]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/time/posix-cpu-timers.c
Merge tag 'bcm2835-dt-next-fixes-2017-11-15' into devicetree/fixes
[mirror_ubuntu-bionic-kernel.git] / kernel / time / posix-cpu-timers.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Implement CPU time clocks for the POSIX clock interface.
4 */
5
6 #include <linux/sched/signal.h>
7 #include <linux/sched/cputime.h>
8 #include <linux/posix-timers.h>
9 #include <linux/errno.h>
10 #include <linux/math64.h>
11 #include <linux/uaccess.h>
12 #include <linux/kernel_stat.h>
13 #include <trace/events/timer.h>
14 #include <linux/tick.h>
15 #include <linux/workqueue.h>
16 #include <linux/compat.h>
17
18 #include "posix-timers.h"
19
20 static void posix_cpu_timer_rearm(struct k_itimer *timer);
21
22 /*
23 * Called after updating RLIMIT_CPU to run cpu timer and update
24 * tsk->signal->cputime_expires expiration cache if necessary. Needs
25 * siglock protection since other code may update expiration cache as
26 * well.
27 */
28 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
29 {
30 u64 nsecs = rlim_new * NSEC_PER_SEC;
31
32 spin_lock_irq(&task->sighand->siglock);
33 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
34 spin_unlock_irq(&task->sighand->siglock);
35 }
36
37 static int check_clock(const clockid_t which_clock)
38 {
39 int error = 0;
40 struct task_struct *p;
41 const pid_t pid = CPUCLOCK_PID(which_clock);
42
43 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
44 return -EINVAL;
45
46 if (pid == 0)
47 return 0;
48
49 rcu_read_lock();
50 p = find_task_by_vpid(pid);
51 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
52 same_thread_group(p, current) : has_group_leader_pid(p))) {
53 error = -EINVAL;
54 }
55 rcu_read_unlock();
56
57 return error;
58 }
59
60 /*
61 * Update expiry time from increment, and increase overrun count,
62 * given the current clock sample.
63 */
64 static void bump_cpu_timer(struct k_itimer *timer, u64 now)
65 {
66 int i;
67 u64 delta, incr;
68
69 if (timer->it.cpu.incr == 0)
70 return;
71
72 if (now < timer->it.cpu.expires)
73 return;
74
75 incr = timer->it.cpu.incr;
76 delta = now + incr - timer->it.cpu.expires;
77
78 /* Don't use (incr*2 < delta), incr*2 might overflow. */
79 for (i = 0; incr < delta - incr; i++)
80 incr = incr << 1;
81
82 for (; i >= 0; incr >>= 1, i--) {
83 if (delta < incr)
84 continue;
85
86 timer->it.cpu.expires += incr;
87 timer->it_overrun += 1 << i;
88 delta -= incr;
89 }
90 }
91
92 /**
93 * task_cputime_zero - Check a task_cputime struct for all zero fields.
94 *
95 * @cputime: The struct to compare.
96 *
97 * Checks @cputime to see if all fields are zero. Returns true if all fields
98 * are zero, false if any field is nonzero.
99 */
100 static inline int task_cputime_zero(const struct task_cputime *cputime)
101 {
102 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
103 return 1;
104 return 0;
105 }
106
107 static inline u64 prof_ticks(struct task_struct *p)
108 {
109 u64 utime, stime;
110
111 task_cputime(p, &utime, &stime);
112
113 return utime + stime;
114 }
115 static inline u64 virt_ticks(struct task_struct *p)
116 {
117 u64 utime, stime;
118
119 task_cputime(p, &utime, &stime);
120
121 return utime;
122 }
123
124 static int
125 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
126 {
127 int error = check_clock(which_clock);
128 if (!error) {
129 tp->tv_sec = 0;
130 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
131 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
132 /*
133 * If sched_clock is using a cycle counter, we
134 * don't have any idea of its true resolution
135 * exported, but it is much more than 1s/HZ.
136 */
137 tp->tv_nsec = 1;
138 }
139 }
140 return error;
141 }
142
143 static int
144 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
145 {
146 /*
147 * You can never reset a CPU clock, but we check for other errors
148 * in the call before failing with EPERM.
149 */
150 int error = check_clock(which_clock);
151 if (error == 0) {
152 error = -EPERM;
153 }
154 return error;
155 }
156
157
158 /*
159 * Sample a per-thread clock for the given task.
160 */
161 static int cpu_clock_sample(const clockid_t which_clock,
162 struct task_struct *p, u64 *sample)
163 {
164 switch (CPUCLOCK_WHICH(which_clock)) {
165 default:
166 return -EINVAL;
167 case CPUCLOCK_PROF:
168 *sample = prof_ticks(p);
169 break;
170 case CPUCLOCK_VIRT:
171 *sample = virt_ticks(p);
172 break;
173 case CPUCLOCK_SCHED:
174 *sample = task_sched_runtime(p);
175 break;
176 }
177 return 0;
178 }
179
180 /*
181 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
182 * to avoid race conditions with concurrent updates to cputime.
