]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/posix-timers.c
powerpc/rfi-flush: Always enable fallback flush on pseries
[mirror_ubuntu-artful-kernel.git] / kernel / time / posix-timers.c
1 /*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 #include <linux/sched/task.h>
39
40 #include <linux/uaccess.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/hash.h>
45 #include <linux/posix-clock.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/export.h>
51 #include <linux/hashtable.h>
52 #include <linux/compat.h>
53
54 #include "timekeeping.h"
55 #include "posix-timers.h"
56
57 /*
58 * Management arrays for POSIX timers. Timers are now kept in static hash table
59 * with 512 entries.
60 * Timer ids are allocated by local routine, which selects proper hash head by
61 * key, constructed from current->signal address and per signal struct counter.
62 * This keeps timer ids unique per process, but now they can intersect between
63 * processes.
64 */
65
66 /*
67 * Lets keep our timers in a slab cache :-)
68 */
69 static struct kmem_cache *posix_timers_cache;
70
71 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
72 static DEFINE_SPINLOCK(hash_lock);
73
74 static const struct k_clock * const posix_clocks[];
75 static const struct k_clock *clockid_to_kclock(const clockid_t id);
76 static const struct k_clock clock_realtime, clock_monotonic;
77
78 /*
79 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
80 * SIGEV values. Here we put out an error if this assumption fails.
81 */
82 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
83 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
84 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
85 #endif
86
87 /*
88 * parisc wants ENOTSUP instead of EOPNOTSUPP
89 */
90 #ifndef ENOTSUP
91 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
92 #else
93 # define ENANOSLEEP_NOTSUP ENOTSUP
94 #endif
95
96 /*
97 * The timer ID is turned into a timer address by idr_find().
98 * Verifying a valid ID consists of:
99 *
100 * a) checking that idr_find() returns other than -1.
101 * b) checking that the timer id matches the one in the timer itself.
102 * c) that the timer owner is in the callers thread group.
103 */
104
105 /*
106 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
107 * to implement others. This structure defines the various
108 * clocks.
109 *
110 * RESOLUTION: Clock resolution is used to round up timer and interval
111 * times, NOT to report clock times, which are reported with as
112 * much resolution as the system can muster. In some cases this
113 * resolution may depend on the underlying clock hardware and
114 * may not be quantifiable until run time, and only then is the
115 * necessary code is written. The standard says we should say
116 * something about this issue in the documentation...
117 *
118 * FUNCTIONS: The CLOCKs structure defines possible functions to
119 * handle various clock functions.
120 *
121 * The standard POSIX timer management code assumes the
122 * following: 1.) The k_itimer struct (sched.h) is used for
123 * the timer. 2.) The list, it_lock, it_clock, it_id and
124 * it_pid fields are not modified by timer code.
125 *
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
132 */
133 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
134
135 #define lock_timer(tid, flags) \
136 ({ struct k_itimer *__timr; \
137 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
138 __timr; \
139 })
140
141 static int hash(struct signal_struct *sig, unsigned int nr)
142 {
143 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
144 }
145
146 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
147 struct signal_struct *sig,
148 timer_t id)
149 {
150 struct k_itimer *timer;
151
152 hlist_for_each_entry_rcu(timer, head, t_hash) {
153 if ((timer->it_signal == sig) && (timer->it_id == id))
154 return timer;
155 }
156 return NULL;
157 }
158
159 static struct k_itimer *posix_timer_by_id(timer_t id)
160 {
161 struct signal_struct *sig = current->signal;
162 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
163
164 return __posix_timers_find(head, sig, id);
165 }
166
167 static int posix_timer_add(struct k_itimer *timer)
168 {
169 struct signal_struct *sig = current->signal;
170 int first_free_id = sig->posix_timer_id;
171 struct hlist_head *head;
172 int ret = -ENOENT;
173
174 do {
175 spin_lock(&hash_lock);
