * for process timers we share expiration cache with itimers
480 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
481 */
482
483 switch (CPUCLOCK_WHICH(timer->it_clock)) {
484 case CPUCLOCK_PROF:
485 if (expires_gt(cputime_expires->prof_exp, exp))
486 cputime_expires->prof_exp = exp;
487 break;
488 case CPUCLOCK_VIRT:
489 if (expires_gt(cputime_expires->virt_exp, exp))
490 cputime_expires->virt_exp = exp;
491 break;
492 case CPUCLOCK_SCHED:
493 if (expires_gt(cputime_expires->sched_exp, exp))
494 cputime_expires->sched_exp = exp;
495 break;
496 }
497 if (CPUCLOCK_PERTHREAD(timer->it_clock))
498 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
499 else
500 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
501 }
502 }
503
504 /*
505 * The timer is locked, fire it and arrange for its reload.
506 */
507 static void cpu_timer_fire(struct k_itimer *timer)
508 {
509 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
510 /*
511 * User don't want any signal.
512 */
513 timer->it.cpu.expires = 0;
514 } else if (unlikely(timer->sigq == NULL)) {
515 /*
516 * This a special case for clock_nanosleep,
517 * not a normal timer from sys_timer_create.
518 */
519 wake_up_process(timer->it_process);
520 timer->it.cpu.expires = 0;
521 } else if (timer->it.cpu.incr == 0) {
522 /*
523 * One-shot timer. Clear it as soon as it's fired.
524 */
525 posix_timer_event(timer, 0);
526 timer->it.cpu.expires = 0;
527 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
528 /*
529 * The signal did not get queued because the signal
530 * was ignored, so we won't get any callback to
531 * reload the timer. But we need to keep it
532 * ticking in case the signal is deliverable next time.
533 */
534 posix_cpu_timer_rearm(timer);
535 ++timer->it_requeue_pending;
536 }
537 }
538
539 /*
540 * Sample a process (thread group) timer for the given group_leader task.
541 * Must be called with task sighand lock held for safe while_each_thread()
542 * traversal.
543 */
544 static int cpu_timer_sample_group(const clockid_t which_clock,
545 struct task_struct *p, u64 *sample)
546 {
547 struct task_cputime cputime;
548
549 thread_group_cputimer(p, &cputime);
550 switch (CPUCLOCK_WHICH(which_clock)) {
551 default:
552 return -EINVAL;
553 case CPUCLOCK_PROF:
554 *sample = cputime.utime + cputime.stime;
555 break;
556 case CPUCLOCK_VIRT:
557 *sample = cputime.utime;
558 break;
559 case CPUCLOCK_SCHED:
560 *sample = cputime.sum_exec_runtime;
561 break;
562 }
563 return 0;
564 }
565
566 /*
567 * Guts of sys_timer_settime for CPU timers.
568 * This is called with the timer locked and interrupts disabled.
569 * If we return TIMER_RETRY, it's necessary to release the timer's lock
570 * and try again. (This happens when the timer is in the middle of firing.)
571 */
572 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
573 struct itimerspec64 *new, struct itimerspec64 *old)
574 {
575 unsigned long flags;
576 struct sighand_struct *sighand;
577 struct task_struct *p = timer->it.cpu.task;
578 u64 old_expires, new_expires, old_incr, val;
579 int ret;
580
581 WARN_ON_ONCE(p == NULL);
582
583 /*
584 * Use the to_ktime conversion because that clamps the maximum
585 * value to KTIME_MAX and avoid multiplication overflows.
586 */
587 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
588
589 /*
590 * Protect against sighand release/switch in exit/exec and p->cpu_timers
591 * and p->signal->cpu_timers read/write in arm_timer()
592 */
593 sighand = lock_task_sighand(p, &flags);
594 /*
595 * If p has just been reaped, we can no
596 * longer get any information about it at all.
597 */
598 if (unlikely(sighand == NULL)) {
599 return -ESRCH;
600 }
601
602 /*
603 * Disarm any old timer after extracting its expiry time.