183 */
184 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
185 {
186 u64 curr_cputime;
187 retry:
188 curr_cputime = atomic64_read(cputime);
189 if (sum_cputime > curr_cputime) {
190 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
191 goto retry;
192 }
193 }
194
195 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
196 {
197 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
198 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
199 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
200 }
201
202 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
203 static inline void sample_cputime_atomic(struct task_cputime *times,
204 struct task_cputime_atomic *atomic_times)
205 {
206 times->utime = atomic64_read(&atomic_times->utime);
207 times->stime = atomic64_read(&atomic_times->stime);
208 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
209 }
210
211 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
212 {
213 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
214 struct task_cputime sum;
215
216 /* Check if cputimer isn't running. This is accessed without locking. */
217 if (!READ_ONCE(cputimer->running)) {
218 /*
219 * The POSIX timer interface allows for absolute time expiry
220 * values through the TIMER_ABSTIME flag, therefore we have
221 * to synchronize the timer to the clock every time we start it.
222 */
223 thread_group_cputime(tsk, &sum);
224 update_gt_cputime(&cputimer->cputime_atomic, &sum);
225
226 /*
227 * We're setting cputimer->running without a lock. Ensure
228 * this only gets written to in one operation. We set
229 * running after update_gt_cputime() as a small optimization,
230 * but barriers are not required because update_gt_cputime()
231 * can handle concurrent updates.
232 */
233 WRITE_ONCE(cputimer->running, true);
234 }
235 sample_cputime_atomic(times, &cputimer->cputime_atomic);
236 }
237
238 /*
239 * Sample a process (thread group) clock for the given group_leader task.
240 * Must be called with task sighand lock held for safe while_each_thread()
241 * traversal.
242 */
243 static int cpu_clock_sample_group(const clockid_t which_clock,
244 struct task_struct *p,
245 u64 *sample)
246 {
247 struct task_cputime cputime;
248
249 switch (CPUCLOCK_WHICH(which_clock)) {
250 default:
251 return -EINVAL;
252 case CPUCLOCK_PROF:
253 thread_group_cputime(p, &cputime);
254 *sample = cputime.utime + cputime.stime;
255 break;
256 case CPUCLOCK_VIRT:
257 thread_group_cputime(p, &cputime);
258 *sample = cputime.utime;
259 break;
260 case CPUCLOCK_SCHED:
261 thread_group_cputime(p, &cputime);
262 *sample = cputime.sum_exec_runtime;
263 break;
264 }
265 return 0;
266 }
267
268 static int posix_cpu_clock_get_task(struct task_struct *tsk,
269 const clockid_t which_clock,
270 struct timespec64 *tp)
271 {
272 int err = -EINVAL;
273 u64 rtn;
274
275 if (CPUCLOCK_PERTHREAD(which_clock)) {
276 if (same_thread_group(tsk, current))
277 err = cpu_clock_sample(which_clock, tsk, &rtn);
278 } else {
279 if (tsk == current || thread_group_leader(tsk))
280 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
281 }
282
283 if (!err)
284 *tp = ns_to_timespec64(rtn);
285
286 return err;
287 }
288
289
290 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
291 {
292 const pid_t pid = CPUCLOCK_PID(which_clock);
293 int err = -EINVAL;
294
295 if (pid == 0) {
296 /*
297 * Special case constant value for our own clocks.
298 * We don't have to do any lookup to find ourselves.
299 */
300 err = posix_cpu_clock_get_task(current, which_clock, tp);
301 } else {
302 /*
303 * Find the given PID, and validate that the caller
304 * should be able to see it.
305 */
306 struct task_struct *p;
307 rcu_read_lock();
308 p = find_task_by_vpid(pid);
309 if (p)
310 err = posix_cpu_clock_get_task(p, which_clock, tp);
311 rcu_read_unlock();
312 }
313
314 return err;
315 }
316
317 /*
318 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
319 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
320 * new timer already all-zeros initialized.
321 */
322 static int posix_cpu_timer_create(struct k_itimer *new_timer)
323 {
324 int ret = 0;
325 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
326 struct task_struct *p;
327
328 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
329 return -EINVAL;
330
331 new_timer->kclock = &clock_posix_cpu;
332
333 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
334
335 rcu_read_lock();
336 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
337 if (pid == 0) {
338 p = current;
339 } else {
340 p = find_task_by_vpid(pid);
341 if (p && !same_thread_group(p, current))
342 p = NULL;
343 }
344 } else {
345 if (pid == 0) {
346 p = current->group_leader;
347 } else {
348 p = find_task_by_vpid(pid);
349 if (p && !has_group_leader_pid(p))
350 p = NULL;
351 }
352 }
353 new_timer->it.cpu.task = p;
354 if (p) {
355 get_task_struct(p);
356 } else {
357 ret = -EINVAL;
358 }
359 rcu_read_unlock();
360
361 return ret;
362 }
363
364 /*
365 * Clean up a CPU-clock timer that is about to be destroyed.
366 * This is called from timer deletion with the timer already locked.
367 * If we return TIMER_RETRY, it's necessary to release the timer's lock
368 * and try again. (This happens when the timer is in the middle of firing.)
369 */
370 static int posix_cpu_timer_del(struct k_itimer *timer)
371 {
372 int ret = 0;
373 unsigned long flags;
374 struct sighand_struct *sighand;
375 struct task_struct *p = timer->it.cpu.task;
376
377 WARN_ON_ONCE(p == NULL);
378
379 /*
380 * Protect against sighand release/switch in exit/exec and process/
381 * thread timer list entry concurrent read/writes.