176 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
177 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
178 hlist_add_head_rcu(&timer->t_hash, head);
179 ret = sig->posix_timer_id;
180 }
181 if (++sig->posix_timer_id < 0)
182 sig->posix_timer_id = 0;
183 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
184 /* Loop over all possible ids completed */
185 ret = -EAGAIN;
186 spin_unlock(&hash_lock);
187 } while (ret == -ENOENT);
188 return ret;
189 }
190
191 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
192 {
193 spin_unlock_irqrestore(&timr->it_lock, flags);
194 }
195
196 /* Get clock_realtime */
197 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
198 {
199 ktime_get_real_ts64(tp);
200 return 0;
201 }
202
203 /* Set clock_realtime */
204 static int posix_clock_realtime_set(const clockid_t which_clock,
205 const struct timespec64 *tp)
206 {
207 return do_sys_settimeofday64(tp, NULL);
208 }
209
210 static int posix_clock_realtime_adj(const clockid_t which_clock,
211 struct timex *t)
212 {
213 return do_adjtimex(t);
214 }
215
216 /*
217 * Get monotonic time for posix timers
218 */
219 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
220 {
221 ktime_get_ts64(tp);
222 return 0;
223 }
224
225 /*
226 * Get monotonic-raw time for posix timers
227 */
228 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
229 {
230 getrawmonotonic64(tp);
231 return 0;
232 }
233
234
235 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
236 {
237 *tp = current_kernel_time64();
238 return 0;
239 }
240
241 static int posix_get_monotonic_coarse(clockid_t which_clock,
242 struct timespec64 *tp)
243 {
244 *tp = get_monotonic_coarse64();
245 return 0;
246 }
247
248 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
249 {
250 *tp = ktime_to_timespec64(KTIME_LOW_RES);
251 return 0;
252 }
253
254 static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
255 {
256 get_monotonic_boottime64(tp);
257 return 0;
258 }
259
260 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
261 {
262 timekeeping_clocktai64(tp);
263 return 0;
264 }
265
266 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
267 {
268 tp->tv_sec = 0;
269 tp->tv_nsec = hrtimer_resolution;
270 return 0;
271 }
272
273 /*
274 * Initialize everything, well, just everything in Posix clocks/timers ;)
275 */
276 static __init int init_posix_timers(void)
277 {
278 posix_timers_cache = kmem_cache_create("posix_timers_cache",
279 sizeof (struct k_itimer), 0, SLAB_PANIC,
280 NULL);
281 return 0;
282 }
283 __initcall(init_posix_timers);
284
285 static void common_hrtimer_rearm(struct k_itimer *timr)
286 {
287 struct hrtimer *timer = &timr->it.real.timer;
288
289 if (!timr->it_interval)
290 return;
291
292 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
293 timer->base->get_time(),
294 timr->it_interval);
295 hrtimer_restart(timer);
296 }
297
298 /*
299 * This function is exported for use by the signal deliver code. It is
300 * called just prior to the info block being released and passes that
301 * block to us. It's function is to update the overrun entry AND to
302 * restart the timer. It should only be called if the timer is to be
303 * restarted (i.e. we have flagged this in the sys_private entry of the
304 * info block).
305 *
306 * To protect against the timer going away while the interrupt is queued,
307 * we require that the it_requeue_pending flag be set.
308 */
309 void posixtimer_rearm(struct siginfo *info)
310 {
311 struct k_itimer *timr;
312 unsigned long flags;
313
314 timr = lock_timer(info->si_tid, &flags);
315 if (!timr)
316 return;
317
318 if (timr->it_requeue_pending == info->si_sys_private) {
319 timr->kclock->timer_rearm(timr);
320
321 timr->it_active = 1;
322 timr->it_overrun_last = timr->it_overrun;
323 timr->it_overrun = -1;
324 ++timr->it_requeue_pending;
325
326 info->si_overrun += timr->it_overrun_last;
327 }
328
329 unlock_timer(timr, flags);
330 }
331
332 int posix_timer_event(struct k_itimer *timr, int si_private)
333 {
334 struct task_struct *task;
335 int shared, ret = -1;
336 /*
337 * FIXME: if ->sigq is queued we can race with
338 * dequeue_signal()->posixtimer_rearm().
339 *
340 * If dequeue_signal() sees the "right" value of
341 * si_sys_private it calls posixtimer_rearm().
342 * We re-queue ->sigq and drop ->it_lock().
343 * posixtimer_rearm() locks the timer
344 * and re-schedules it while ->sigq is pending.
345 * Not really bad, but not that we want.