604 */
605 WARN_ON_ONCE(!irqs_disabled());
606
607 ret = 0;
608 old_incr = timer->it.cpu.incr;
609 old_expires = timer->it.cpu.expires;
610 if (unlikely(timer->it.cpu.firing)) {
611 timer->it.cpu.firing = -1;
612 ret = TIMER_RETRY;
613 } else
614 list_del_init(&timer->it.cpu.entry);
615
616 /*
617 * We need to sample the current value to convert the new
618 * value from to relative and absolute, and to convert the
619 * old value from absolute to relative. To set a process
620 * timer, we need a sample to balance the thread expiry
621 * times (in arm_timer). With an absolute time, we must
622 * check if it's already passed. In short, we need a sample.
623 */
624 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
625 cpu_clock_sample(timer->it_clock, p, &val);
626 } else {
627 cpu_timer_sample_group(timer->it_clock, p, &val);
628 }
629
630 if (old) {
631 if (old_expires == 0) {
632 old->it_value.tv_sec = 0;
633 old->it_value.tv_nsec = 0;
634 } else {
635 /*
636 * Update the timer in case it has
637 * overrun already. If it has,
638 * we'll report it as having overrun
639 * and with the next reloaded timer
640 * already ticking, though we are
641 * swallowing that pending
642 * notification here to install the
643 * new setting.
644 */
645 bump_cpu_timer(timer, val);
646 if (val < timer->it.cpu.expires) {
647 old_expires = timer->it.cpu.expires - val;
648 old->it_value = ns_to_timespec64(old_expires);
649 } else {
650 old->it_value.tv_nsec = 1;
651 old->it_value.tv_sec = 0;
652 }
653 }
654 }
655
656 if (unlikely(ret)) {
657 /*
658 * We are colliding with the timer actually firing.
659 * Punt after filling in the timer's old value, and
660 * disable this firing since we are already reporting
661 * it as an overrun (thanks to bump_cpu_timer above).
662 */
663 unlock_task_sighand(p, &flags);
664 goto out;
665 }
666
667 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
668 new_expires += val;
669 }
670
671 /*
672 * Install the new expiry time (or zero).
673 * For a timer with no notification action, we don't actually
674 * arm the timer (we'll just fake it for timer_gettime).
675 */
676 timer->it.cpu.expires = new_expires;
677 if (new_expires != 0 && val < new_expires) {
678 arm_timer(timer);
679 }
680
681 unlock_task_sighand(p, &flags);
682 /*
683 * Install the new reload setting, and
684 * set up the signal and overrun bookkeeping.
685 */
686 timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
687
688 /*
689 * This acts as a modification timestamp for the timer,
690 * so any automatic reload attempt will punt on seeing
691 * that we have reset the timer manually.
692 */
693 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
694 ~REQUEUE_PENDING;
695 timer->it_overrun_last = 0;
696 timer->it_overrun = -1;
697
698 if (new_expires != 0 && !(val < new_expires)) {
699 /*
700 * The designated time already passed, so we notify
701 * immediately, even if the thread never runs to
702 * accumulate more time on this clock.
703 */
704 cpu_timer_fire(timer);
705 }
706
707 ret = 0;
708 out:
709 if (old)
710 old->it_interval = ns_to_timespec64(old_incr);
711
712 return ret;
713 }
714
715 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
716 {
717 u64 now;
718 struct task_struct *p = timer->it.cpu.task;
719
720 WARN_ON_ONCE(p == NULL);
721
722 /*
723 * Easy part: convert the reload time.
724 */
725 itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
726
727 if (!timer->it.cpu.expires)
728 return;
729
730 /*
731 * Sample the clock to take the difference with the expiry time.
732 */
733 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
734 cpu_clock_sample(timer->it_clock, p, &now);
735 } else {
736 struct sighand_struct *sighand;
737 unsigned long flags;
738
739 /*
740 * Protect against sighand release/switch in exit/exec and
741 * also make timer sampling safe if it ends up calling
742 * thread_group_cputime().
743 */
744 sighand = lock_task_sighand(p, &flags);
745 if (unlikely(sighand == NULL)) {
746 /*
747 * The process has been reaped.
748 * We can't even collect a sample any more.
749 * Call the timer disarmed, nothing else to do.