382 */
383 sighand = lock_task_sighand(p, &flags);
384 if (unlikely(sighand == NULL)) {
385 /*
386 * We raced with the reaping of the task.
387 * The deletion should have cleared us off the list.
388 */
389 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
390 } else {
391 if (timer->it.cpu.firing)
392 ret = TIMER_RETRY;
393 else
394 list_del(&timer->it.cpu.entry);
395
396 unlock_task_sighand(p, &flags);
397 }
398
399 if (!ret)
400 put_task_struct(p);
401
402 return ret;
403 }
404
405 static void cleanup_timers_list(struct list_head *head)
406 {
407 struct cpu_timer_list *timer, *next;
408
409 list_for_each_entry_safe(timer, next, head, entry)
410 list_del_init(&timer->entry);
411 }
412
413 /*
414 * Clean out CPU timers still ticking when a thread exited. The task
415 * pointer is cleared, and the expiry time is replaced with the residual
416 * time for later timer_gettime calls to return.
417 * This must be called with the siglock held.
418 */
419 static void cleanup_timers(struct list_head *head)
420 {
421 cleanup_timers_list(head);
422 cleanup_timers_list(++head);
423 cleanup_timers_list(++head);
424 }
425
426 /*
427 * These are both called with the siglock held, when the current thread
428 * is being reaped. When the final (leader) thread in the group is reaped,
429 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
430 */
431 void posix_cpu_timers_exit(struct task_struct *tsk)
432 {
433 cleanup_timers(tsk->cpu_timers);
434 }
435 void posix_cpu_timers_exit_group(struct task_struct *tsk)
436 {
437 cleanup_timers(tsk->signal->cpu_timers);
438 }
439
440 static inline int expires_gt(u64 expires, u64 new_exp)
441 {
442 return expires == 0 || expires > new_exp;
443 }
444
445 /*
446 * Insert the timer on the appropriate list before any timers that
447 * expire later. This must be called with the sighand lock held.
448 */
449 static void arm_timer(struct k_itimer *timer)
450 {
451 struct task_struct *p = timer->it.cpu.task;
452 struct list_head *head, *listpos;
453 struct task_cputime *cputime_expires;
454 struct cpu_timer_list *const nt = &timer->it.cpu;
455 struct cpu_timer_list *next;
456
457 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
458 head = p->cpu_timers;
459 cputime_expires = &p->cputime_expires;
460 } else {
461 head = p->signal->cpu_timers;
462 cputime_expires = &p->signal->cputime_expires;
463 }
464 head += CPUCLOCK_WHICH(timer->it_clock);
465
466 listpos = head;
467 list_for_each_entry(next, head, entry) {
468 if (nt->expires < next->expires)
469 break;
470 listpos = &next->entry;
471 }
472 list_add(&nt->entry, listpos);
473
474 if (listpos == head) {
475 u64 exp = nt->expires;
476
477 /*
478 * We are the new earliest-expiring POSIX 1.b timer, hence
479 * need to update expiration cache. Take into account that
480 * for process timers we share expiration cache with itimers
481 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
482 */
483
484 switch (CPUCLOCK_WHICH(timer->it_clock)) {
485 case CPUCLOCK_PROF:
486 if (expires_gt(cputime_expires->prof_exp, exp))
487 cputime_expires->prof_exp = exp;
488 break;
489 case CPUCLOCK_VIRT:
490 if (expires_gt(cputime_expires->virt_exp, exp))
491 cputime_expires->virt_exp = exp;
492 break;
493 case CPUCLOCK_SCHED:
494 if (expires_gt(cputime_expires->sched_exp, exp))
495 cputime_expires->sched_exp = exp;
496 break;
497 }
498 if (CPUCLOCK_PERTHREAD(timer->it_clock))
499 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
500 else
501 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
502 }
503 }
504
505 /*
506 * The timer is locked, fire it and arrange for its reload.
507 */
508 static void cpu_timer_fire(struct k_itimer *timer)
509 {
510 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
511 /*
512 * User don't want any signal.
513 */
514 timer->it.cpu.expires = 0;
515 } else if (unlikely(timer->sigq == NULL)) {
516 /*
517 * This a special case for clock_nanosleep,
518 * not a normal timer from sys_timer_create.
519 */
520 wake_up_process(timer->it_process);
521 timer->it.cpu.expires = 0;
522 } else if (timer->it.cpu.incr == 0) {
523 /*
524 * One-shot timer. Clear it as soon as it's fired.
525 */
526 posix_timer_event(timer, 0);
527 timer->it.cpu.expires = 0;
528 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
529 /*
530 * The signal did not get queued because the signal
531 * was ignored, so we won't get any callback to
532 * reload the timer. But we need to keep it
533 * ticking in case the signal is deliverable next time.
534 */
535 posix_cpu_timer_rearm(timer);
536 ++timer->it_requeue_pending;
537 }
538 }
539
540 /*
541 * Sample a process (thread group) timer for the given group_leader task.
542 * Must be called with task sighand lock held for safe while_each_thread()
543 * traversal.