346 */
347 timr->sigq->info.si_sys_private = si_private;
348
349 rcu_read_lock();
350 task = pid_task(timr->it_pid, PIDTYPE_PID);
351 if (task) {
352 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
353 ret = send_sigqueue(timr->sigq, task, shared);
354 }
355 rcu_read_unlock();
356 /* If we failed to send the signal the timer stops. */
357 return ret > 0;
358 }
359
360 /*
361 * This function gets called when a POSIX.1b interval timer expires. It
362 * is used as a callback from the kernel internal timer. The
363 * run_timer_list code ALWAYS calls with interrupts on.
364
365 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
366 */
367 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
368 {
369 struct k_itimer *timr;
370 unsigned long flags;
371 int si_private = 0;
372 enum hrtimer_restart ret = HRTIMER_NORESTART;
373
374 timr = container_of(timer, struct k_itimer, it.real.timer);
375 spin_lock_irqsave(&timr->it_lock, flags);
376
377 timr->it_active = 0;
378 if (timr->it_interval != 0)
379 si_private = ++timr->it_requeue_pending;
380
381 if (posix_timer_event(timr, si_private)) {
382 /*
383 * signal was not sent because of sig_ignor
384 * we will not get a call back to restart it AND
385 * it should be restarted.
386 */
387 if (timr->it_interval != 0) {
388 ktime_t now = hrtimer_cb_get_time(timer);
389
390 /*
391 * FIXME: What we really want, is to stop this
392 * timer completely and restart it in case the
393 * SIG_IGN is removed. This is a non trivial
394 * change which involves sighand locking
395 * (sigh !), which we don't want to do late in
396 * the release cycle.
397 *
398 * For now we just let timers with an interval
399 * less than a jiffie expire every jiffie to
400 * avoid softirq starvation in case of SIG_IGN
401 * and a very small interval, which would put
402 * the timer right back on the softirq pending
403 * list. By moving now ahead of time we trick
404 * hrtimer_forward() to expire the timer
405 * later, while we still maintain the overrun
406 * accuracy, but have some inconsistency in
407 * the timer_gettime() case. This is at least
408 * better than a starved softirq. A more
409 * complex fix which solves also another related
410 * inconsistency is already in the pipeline.
411 */
412 #ifdef CONFIG_HIGH_RES_TIMERS
413 {
414 ktime_t kj = NSEC_PER_SEC / HZ;
415
416 if (timr->it_interval < kj)
417 now = ktime_add(now, kj);
418 }
419 #endif
420 timr->it_overrun += (unsigned int)
421 hrtimer_forward(timer, now,
422 timr->it_interval);
423 ret = HRTIMER_RESTART;
424 ++timr->it_requeue_pending;
425 timr->it_active = 1;
426 }
427 }
428
429 unlock_timer(timr, flags);
430 return ret;
431 }
432
433 static struct pid *good_sigevent(sigevent_t * event)
434 {
435 struct task_struct *rtn = current->group_leader;
436
437 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
438 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
439 !same_thread_group(rtn, current) ||
440 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
441 return NULL;
442
443 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
444 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
445 return NULL;
446
447 return task_pid(rtn);
448 }
449
450 static struct k_itimer * alloc_posix_timer(void)
451 {
452 struct k_itimer *tmr;
453 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
454 if (!tmr)
455 return tmr;
456 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
457 kmem_cache_free(posix_timers_cache, tmr);
458 return NULL;
459 }
460 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
461 return tmr;
462 }
463
464 static void k_itimer_rcu_free(struct rcu_head *head)
465 {
466 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
467
468 kmem_cache_free(posix_timers_cache, tmr);
469 }
470
471 #define IT_ID_SET 1
472 #define IT_ID_NOT_SET 0
473 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
474 {
475 if (it_id_set) {
476 unsigned long flags;
477 spin_lock_irqsave(&hash_lock, flags);
478 hlist_del_rcu(&tmr->t_hash);
479 spin_unlock_irqrestore(&hash_lock, flags);
480 }
481 put_pid(tmr->it_pid);