750 */
751 timer->it.cpu.expires = 0;
752 return;
753 } else {
754 cpu_timer_sample_group(timer->it_clock, p, &now);
755 unlock_task_sighand(p, &flags);
756 }
757 }
758
759 if (now < timer->it.cpu.expires) {
760 itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
761 } else {
762 /*
763 * The timer should have expired already, but the firing
764 * hasn't taken place yet. Say it's just about to expire.
765 */
766 itp->it_value.tv_nsec = 1;
767 itp->it_value.tv_sec = 0;
768 }
769 }
770
771 static unsigned long long
772 check_timers_list(struct list_head *timers,
773 struct list_head *firing,
774 unsigned long long curr)
775 {
776 int maxfire = 20;
777
778 while (!list_empty(timers)) {
779 struct cpu_timer_list *t;
780
781 t = list_first_entry(timers, struct cpu_timer_list, entry);
782
783 if (!--maxfire || curr < t->expires)
784 return t->expires;
785
786 t->firing = 1;
787 list_move_tail(&t->entry, firing);
788 }
789
790 return 0;
791 }
792
793 /*
794 * Check for any per-thread CPU timers that have fired and move them off
795 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
796 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
797 */
798 static void check_thread_timers(struct task_struct *tsk,
799 struct list_head *firing)
800 {
801 struct list_head *timers = tsk->cpu_timers;
802 struct signal_struct *const sig = tsk->signal;
803 struct task_cputime *tsk_expires = &tsk->cputime_expires;
804 u64 expires;
805 unsigned long soft;
806
807 /*
808 * If cputime_expires is zero, then there are no active
809 * per thread CPU timers.
810 */
811 if (task_cputime_zero(&tsk->cputime_expires))
812 return;
813
814 expires = check_timers_list(timers, firing, prof_ticks(tsk));
815 tsk_expires->prof_exp = expires;
816
817 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
818 tsk_expires->virt_exp = expires;
819
820 tsk_expires->sched_exp = check_timers_list(++timers, firing,
821 tsk->se.sum_exec_runtime);
822
823 /*
824 * Check for the special case thread timers.
825 */
826 soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
827 if (soft != RLIM_INFINITY) {
828 unsigned long hard =
829 READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
830
831 if (hard != RLIM_INFINITY &&
832 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
833 /*
834 * At the hard limit, we just die.
835 * No need to calculate anything else now.
836 */
837 if (print_fatal_signals) {
838 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
839 tsk->comm, task_pid_nr(tsk));
840 }
841 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
842 return;
843 }
844 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
845 /*
846 * At the soft limit, send a SIGXCPU every second.
847 */
848 if (soft < hard) {
849 soft += USEC_PER_SEC;
850 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
851 }
852 if (print_fatal_signals) {
853 pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
854 tsk->comm, task_pid_nr(tsk));
855 }
856 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
857 }
858 }
859 if (task_cputime_zero(tsk_expires))
860 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
861 }
862
863 static inline void stop_process_timers(struct signal_struct *sig)
864 {
865 struct thread_group_cputimer *cputimer = &sig->cputimer;
866
867 /* Turn off cputimer->running. This is done without locking. */
868 WRITE_ONCE(cputimer->running, false);
869 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
870 }
871
872 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
873 u64 *expires, u64 cur_time, int signo)
874 {
875 if (!it->expires)
876 return;
877
878 if (cur_time >= it->expires) {
879 if (it->incr)
880 it->expires += it->incr;
881 else
882 it->expires = 0;
883
884 trace_itimer_expire(signo == SIGPROF ?
885 ITIMER_PROF : ITIMER_VIRTUAL,
886 tsk->signal->leader_pid, cur_time);
887 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
888 }
889
890 if (it->expires && (!*expires || it->expires < *expires))
891 *expires = it->expires;
892 }
893
894 /*
895 * Check for any per-thread CPU timers that have fired and move them
896 * off the tsk->*_timers list onto the firing list. Per-thread timers
897 * have already been taken off.