544 */
545 static int cpu_timer_sample_group(const clockid_t which_clock,
546 struct task_struct *p, u64 *sample)
547 {
548 struct task_cputime cputime;
549
550 thread_group_cputimer(p, &cputime);
551 switch (CPUCLOCK_WHICH(which_clock)) {
552 default:
553 return -EINVAL;
554 case CPUCLOCK_PROF:
555 *sample = cputime.utime + cputime.stime;
556 break;
557 case CPUCLOCK_VIRT:
558 *sample = cputime.utime;
559 break;
560 case CPUCLOCK_SCHED:
561 *sample = cputime.sum_exec_runtime;
562 break;
563 }
564 return 0;
565 }
566
567 /*
568 * Guts of sys_timer_settime for CPU timers.
569 * This is called with the timer locked and interrupts disabled.
570 * If we return TIMER_RETRY, it's necessary to release the timer's lock
571 * and try again. (This happens when the timer is in the middle of firing.)
572 */
573 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
574 struct itimerspec64 *new, struct itimerspec64 *old)
575 {
576 unsigned long flags;
577 struct sighand_struct *sighand;
578 struct task_struct *p = timer->it.cpu.task;
579 u64 old_expires, new_expires, old_incr, val;
580 int ret;
581
582 WARN_ON_ONCE(p == NULL);
583
584 /*
585 * Use the to_ktime conversion because that clamps the maximum
586 * value to KTIME_MAX and avoid multiplication overflows.
587 */
588 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
589
590 /*
591 * Protect against sighand release/switch in exit/exec and p->cpu_timers
592 * and p->signal->cpu_timers read/write in arm_timer()
593 */
594 sighand = lock_task_sighand(p, &flags);
595 /*
596 * If p has just been reaped, we can no
597 * longer get any information about it at all.
598 */
599 if (unlikely(sighand == NULL)) {
600 return -ESRCH;
601 }
602
603 /*
604 * Disarm any old timer after extracting its expiry time.
605 */
606 lockdep_assert_irqs_disabled();
607
608 ret = 0;
609 old_incr = timer->it.cpu.incr;
610 old_expires = timer->it.cpu.expires;
611 if (unlikely(timer->it.cpu.firing)) {
612 timer->it.cpu.firing = -1;
613 ret = TIMER_RETRY;
614 } else
615 list_del_init(&timer->it.cpu.entry);
616
617 /*
618 * We need to sample the current value to convert the new
619 * value from to relative and absolute, and to convert the
620 * old value from absolute to relative. To set a process
621 * timer, we need a sample to balance the thread expiry
622 * times (in arm_timer). With an absolute time, we must
623 * check if it's already passed. In short, we need a sample.
624 */
625 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
626 cpu_clock_sample(timer->it_clock, p, &val);
627 } else {
628 cpu_timer_sample_group(timer->it_clock, p, &val);
629 }
630
631 if (old) {
632 if (old_expires == 0) {
633 old->it_value.tv_sec = 0;
634 old->it_value.tv_nsec = 0;
635 } else {
636 /*
637 * Update the timer in case it has
638 * overrun already. If it has,
639 * we'll report it as having overrun
640 * and with the next reloaded timer
641 * already ticking, though we are
642 * swallowing that pending
643 * notification here to install the
644 * new setting.
645 */
646 bump_cpu_timer(timer, val);
647 if (val < timer->it.cpu.expires) {
648 old_expires = timer->it.cpu.expires - val;
649 old->it_value = ns_to_timespec64(old_expires);
650 } else {
651 old->it_value.tv_nsec = 1;
652 old->it_value.tv_sec = 0;
653 }
654 }
655 }
656
657 if (unlikely(ret)) {
658 /*
659 * We are colliding with the timer actually firing.
660 * Punt after filling in the timer's old value, and
661 * disable this firing since we are already reporting
662 * it as an overrun (thanks to bump_cpu_timer above).
663 */
664 unlock_task_sighand(p, &flags);
665 goto out;
666 }
667
668 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
669 new_expires += val;
670 }
671
672 /*
673 * Install the new expiry time (or zero).
674 * For a timer with no notification action, we don't actually
675 * arm the timer (we'll just fake it for timer_gettime).
676 */
677 timer->it.cpu.expires = new_expires;
678 if (new_expires != 0 && val < new_expires) {
679 arm_timer(timer);
680 }
681
682 unlock_task_sighand(p, &flags);
683 /*
684 * Install the new reload setting, and
685 * set up the signal and overrun bookkeeping.
686 */
687 timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
688
689 /*
690 * This acts as a modification timestamp for the timer,
691 * so any automatic reload attempt will punt on seeing
692 * that we have reset the timer manually.
693 */
694 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
695 ~REQUEUE_PENDING;
696 timer->it_overrun_last = 0;
697 timer->it_overrun = -1;
698
699 if (new_expires != 0 && !(val < new_expires)) {
700 /*
701 * The designated time already passed, so we notify
702 * immediately, even if the thread never runs to
703 * accumulate more time on this clock.
704 */
705 cpu_timer_fire(timer);
706 }
707
708 ret = 0;
709 out:
710 if (old)
711 old->it_interval = ns_to_timespec64(old_incr);
712
713 return ret;
714 }
715
716 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
717 {
718 u64 now;
719 struct task_struct *p = timer->it.cpu.task;
720
721 WARN_ON_ONCE(p == NULL);
722
723 /*
724 * Easy part: convert the reload time.
725 */
726 itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
727
728 if (!timer->it.cpu.expires)
729 return;
730
731 /*
732 * Sample the clock to take the difference with the expiry time.