482 sigqueue_free(tmr->sigq);
483 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
484 }
485
486 static int common_timer_create(struct k_itimer *new_timer)
487 {
488 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
489 return 0;
490 }
491
492 /* Create a POSIX.1b interval timer. */
493 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
494 timer_t __user *created_timer_id)
495 {
496 const struct k_clock *kc = clockid_to_kclock(which_clock);
497 struct k_itimer *new_timer;
498 int error, new_timer_id;
499 int it_id_set = IT_ID_NOT_SET;
500
501 if (!kc)
502 return -EINVAL;
503 if (!kc->timer_create)
504 return -EOPNOTSUPP;
505
506 new_timer = alloc_posix_timer();
507 if (unlikely(!new_timer))
508 return -EAGAIN;
509
510 spin_lock_init(&new_timer->it_lock);
511 new_timer_id = posix_timer_add(new_timer);
512 if (new_timer_id < 0) {
513 error = new_timer_id;
514 goto out;
515 }
516
517 it_id_set = IT_ID_SET;
518 new_timer->it_id = (timer_t) new_timer_id;
519 new_timer->it_clock = which_clock;
520 new_timer->kclock = kc;
521 new_timer->it_overrun = -1;
522
523 if (event) {
524 rcu_read_lock();
525 new_timer->it_pid = get_pid(good_sigevent(event));
526 rcu_read_unlock();
527 if (!new_timer->it_pid) {
528 error = -EINVAL;
529 goto out;
530 }
531 new_timer->it_sigev_notify = event->sigev_notify;
532 new_timer->sigq->info.si_signo = event->sigev_signo;
533 new_timer->sigq->info.si_value = event->sigev_value;
534 } else {
535 new_timer->it_sigev_notify = SIGEV_SIGNAL;
536 new_timer->sigq->info.si_signo = SIGALRM;
537 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
538 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
539 new_timer->it_pid = get_pid(task_tgid(current));
540 }
541
542 new_timer->sigq->info.si_tid = new_timer->it_id;
543 new_timer->sigq->info.si_code = SI_TIMER;
544
545 if (copy_to_user(created_timer_id,
546 &new_timer_id, sizeof (new_timer_id))) {
547 error = -EFAULT;
548 goto out;
549 }
550
551 error = kc->timer_create(new_timer);
552 if (error)
553 goto out;
554
555 spin_lock_irq(&current->sighand->siglock);
556 new_timer->it_signal = current->signal;
557 list_add(&new_timer->list, &current->signal->posix_timers);
558 spin_unlock_irq(&current->sighand->siglock);
559
560 return 0;
561 /*
562 * In the case of the timer belonging to another task, after
563 * the task is unlocked, the timer is owned by the other task
564 * and may cease to exist at any time. Don't use or modify
565 * new_timer after the unlock call.
566 */
567 out:
568 release_posix_timer(new_timer, it_id_set);
569 return error;
570 }
571
572 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
573 struct sigevent __user *, timer_event_spec,
574 timer_t __user *, created_timer_id)
575 {
576 if (timer_event_spec) {
577 sigevent_t event;
578
579 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
580 return -EFAULT;
581 return do_timer_create(which_clock, &event, created_timer_id);
582 }
583 return do_timer_create(which_clock, NULL, created_timer_id);
584 }
585
586 #ifdef CONFIG_COMPAT
587 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
588 struct compat_sigevent __user *, timer_event_spec,
589 timer_t __user *, created_timer_id)
590 {
591 if (timer_event_spec) {
592 sigevent_t event;
593
594 if (get_compat_sigevent(&event, timer_event_spec))
595 return -EFAULT;
596 return do_timer_create(which_clock, &event, created_timer_id);
597 }
598 return do_timer_create(which_clock, NULL, created_timer_id);
599 }
600 #endif
601
602 /*
603 * Locking issues: We need to protect the result of the id look up until
604 * we get the timer locked down so it is not deleted under us. The
605 * removal is done under the idr spinlock so we use that here to bridge
606 * the find to the timer lock. To avoid a dead lock, the timer id MUST
607 * be release with out holding the timer lock.
608 */
609 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
610 {
611 struct k_itimer *timr;
612
613 /*
614 * timer_t could be any type >= int and we want to make sure any
615 * @timer_id outside positive int range fails lookup.