898 */
899 static void check_process_timers(struct task_struct *tsk,
900 struct list_head *firing)
901 {
902 struct signal_struct *const sig = tsk->signal;
903 u64 utime, ptime, virt_expires, prof_expires;
904 u64 sum_sched_runtime, sched_expires;
905 struct list_head *timers = sig->cpu_timers;
906 struct task_cputime cputime;
907 unsigned long soft;
908
909 /*
910 * If cputimer is not running, then there are no active
911 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
912 */
913 if (!READ_ONCE(tsk->signal->cputimer.running))
914 return;
915
916 /*
917 * Signify that a thread is checking for process timers.
918 * Write access to this field is protected by the sighand lock.
919 */
920 sig->cputimer.checking_timer = true;
921
922 /*
923 * Collect the current process totals.
924 */
925 thread_group_cputimer(tsk, &cputime);
926 utime = cputime.utime;
927 ptime = utime + cputime.stime;
928 sum_sched_runtime = cputime.sum_exec_runtime;
929
930 prof_expires = check_timers_list(timers, firing, ptime);
931 virt_expires = check_timers_list(++timers, firing, utime);
932 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
933
934 /*
935 * Check for the special case process timers.
936 */
937 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
938 SIGPROF);
939 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
940 SIGVTALRM);
941 soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
942 if (soft != RLIM_INFINITY) {
943 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
944 unsigned long hard =
945 READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
946 u64 x;
947 if (psecs >= hard) {
948 /*
949 * At the hard limit, we just die.
950 * No need to calculate anything else now.
951 */
952 if (print_fatal_signals) {
953 pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
954 tsk->comm, task_pid_nr(tsk));
955 }
956 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
957 return;
958 }
959 if (psecs >= soft) {
960 /*
961 * At the soft limit, send a SIGXCPU every second.
962 */
963 if (print_fatal_signals) {
964 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
965 tsk->comm, task_pid_nr(tsk));
966 }
967 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
968 if (soft < hard) {
969 soft++;
970 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
971 }
972 }
973 x = soft * NSEC_PER_SEC;
974 if (!prof_expires || x < prof_expires)
975 prof_expires = x;
976 }
977
978 sig->cputime_expires.prof_exp = prof_expires;
979 sig->cputime_expires.virt_exp = virt_expires;
980 sig->cputime_expires.sched_exp = sched_expires;
981 if (task_cputime_zero(&sig->cputime_expires))
982 stop_process_timers(sig);
983
984 sig->cputimer.checking_timer = false;
985 }
986
987 /*
988 * This is called from the signal code (via posixtimer_rearm)
989 * when the last timer signal was delivered and we have to reload the timer.
990 */
991 static void posix_cpu_timer_rearm(struct k_itimer *timer)
992 {
993 struct sighand_struct *sighand;
994 unsigned long flags;
995 struct task_struct *p = timer->it.cpu.task;
996 u64 now;
997
998 WARN_ON_ONCE(p == NULL);
999
1000 /*
1001 * Fetch the current sample and update the timer's expiry time.
1002 */
1003 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1004 cpu_clock_sample(timer->it_clock, p, &now);
1005 bump_cpu_timer(timer, now);
1006 if (unlikely(p->exit_state))
1007 return;
1008
1009 /* Protect timer list r/w in arm_timer() */
1010 sighand = lock_task_sighand(p, &flags);
1011 if (!sighand)
1012 return;
1013 } else {
1014 /*
1015 * Protect arm_timer() and timer sampling in case of call to
1016 * thread_group_cputime().
1017 */
1018 sighand = lock_task_sighand(p, &flags);
1019 if (unlikely(sighand == NULL)) {
1020 /*
1021 * The process has been reaped.
1022 * We can't even collect a sample any more.
1023 */
1024 timer->it.cpu.expires = 0;
1025 return;
1026 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1027 /* If the process is dying, no need to rearm */
1028 goto unlock;
1029 }
1030 cpu_timer_sample_group(timer->it_clock, p, &now);
1031 bump_cpu_timer(timer, now);
1032 /* Leave the sighand locked for the call below. */
1033 }
1034
1035 /*
1036 * Now re-arm for the new expiry time.
1037 */
1038 WARN_ON_ONCE(!irqs_disabled());
1039 arm_timer(timer);
1040 unlock:
1041 unlock_task_sighand(p, &flags);
1042 }
1043
1044 /**
1045 * task_cputime_expired - Compare two task_cputime entities.