733 */
734 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
735 cpu_clock_sample(timer->it_clock, p, &now);
736 } else {
737 struct sighand_struct *sighand;
738 unsigned long flags;
739
740 /*
741 * Protect against sighand release/switch in exit/exec and
742 * also make timer sampling safe if it ends up calling
743 * thread_group_cputime().
744 */
745 sighand = lock_task_sighand(p, &flags);
746 if (unlikely(sighand == NULL)) {
747 /*
748 * The process has been reaped.
749 * We can't even collect a sample any more.
750 * Call the timer disarmed, nothing else to do.
751 */
752 timer->it.cpu.expires = 0;
753 return;
754 } else {
755 cpu_timer_sample_group(timer->it_clock, p, &now);
756 unlock_task_sighand(p, &flags);
757 }
758 }
759
760 if (now < timer->it.cpu.expires) {
761 itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
762 } else {
763 /*
764 * The timer should have expired already, but the firing
765 * hasn't taken place yet. Say it's just about to expire.
766 */
767 itp->it_value.tv_nsec = 1;
768 itp->it_value.tv_sec = 0;
769 }
770 }
771
772 static unsigned long long
773 check_timers_list(struct list_head *timers,
774 struct list_head *firing,
775 unsigned long long curr)
776 {
777 int maxfire = 20;
778
779 while (!list_empty(timers)) {
780 struct cpu_timer_list *t;
781
782 t = list_first_entry(timers, struct cpu_timer_list, entry);
783
784 if (!--maxfire || curr < t->expires)
785 return t->expires;
786
787 t->firing = 1;
788 list_move_tail(&t->entry, firing);
789 }
790
791 return 0;
792 }
793
794 /*
795 * Check for any per-thread CPU timers that have fired and move them off
796 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
797 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
798 */
799 static void check_thread_timers(struct task_struct *tsk,
800 struct list_head *firing)
801 {
802 struct list_head *timers = tsk->cpu_timers;
803 struct task_cputime *tsk_expires = &tsk->cputime_expires;
804 u64 expires;
805 unsigned long soft;
806
807 /*
808 * If cputime_expires is zero, then there are no active
809 * per thread CPU timers.
810 */
811 if (task_cputime_zero(&tsk->cputime_expires))
812 return;
813
814 expires = check_timers_list(timers, firing, prof_ticks(tsk));
815 tsk_expires->prof_exp = expires;
816
817 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
818 tsk_expires->virt_exp = expires;
819
820 tsk_expires->sched_exp = check_timers_list(++timers, firing,
821 tsk->se.sum_exec_runtime);
822
823 /*
824 * Check for the special case thread timers.
825 */
826 soft = task_rlimit(tsk, RLIMIT_RTTIME);
827 if (soft != RLIM_INFINITY) {
828 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
829
830 if (hard != RLIM_INFINITY &&
831 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
832 /*
833 * At the hard limit, we just die.
834 * No need to calculate anything else now.
835 */
836 if (print_fatal_signals) {
837 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
838 tsk->comm, task_pid_nr(tsk));
839 }
840 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
841 return;
842 }
843 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
844 /*
845 * At the soft limit, send a SIGXCPU every second.
846 */
847 if (soft < hard) {
848 soft += USEC_PER_SEC;
849 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur =
850 soft;
851 }
852 if (print_fatal_signals) {
853 pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
854 tsk->comm, task_pid_nr(tsk));
855 }
856 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
857 }
858 }
859 if (task_cputime_zero(tsk_expires))
860 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
861 }
862
863 static inline void stop_process_timers(struct signal_struct *sig)
864 {
865 struct thread_group_cputimer *cputimer = &sig->cputimer;
866
867 /* Turn off cputimer->running. This is done without locking. */
868 WRITE_ONCE(cputimer->running, false);
869 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
870 }
871
872 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
873 u64 *expires, u64 cur_time, int signo)
874 {
875 if (!it->expires)
876 return;
877
878 if (cur_time >= it->expires) {
879 if (it->incr)
880 it->expires += it->incr;
881 else
882 it->expires = 0;
883
884 trace_itimer_expire(signo == SIGPROF ?
885 ITIMER_PROF : ITIMER_VIRTUAL,
886 tsk->signal->leader_pid, cur_time);
887 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
888 }
889
890 if (it->expires && (!*expires || it->expires < *expires))
891 *expires = it->expires;
892 }
893
894 /*
895 * Check for any per-thread CPU timers that have fired and move them
896 * off the tsk->*_timers list onto the firing list. Per-thread timers
897 * have already been taken off.
898 */
899 static void check_process_timers(struct task_struct *tsk,
900 struct list_head *firing)
901 {
902 struct signal_struct *const sig = tsk->signal;
903 u64 utime, ptime, virt_expires, prof_expires;
904 u64 sum_sched_runtime, sched_expires;
905 struct list_head *timers = sig->cpu_timers;
906 struct task_cputime cputime;
907 unsigned long soft;
908
909 /*
910 * If cputimer is not running, then there are no active
911 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
912 */
913 if (!READ_ONCE(tsk->signal->cputimer.running))
914 return;
915
916 /*
917 * Signify that a thread is checking for process timers.
918 * Write access to this field is protected by the sighand lock.
919 */
920 sig->cputimer.checking_timer = true;
921
922 /*
923 * Collect the current process totals.