616 */
617 if ((unsigned long long)timer_id > INT_MAX)
618 return NULL;
619
620 rcu_read_lock();
621 timr = posix_timer_by_id(timer_id);
622 if (timr) {
623 spin_lock_irqsave(&timr->it_lock, *flags);
624 if (timr->it_signal == current->signal) {
625 rcu_read_unlock();
626 return timr;
627 }
628 spin_unlock_irqrestore(&timr->it_lock, *flags);
629 }
630 rcu_read_unlock();
631
632 return NULL;
633 }
634
635 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
636 {
637 struct hrtimer *timer = &timr->it.real.timer;
638
639 return __hrtimer_expires_remaining_adjusted(timer, now);
640 }
641
642 static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
643 {
644 struct hrtimer *timer = &timr->it.real.timer;
645
646 return (int)hrtimer_forward(timer, now, timr->it_interval);
647 }
648
649 /*
650 * Get the time remaining on a POSIX.1b interval timer. This function
651 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
652 * mess with irq.
653 *
654 * We have a couple of messes to clean up here. First there is the case
655 * of a timer that has a requeue pending. These timers should appear to
656 * be in the timer list with an expiry as if we were to requeue them
657 * now.
658 *
659 * The second issue is the SIGEV_NONE timer which may be active but is
660 * not really ever put in the timer list (to save system resources).
661 * This timer may be expired, and if so, we will do it here. Otherwise
662 * it is the same as a requeue pending timer WRT to what we should
663 * report.
664 */
665 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
666 {
667 const struct k_clock *kc = timr->kclock;
668 ktime_t now, remaining, iv;
669 struct timespec64 ts64;
670 bool sig_none;
671
672 sig_none = (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE;
673 iv = timr->it_interval;
674
675 /* interval timer ? */
676 if (iv) {
677 cur_setting->it_interval = ktime_to_timespec64(iv);
678 } else if (!timr->it_active) {
679 /*
680 * SIGEV_NONE oneshot timers are never queued. Check them
681 * below.
682 */
683 if (!sig_none)
684 return;
685 }
686
687 /*
688 * The timespec64 based conversion is suboptimal, but it's not
689 * worth to implement yet another callback.
690 */
691 kc->clock_get(timr->it_clock, &ts64);
692 now = timespec64_to_ktime(ts64);
693
694 /*
695 * When a requeue is pending or this is a SIGEV_NONE timer move the
696 * expiry time forward by intervals, so expiry is > now.
697 */
698 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
699 timr->it_overrun += kc->timer_forward(timr, now);
700
701 remaining = kc->timer_remaining(timr, now);
702 /* Return 0 only, when the timer is expired and not pending */
703 if (remaining <= 0) {
704 /*
705 * A single shot SIGEV_NONE timer must return 0, when
706 * it is expired !
707 */
708 if (!sig_none)
709 cur_setting->it_value.tv_nsec = 1;
710 } else {
711 cur_setting->it_value = ktime_to_timespec64(remaining);
712 }
713 }
714
715 /* Get the time remaining on a POSIX.1b interval timer. */
716 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
717 {
718 struct k_itimer *timr;
719 const struct k_clock *kc;
720 unsigned long flags;
721 int ret = 0;
722
723 timr = lock_timer(timer_id, &flags);
724 if (!timr)
725 return -EINVAL;
726
727 memset(setting, 0, sizeof(*setting));
728 kc = timr->kclock;
729 if (WARN_ON_ONCE(!kc || !kc->timer_get))
730 ret = -EINVAL;
731 else
732 kc->timer_get(timr, setting);
733
734 unlock_timer(timr, flags);
735 return ret;
736 }
737
738 /* Get the time remaining on a POSIX.1b interval timer. */
739 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
740 struct itimerspec __user *, setting)
741 {
742 struct itimerspec64 cur_setting;
743
744 int ret = do_timer_gettime(timer_id, &cur_setting);
745 if (!ret) {
746 if (put_itimerspec64(&cur_setting, setting))
747 ret = -EFAULT;
748 }
749 return ret;
750 }
751
752 #ifdef CONFIG_COMPAT
753 COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
754 struct compat_itimerspec __user *, setting)
755 {
756 struct itimerspec64 cur_setting;
757
758 int ret = do_timer_gettime(timer_id, &cur_setting);
759 if (!ret) {
760 if (put_compat_itimerspec64(&cur_setting, setting))
761 ret = -EFAULT;
762 }
763 return ret;
764 }
765 #endif
766
767 /*
768 * Get the number of overruns of a POSIX.1b interval timer. This is to
769 * be the overrun of the timer last delivered. At the same time we are
770 * accumulating overruns on the next timer. The overrun is frozen when
771 * the signal is delivered, either at the notify time (if the info block
772 * is not queued) or at the actual delivery time (as we are informed by
773 * the call back to posixtimer_rearm(). So all we need to do is
774 * to pick up the frozen overrun.