1046 *
1047 * @sample: The task_cputime structure to be checked for expiration.
1048 * @expires: Expiration times, against which @sample will be checked.
1049 *
1050 * Checks @sample against @expires to see if any field of @sample has expired.
1051 * Returns true if any field of the former is greater than the corresponding
1052 * field of the latter if the latter field is set. Otherwise returns false.
1053 */
1054 static inline int task_cputime_expired(const struct task_cputime *sample,
1055 const struct task_cputime *expires)
1056 {
1057 if (expires->utime && sample->utime >= expires->utime)
1058 return 1;
1059 if (expires->stime && sample->utime + sample->stime >= expires->stime)
1060 return 1;
1061 if (expires->sum_exec_runtime != 0 &&
1062 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1063 return 1;
1064 return 0;
1065 }
1066
1067 /**
1068 * fastpath_timer_check - POSIX CPU timers fast path.
1069 *
1070 * @tsk: The task (thread) being checked.
1071 *
1072 * Check the task and thread group timers. If both are zero (there are no
1073 * timers set) return false. Otherwise snapshot the task and thread group
1074 * timers and compare them with the corresponding expiration times. Return
1075 * true if a timer has expired, else return false.
1076 */
1077 static inline int fastpath_timer_check(struct task_struct *tsk)
1078 {
1079 struct signal_struct *sig;
1080
1081 if (!task_cputime_zero(&tsk->cputime_expires)) {
1082 struct task_cputime task_sample;
1083
1084 task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1085 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1086 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1087 return 1;
1088 }
1089
1090 sig = tsk->signal;
1091 /*
1092 * Check if thread group timers expired when the cputimer is
1093 * running and no other thread in the group is already checking
1094 * for thread group cputimers. These fields are read without the
1095 * sighand lock. However, this is fine because this is meant to
1096 * be a fastpath heuristic to determine whether we should try to
1097 * acquire the sighand lock to check/handle timers.
1098 *
1099 * In the worst case scenario, if 'running' or 'checking_timer' gets
1100 * set but the current thread doesn't see the change yet, we'll wait
1101 * until the next thread in the group gets a scheduler interrupt to
1102 * handle the timer. This isn't an issue in practice because these
1103 * types of delays with signals actually getting sent are expected.
1104 */
1105 if (READ_ONCE(sig->cputimer.running) &&
1106 !READ_ONCE(sig->cputimer.checking_timer)) {
1107 struct task_cputime group_sample;
1108
1109 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1110
1111 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1112 return 1;
1113 }
1114
1115 return 0;
1116 }
1117
1118 /*
1119 * This is called from the timer interrupt handler. The irq handler has
1120 * already updated our counts. We need to check if any timers fire now.
1121 * Interrupts are disabled.
1122 */
1123 void run_posix_cpu_timers(struct task_struct *tsk)
1124 {
1125 LIST_HEAD(firing);
1126 struct k_itimer *timer, *next;
1127 unsigned long flags;
1128
1129 WARN_ON_ONCE(!irqs_disabled());
1130
1131 /*
1132 * The fast path checks that there are no expired thread or thread
1133 * group timers. If that's so, just return.
1134 */
1135 if (!fastpath_timer_check(tsk))
1136 return;
1137
1138 if (!lock_task_sighand(tsk, &flags))
1139 return;
1140 /*
1141 * Here we take off tsk->signal->cpu_timers[N] and
1142 * tsk->cpu_timers[N] all the timers that are firing, and
1143 * put them on the firing list.
1144 */
1145 check_thread_timers(tsk, &firing);
1146
1147 check_process_timers(tsk, &firing);
1148
1149 /*
1150 * We must release these locks before taking any timer's lock.
1151 * There is a potential race with timer deletion here, as the
1152 * siglock now protects our private firing list. We have set
1153 * the firing flag in each timer, so that a deletion attempt
1154 * that gets the timer lock before we do will give it up and
1155 * spin until we've taken care of that timer below.