924 */
925 thread_group_cputimer(tsk, &cputime);
926 utime = cputime.utime;
927 ptime = utime + cputime.stime;
928 sum_sched_runtime = cputime.sum_exec_runtime;
929
930 prof_expires = check_timers_list(timers, firing, ptime);
931 virt_expires = check_timers_list(++timers, firing, utime);
932 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
933
934 /*
935 * Check for the special case process timers.
936 */
937 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
938 SIGPROF);
939 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
940 SIGVTALRM);
941 soft = task_rlimit(tsk, RLIMIT_CPU);
942 if (soft != RLIM_INFINITY) {
943 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
944 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
945 u64 x;
946 if (psecs >= hard) {
947 /*
948 * At the hard limit, we just die.
949 * No need to calculate anything else now.
950 */
951 if (print_fatal_signals) {
952 pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
953 tsk->comm, task_pid_nr(tsk));
954 }
955 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
956 return;
957 }
958 if (psecs >= soft) {
959 /*
960 * At the soft limit, send a SIGXCPU every second.
961 */
962 if (print_fatal_signals) {
963 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
964 tsk->comm, task_pid_nr(tsk));
965 }
966 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
967 if (soft < hard) {
968 soft++;
969 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
970 }
971 }
972 x = soft * NSEC_PER_SEC;
973 if (!prof_expires || x < prof_expires)
974 prof_expires = x;
975 }
976
977 sig->cputime_expires.prof_exp = prof_expires;
978 sig->cputime_expires.virt_exp = virt_expires;
979 sig->cputime_expires.sched_exp = sched_expires;
980 if (task_cputime_zero(&sig->cputime_expires))
981 stop_process_timers(sig);
982
983 sig->cputimer.checking_timer = false;
984 }
985
986 /*
987 * This is called from the signal code (via posixtimer_rearm)
988 * when the last timer signal was delivered and we have to reload the timer.
989 */
990 static void posix_cpu_timer_rearm(struct k_itimer *timer)
991 {
992 struct sighand_struct *sighand;
993 unsigned long flags;
994 struct task_struct *p = timer->it.cpu.task;
995 u64 now;
996
997 WARN_ON_ONCE(p == NULL);
998
999 /*
1000 * Fetch the current sample and update the timer's expiry time.
1001 */
1002 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1003 cpu_clock_sample(timer->it_clock, p, &now);
1004 bump_cpu_timer(timer, now);
1005 if (unlikely(p->exit_state))
1006 return;
1007
1008 /* Protect timer list r/w in arm_timer() */
1009 sighand = lock_task_sighand(p, &flags);
1010 if (!sighand)
1011 return;
1012 } else {
1013 /*
1014 * Protect arm_timer() and timer sampling in case of call to
1015 * thread_group_cputime().
1016 */
1017 sighand = lock_task_sighand(p, &flags);
1018 if (unlikely(sighand == NULL)) {
1019 /*
1020 * The process has been reaped.
1021 * We can't even collect a sample any more.
1022 */
1023 timer->it.cpu.expires = 0;
1024 return;
1025 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1026 /* If the process is dying, no need to rearm */
1027 goto unlock;
1028 }
1029 cpu_timer_sample_group(timer->it_clock, p, &now);
1030 bump_cpu_timer(timer, now);
1031 /* Leave the sighand locked for the call below. */
1032 }
1033
1034 /*
1035 * Now re-arm for the new expiry time.
1036 */
1037 lockdep_assert_irqs_disabled();
1038 arm_timer(timer);
1039 unlock:
1040 unlock_task_sighand(p, &flags);
1041 }
1042
1043 /**
1044 * task_cputime_expired - Compare two task_cputime entities.
1045 *
1046 * @sample: The task_cputime structure to be checked for expiration.
1047 * @expires: Expiration times, against which @sample will be checked.
1048 *
1049 * Checks @sample against @expires to see if any field of @sample has expired.
1050 * Returns true if any field of the former is greater than the corresponding
1051 * field of the latter if the latter field is set. Otherwise returns false.
1052 */
1053 static inline int task_cputime_expired(const struct task_cputime *sample,
1054 const struct task_cputime *expires)
1055 {
1056 if (expires->utime && sample->utime >= expires->utime)
1057 return 1;
1058 if (expires->stime && sample->utime + sample->stime >= expires->stime)
1059 return 1;
1060 if (expires->sum_exec_runtime != 0 &&
1061 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1062 return 1;
1063 return 0;
1064 }
1065
1066 /**
1067 * fastpath_timer_check - POSIX CPU timers fast path.
1068 *
1069 * @tsk: The task (thread) being checked.
1070 *
1071 * Check the task and thread group timers. If both are zero (there are no
1072 * timers set) return false. Otherwise snapshot the task and thread group
1073 * timers and compare them with the corresponding expiration times. Return
1074 * true if a timer has expired, else return false.
1075 */
1076 static inline int fastpath_timer_check(struct task_struct *tsk)
1077 {
1078 struct signal_struct *sig;
1079
1080 if (!task_cputime_zero(&tsk->cputime_expires)) {
1081 struct task_cputime task_sample;
1082
1083 task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1084 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1085 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1086 return 1;
1087 }
1088
1089 sig = tsk->signal;
1090 /*
1091 * Check if thread group timers expired when the cputimer is
1092 * running and no other thread in the group is already checking
1093 * for thread group cputimers. These fields are read without the
1094 * sighand lock. However, this is fine because this is meant to
1095 * be a fastpath heuristic to determine whether we should try to
1096 * acquire the sighand lock to check/handle timers.