775 */
776 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
777 {
778 struct k_itimer *timr;
779 int overrun;
780 unsigned long flags;
781
782 timr = lock_timer(timer_id, &flags);
783 if (!timr)
784 return -EINVAL;
785
786 overrun = timr->it_overrun_last;
787 unlock_timer(timr, flags);
788
789 return overrun;
790 }
791
792 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
793 bool absolute, bool sigev_none)
794 {
795 struct hrtimer *timer = &timr->it.real.timer;
796 enum hrtimer_mode mode;
797
798 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
799 /*
800 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
801 * clock modifications, so they become CLOCK_MONOTONIC based under the
802 * hood. See hrtimer_init(). Update timr->kclock, so the generic
803 * functions which use timr->kclock->clock_get() work.
804 *
805 * Note: it_clock stays unmodified, because the next timer_set() might
806 * use ABSTIME, so it needs to switch back.
807 */
808 if (timr->it_clock == CLOCK_REALTIME)
809 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
810
811 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
812 timr->it.real.timer.function = posix_timer_fn;
813
814 if (!absolute)
815 expires = ktime_add_safe(expires, timer->base->get_time());
816 hrtimer_set_expires(timer, expires);
817
818 if (!sigev_none)
819 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
820 }
821
822 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
823 {
824 return hrtimer_try_to_cancel(&timr->it.real.timer);
825 }
826
827 /* Set a POSIX.1b interval timer. */
828 int common_timer_set(struct k_itimer *timr, int flags,
829 struct itimerspec64 *new_setting,
830 struct itimerspec64 *old_setting)
831 {
832 const struct k_clock *kc = timr->kclock;
833 bool sigev_none;
834 ktime_t expires;
835
836 if (old_setting)
837 common_timer_get(timr, old_setting);
838
839 /* Prevent rearming by clearing the interval */
840 timr->it_interval = 0;
841 /*
842 * Careful here. On SMP systems the timer expiry function could be
843 * active and spinning on timr->it_lock.
844 */
845 if (kc->timer_try_to_cancel(timr) < 0)
846 return TIMER_RETRY;
847
848 timr->it_active = 0;
849 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
850 ~REQUEUE_PENDING;
851 timr->it_overrun_last = 0;
852
853 /* Switch off the timer when it_value is zero */
854 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
855 return 0;
856
857 timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
858 expires = timespec64_to_ktime(new_setting->it_value);
859 sigev_none = (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE;
860
861 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
862 timr->it_active = !sigev_none;
863 return 0;
864 }
865
866 static int do_timer_settime(timer_t timer_id, int flags,
867 struct itimerspec64 *new_spec64,
868 struct itimerspec64 *old_spec64)
869 {
870 const struct k_clock *kc;
871 struct k_itimer *timr;
872 unsigned long flag;
873 int error = 0;
874
875 if (!timespec64_valid(&new_spec64->it_interval) ||
876 !timespec64_valid(&new_spec64->it_value))
877 return -EINVAL;
878
879 if (old_spec64)
880 memset(old_spec64, 0, sizeof(*old_spec64));
881 retry:
882 timr = lock_timer(timer_id, &flag);
883 if (!timr)
884 return -EINVAL;
885
886 kc = timr->kclock;
887 if (WARN_ON_ONCE(!kc || !kc->timer_set))
888 error = -EINVAL;
889 else
890 error = kc->timer_set(timr, flags, new_spec64, old_spec64);
891
892 unlock_timer(timr, flag);
893 if (error == TIMER_RETRY) {
894 old_spec64 = NULL; // We already got the old time...