1156 */
1157 unlock_task_sighand(tsk, &flags);
1158
1159 /*
1160 * Now that all the timers on our list have the firing flag,
1161 * no one will touch their list entries but us. We'll take
1162 * each timer's lock before clearing its firing flag, so no
1163 * timer call will interfere.
1164 */
1165 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1166 int cpu_firing;
1167
1168 spin_lock(&timer->it_lock);
1169 list_del_init(&timer->it.cpu.entry);
1170 cpu_firing = timer->it.cpu.firing;
1171 timer->it.cpu.firing = 0;
1172 /*
1173 * The firing flag is -1 if we collided with a reset
1174 * of the timer, which already reported this
1175 * almost-firing as an overrun. So don't generate an event.
1176 */
1177 if (likely(cpu_firing >= 0))
1178 cpu_timer_fire(timer);
1179 spin_unlock(&timer->it_lock);
1180 }
1181 }
1182
1183 /*
1184 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1185 * The tsk->sighand->siglock must be held by the caller.
1186 */
1187 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1188 u64 *newval, u64 *oldval)
1189 {
1190 u64 now;
1191
1192 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1193 cpu_timer_sample_group(clock_idx, tsk, &now);
1194
1195 if (oldval) {
1196 /*
1197 * We are setting itimer. The *oldval is absolute and we update
1198 * it to be relative, *newval argument is relative and we update
1199 * it to be absolute.
1200 */
1201 if (*oldval) {
1202 if (*oldval <= now) {
1203 /* Just about to fire. */
1204 *oldval = TICK_NSEC;
1205 } else {
1206 *oldval -= now;
1207 }
1208 }
1209
1210 if (!*newval)
1211 return;
1212 *newval += now;
1213 }
1214
1215 /*
1216 * Update expiration cache if we are the earliest timer, or eventually
1217 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1218 */
1219 switch (clock_idx) {
1220 case CPUCLOCK_PROF:
1221 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1222 tsk->signal->cputime_expires.prof_exp = *newval;
1223 break;
1224 case CPUCLOCK_VIRT:
1225 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1226 tsk->signal->cputime_expires.virt_exp = *newval;
1227 break;
1228 }
1229
1230 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1231 }
1232
1233 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1234 const struct timespec64 *rqtp)
1235 {
1236 struct itimerspec64 it;
1237 struct k_itimer timer;
1238 u64 expires;
1239 int error;
1240
1241 /*
1242 * Set up a temporary timer and then wait for it to go off.
1243 */
1244 memset(&timer, 0, sizeof timer);
1245 spin_lock_init(&timer.it_lock);
1246 timer.it_clock = which_clock;
1247 timer.it_overrun = -1;
1248 error = posix_cpu_timer_create(&timer);
1249 timer.it_process = current;
1250 if (!error) {
1251 static struct itimerspec64 zero_it;
1252 struct restart_block *restart;
1253
1254 memset(&it, 0, sizeof(it));
1255 it.it_value = *rqtp;
1256
1257 spin_lock_irq(&timer.it_lock);
1258 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1259 if (error) {
1260 spin_unlock_irq(&timer.it_lock);
1261 return error;
1262 }
1263
1264 while (!signal_pending(current)) {
1265 if (timer.it.cpu.expires == 0) {
1266 /*
1267 * Our timer fired and was reset, below
1268 * deletion can not fail.
1269 */
1270 posix_cpu_timer_del(&timer);
1271 spin_unlock_irq(&timer.it_lock);
1272 return 0;
1273 }
1274
1275 /*
1276 * Block until cpu_timer_fire (or a signal) wakes us.
1277 */
1278 __set_current_state(TASK_INTERRUPTIBLE);
1279 spin_unlock_irq(&timer.it_lock);
1280 schedule();
1281 spin_lock_irq(&timer.it_lock);
1282 }
1283
1284 /*
1285 * We were interrupted by a signal.
1286 */
1287 expires = timer.it.cpu.expires;
1288 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1289 if (!error) {
1290 /*
1291 * Timer is now unarmed, deletion can not fail.
1292 */
1293 posix_cpu_timer_del(&timer);
1294 }
1295 spin_unlock_irq(&timer.it_lock);
1296
1297 while (error == TIMER_RETRY) {
1298 /*
1299 * We need to handle case when timer was or is in the
1300 * middle of firing. In other cases we already freed
1301 * resources.