1097 *
1098 * In the worst case scenario, if 'running' or 'checking_timer' gets
1099 * set but the current thread doesn't see the change yet, we'll wait
1100 * until the next thread in the group gets a scheduler interrupt to
1101 * handle the timer. This isn't an issue in practice because these
1102 * types of delays with signals actually getting sent are expected.
1103 */
1104 if (READ_ONCE(sig->cputimer.running) &&
1105 !READ_ONCE(sig->cputimer.checking_timer)) {
1106 struct task_cputime group_sample;
1107
1108 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1109
1110 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1111 return 1;
1112 }
1113
1114 return 0;
1115 }
1116
1117 /*
1118 * This is called from the timer interrupt handler. The irq handler has
1119 * already updated our counts. We need to check if any timers fire now.
1120 * Interrupts are disabled.
1121 */
1122 void run_posix_cpu_timers(struct task_struct *tsk)
1123 {
1124 LIST_HEAD(firing);
1125 struct k_itimer *timer, *next;
1126 unsigned long flags;
1127
1128 lockdep_assert_irqs_disabled();
1129
1130 /*
1131 * The fast path checks that there are no expired thread or thread
1132 * group timers. If that's so, just return.
1133 */
1134 if (!fastpath_timer_check(tsk))
1135 return;
1136
1137 if (!lock_task_sighand(tsk, &flags))
1138 return;
1139 /*
1140 * Here we take off tsk->signal->cpu_timers[N] and
1141 * tsk->cpu_timers[N] all the timers that are firing, and
1142 * put them on the firing list.
1143 */
1144 check_thread_timers(tsk, &firing);
1145
1146 check_process_timers(tsk, &firing);
1147
1148 /*
1149 * We must release these locks before taking any timer's lock.
1150 * There is a potential race with timer deletion here, as the
1151 * siglock now protects our private firing list. We have set
1152 * the firing flag in each timer, so that a deletion attempt
1153 * that gets the timer lock before we do will give it up and
1154 * spin until we've taken care of that timer below.
1155 */
1156 unlock_task_sighand(tsk, &flags);
1157
1158 /*
1159 * Now that all the timers on our list have the firing flag,
1160 * no one will touch their list entries but us. We'll take
1161 * each timer's lock before clearing its firing flag, so no
1162 * timer call will interfere.
1163 */
1164 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1165 int cpu_firing;
1166
1167 spin_lock(&timer->it_lock);
1168 list_del_init(&timer->it.cpu.entry);
1169 cpu_firing = timer->it.cpu.firing;
1170 timer->it.cpu.firing = 0;
1171 /*
1172 * The firing flag is -1 if we collided with a reset
1173 * of the timer, which already reported this
1174 * almost-firing as an overrun. So don't generate an event.
1175 */
1176 if (likely(cpu_firing >= 0))
1177 cpu_timer_fire(timer);
1178 spin_unlock(&timer->it_lock);
1179 }
1180 }
1181
1182 /*
1183 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1184 * The tsk->sighand->siglock must be held by the caller.
1185 */
1186 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1187 u64 *newval, u64 *oldval)
1188 {
1189 u64 now;
1190
1191 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1192 cpu_timer_sample_group(clock_idx, tsk, &now);
1193
1194 if (oldval) {
1195 /*
1196 * We are setting itimer. The *oldval is absolute and we update
1197 * it to be relative, *newval argument is relative and we update
1198 * it to be absolute.
1199 */
1200 if (*oldval) {
1201 if (*oldval <= now) {
1202 /* Just about to fire. */
1203 *oldval = TICK_NSEC;
1204 } else {
1205 *oldval -= now;
1206 }
1207 }
1208
1209 if (!*newval)
1210 return;
1211 *newval += now;
1212 }
1213
1214 /*
1215 * Update expiration cache if we are the earliest timer, or eventually
1216 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1217 */
1218 switch (clock_idx) {
1219 case CPUCLOCK_PROF:
1220 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1221 tsk->signal->cputime_expires.prof_exp = *newval;
1222 break;
1223 case CPUCLOCK_VIRT:
1224 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1225 tsk->signal->cputime_expires.virt_exp = *newval;
1226 break;
1227 }
1228
1229 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1230 }
1231
1232 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1233 const struct timespec64 *rqtp)
1234 {
1235 struct itimerspec64 it;
1236 struct k_itimer timer;
1237 u64 expires;
1238 int error;
1239
1240 /*
1241 * Set up a temporary timer and then wait for it to go off.
1242 */
1243 memset(&timer, 0, sizeof timer);
1244 spin_lock_init(&timer.it_lock);
1245 timer.it_clock = which_clock;
1246 timer.it_overrun = -1;
1247 error = posix_cpu_timer_create(&timer);
1248 timer.it_process = current;
1249 if (!error) {
1250 static struct itimerspec64 zero_it;
1251 struct restart_block *restart;
1252
1253 memset(&it, 0, sizeof(it));
1254 it.it_value = *rqtp;
1255
1256 spin_lock_irq(&timer.it_lock);
1257 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1258 if (error) {
1259 spin_unlock_irq(&timer.it_lock);
1260 return error;
1261 }
1262
1263 while (!signal_pending(current)) {
1264 if (timer.it.cpu.expires == 0) {
1265 /*
1266 * Our timer fired and was reset, below
1267 * deletion can not fail.
1268 */
1269 posix_cpu_timer_del(&timer);
1270 spin_unlock_irq(&timer.it_lock);
1271 return 0;
1272 }
1273
1274 /*
1275 * Block until cpu_timer_fire (or a signal) wakes us.
1276 */
1277 __set_current_state(TASK_INTERRUPTIBLE);
1278 spin_unlock_irq(&timer.it_lock);
1279 schedule();
1280 spin_lock_irq(&timer.it_lock);
1281 }
1282
1283 /*
1284 * We were interrupted by a signal.
1285 */
1286 expires = timer.it.cpu.expires;
1287 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1288 if (!error) {
1289 /*
1290 * Timer is now unarmed, deletion can not fail.
1291 */
1292 posix_cpu_timer_del(&timer);
1293 }
1294 spin_unlock_irq(&timer.it_lock);
1295
1296 while (error == TIMER_RETRY) {
1297 /*
1298 * We need to handle case when timer was or is in the
1299 * middle of firing. In other cases we already freed
1300 * resources.
1301 */
1302 spin_lock_irq(&timer.it_lock);
1303 error = posix_cpu_timer_del(&timer);
1304 spin_unlock_irq(&timer.it_lock);
1305 }
1306
1307 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1308 /*
1309 * It actually did fire already.
1310 */
1311 return 0;
1312 }
1313
1314 error = -ERESTART_RESTARTBLOCK;
1315 /*
1316 * Report back to the user the time still remaining.
1317 */
1318 restart = &current->restart_block;
1319 restart->nanosleep.expires = expires;
1320 if (restart->nanosleep.type != TT_NONE)
1321 error = nanosleep_copyout(restart, &it.it_value);
1322 }
1323
1324 return error;
1325 }
1326
1327 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1328
1329 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1330 const struct timespec64 *rqtp)
1331 {
1332 struct restart_block *restart_block = &current->restart_block;
1333 int error;
1334
1335 /*
1336 * Diagnose required errors first.
1337 */
1338 if (CPUCLOCK_PERTHREAD(which_clock) &&
1339 (CPUCLOCK_PID(which_clock) == 0 ||
1340 CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1341 return -EINVAL;
1342
1343 error = do_cpu_nanosleep(which_clock, flags, rqtp);
1344
1345 if (error == -ERESTART_RESTARTBLOCK) {
1346
1347 if (flags & TIMER_ABSTIME)
1348 return -ERESTARTNOHAND;
1349
1350 restart_block->fn = posix_cpu_nsleep_restart;
1351 restart_block->nanosleep.clockid = which_clock;
1352 }
1353 return error;
1354 }
1355
1356 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1357 {
1358 clockid_t which_clock = restart_block->nanosleep.clockid;
1359 struct timespec64 t;
1360
1361 t = ns_to_timespec64(restart_block->nanosleep.expires);
1362
1363 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1364 }
1365
1366 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1367 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1368
1369 static int process_cpu_clock_getres(const clockid_t which_clock,
1370 struct timespec64 *tp)
1371 {
1372 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1373 }
1374 static int process_cpu_clock_get(const clockid_t which_clock,
1375 struct timespec64 *tp)
1376 {
1377 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1378 }
1379 static int process_cpu_timer_create(struct k_itimer *timer)
1380 {
1381 timer->it_clock = PROCESS_CLOCK;
1382 return posix_cpu_timer_create(timer);
1383 }
1384 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1385 const struct timespec64 *rqtp)
1386 {
1387 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1388 }
1389 static int thread_cpu_clock_getres(const clockid_t which_clock,
1390 struct timespec64 *tp)
1391 {
1392 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1393 }
1394 static int thread_cpu_clock_get(const clockid_t which_clock,
1395 struct timespec64 *tp)
1396 {
1397 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1398 }
1399 static int thread_cpu_timer_create(struct k_itimer *timer)
1400 {
1401 timer->it_clock = THREAD_CLOCK;
1402 return posix_cpu_timer_create(timer);
1403 }
1404
1405 const struct k_clock clock_posix_cpu = {
1406 .clock_getres = posix_cpu_clock_getres,
1407 .clock_set = posix_cpu_clock_set,
1408 .clock_get = posix_cpu_clock_get,
1409 .timer_create = posix_cpu_timer_create,
1410 .nsleep = posix_cpu_nsleep,
1411 .timer_set = posix_cpu_timer_set,
1412 .timer_del = posix_cpu_timer_del,
1413 .timer_get = posix_cpu_timer_get,
1414 .timer_rearm = posix_cpu_timer_rearm,
1415 };
1416
1417 const struct k_clock clock_process = {
1418 .clock_getres = process_cpu_clock_getres,
1419 .clock_get = process_cpu_clock_get,
1420 .timer_create = process_cpu_timer_create,
1421 .nsleep = process_cpu_nsleep,
1422 };
1423
1424 const struct k_clock clock_thread = {
1425 .clock_getres = thread_cpu_clock_getres,
1426 .clock_get = thread_cpu_clock_get,
1427 .timer_create = thread_cpu_timer_create,
1428 };