1302 */
1303 spin_lock_irq(&timer.it_lock);
1304 error = posix_cpu_timer_del(&timer);
1305 spin_unlock_irq(&timer.it_lock);
1306 }
1307
1308 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1309 /*
1310 * It actually did fire already.
1311 */
1312 return 0;
1313 }
1314
1315 error = -ERESTART_RESTARTBLOCK;
1316 /*
1317 * Report back to the user the time still remaining.
1318 */
1319 restart = &current->restart_block;
1320 restart->nanosleep.expires = expires;
1321 if (restart->nanosleep.type != TT_NONE)
1322 error = nanosleep_copyout(restart, &it.it_value);
1323 }
1324
1325 return error;
1326 }
1327
1328 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1329
1330 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1331 const struct timespec64 *rqtp)
1332 {
1333 struct restart_block *restart_block = &current->restart_block;
1334 int error;
1335
1336 /*
1337 * Diagnose required errors first.
1338 */
1339 if (CPUCLOCK_PERTHREAD(which_clock) &&
1340 (CPUCLOCK_PID(which_clock) == 0 ||
1341 CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1342 return -EINVAL;
1343
1344 error = do_cpu_nanosleep(which_clock, flags, rqtp);
1345
1346 if (error == -ERESTART_RESTARTBLOCK) {
1347
1348 if (flags & TIMER_ABSTIME)
1349 return -ERESTARTNOHAND;
1350
1351 restart_block->fn = posix_cpu_nsleep_restart;
1352 restart_block->nanosleep.clockid = which_clock;
1353 }
1354 return error;
1355 }
1356
1357 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1358 {
1359 clockid_t which_clock = restart_block->nanosleep.clockid;
1360 struct timespec64 t;
1361
1362 t = ns_to_timespec64(restart_block->nanosleep.expires);
1363
1364 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1365 }
1366
1367 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1368 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1369
1370 static int process_cpu_clock_getres(const clockid_t which_clock,
1371 struct timespec64 *tp)
1372 {
1373 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1374 }
1375 static int process_cpu_clock_get(const clockid_t which_clock,
1376 struct timespec64 *tp)
1377 {
1378 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1379 }
1380 static int process_cpu_timer_create(struct k_itimer *timer)
1381 {
1382 timer->it_clock = PROCESS_CLOCK;
1383 return posix_cpu_timer_create(timer);
1384 }
1385 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1386 const struct timespec64 *rqtp)
1387 {
1388 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1389 }
1390 static int thread_cpu_clock_getres(const clockid_t which_clock,
1391 struct timespec64 *tp)
1392 {
1393 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1394 }
1395 static int thread_cpu_clock_get(const clockid_t which_clock,
1396 struct timespec64 *tp)
1397 {
1398 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1399 }
1400 static int thread_cpu_timer_create(struct k_itimer *timer)
1401 {
1402 timer->it_clock = THREAD_CLOCK;
1403 return posix_cpu_timer_create(timer);
1404 }
1405
1406 const struct k_clock clock_posix_cpu = {
1407 .clock_getres = posix_cpu_clock_getres,
1408 .clock_set = posix_cpu_clock_set,
1409 .clock_get = posix_cpu_clock_get,
1410 .timer_create = posix_cpu_timer_create,
1411 .nsleep = posix_cpu_nsleep,
1412 .timer_set = posix_cpu_timer_set,
1413 .timer_del = posix_cpu_timer_del,
1414 .timer_get = posix_cpu_timer_get,
1415 .timer_rearm = posix_cpu_timer_rearm,
1416 };
1417
1418 const struct k_clock clock_process = {
1419 .clock_getres = process_cpu_clock_getres,
1420 .clock_get = process_cpu_clock_get,
1421 .timer_create = process_cpu_timer_create,
1422 .nsleep = process_cpu_nsleep,
1423 };
1424
1425 const struct k_clock clock_thread = {
1426 .clock_getres = thread_cpu_clock_getres,
1427 .clock_get = thread_cpu_clock_get,
1428 .timer_create = thread_cpu_timer_create,
1429 };