895 goto retry;
896 }
897
898 return error;
899 }
900
901 /* Set a POSIX.1b interval timer */
902 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
903 const struct itimerspec __user *, new_setting,
904 struct itimerspec __user *, old_setting)
905 {
906 struct itimerspec64 new_spec, old_spec;
907 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
908 int error = 0;
909
910 if (!new_setting)
911 return -EINVAL;
912
913 if (get_itimerspec64(&new_spec, new_setting))
914 return -EFAULT;
915
916 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
917 if (!error && old_setting) {
918 if (put_itimerspec64(&old_spec, old_setting))
919 error = -EFAULT;
920 }
921 return error;
922 }
923
924 #ifdef CONFIG_COMPAT
925 COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
926 struct compat_itimerspec __user *, new,
927 struct compat_itimerspec __user *, old)
928 {
929 struct itimerspec64 new_spec, old_spec;
930 struct itimerspec64 *rtn = old ? &old_spec : NULL;
931 int error = 0;
932
933 if (!new)
934 return -EINVAL;
935 if (get_compat_itimerspec64(&new_spec, new))
936 return -EFAULT;
937
938 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
939 if (!error && old) {
940 if (put_compat_itimerspec64(&old_spec, old))
941 error = -EFAULT;
942 }
943 return error;
944 }
945 #endif
946
947 int common_timer_del(struct k_itimer *timer)
948 {
949 const struct k_clock *kc = timer->kclock;
950
951 timer->it_interval = 0;
952 if (kc->timer_try_to_cancel(timer) < 0)
953 return TIMER_RETRY;
954 timer->it_active = 0;
955 return 0;
956 }
957
958 static inline int timer_delete_hook(struct k_itimer *timer)
959 {
960 const struct k_clock *kc = timer->kclock;
961
962 if (WARN_ON_ONCE(!kc || !kc->timer_del))
963 return -EINVAL;
964 return kc->timer_del(timer);
965 }
966
967 /* Delete a POSIX.1b interval timer. */
968 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
969 {
970 struct k_itimer *timer;
971 unsigned long flags;
972
973 retry_delete:
974 timer = lock_timer(timer_id, &flags);
975 if (!timer)
976 return -EINVAL;
977
978 if (timer_delete_hook(timer) == TIMER_RETRY) {
979 unlock_timer(timer, flags);
980 goto retry_delete;
981 }
982
983 spin_lock(&current->sighand->siglock);
984 list_del(&timer->list);
985 spin_unlock(&current->sighand->siglock);
986 /*
987 * This keeps any tasks waiting on the spin lock from thinking
988 * they got something (see the lock code above).
989 */
990 timer->it_signal = NULL;
991
992 unlock_timer(timer, flags);
993 release_posix_timer(timer, IT_ID_SET);
994 return 0;
995 }
996
997 /*
998 * return timer owned by the process, used by exit_itimers
999 */
1000 static void itimer_delete(struct k_itimer *timer)
1001 {
1002 unsigned long flags;
1003
1004 retry_delete:
1005 spin_lock_irqsave(&timer->it_lock, flags);
1006
1007 if (timer_delete_hook(timer) == TIMER_RETRY) {
1008 unlock_timer(timer, flags);
1009 goto retry_delete;
1010 }
1011 list_del(&timer->list);
1012 /*
1013 * This keeps any tasks waiting on the spin lock from thinking
1014 * they got something (see the lock code above).
1015 */
1016 timer->it_signal = NULL;
1017
1018 unlock_timer(timer, flags);
1019 release_posix_timer(timer, IT_ID_SET);
1020 }
1021
1022 /*
1023 * This is called by do_exit or de_thread, only when there are no more
1024 * references to the shared signal_struct.
1025 */
1026 void exit_itimers(struct signal_struct *sig)
1027 {
1028 struct k_itimer *tmr;
1029
1030 while (!list_empty(&sig->posix_timers)) {
1031 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1032 itimer_delete(tmr);
1033 }
1034 }
1035
1036 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1037 const struct timespec __user *, tp)
1038 {
1039 const struct k_clock *kc = clockid_to_kclock(which_clock);
1040 struct timespec64 new_tp;
1041
1042 if (!kc || !kc->clock_set)
1043 return -EINVAL;
1044
1045 if (get_timespec64(&new_tp, tp))
1046 return -EFAULT;
1047
1048 return kc->clock_set(which_clock, &new_tp);
1049 }
1050
1051 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1052 struct timespec __user *,tp)
1053 {
1054 const struct k_clock *kc = clockid_to_kclock(which_clock);
1055 struct timespec64 kernel_tp;
1056 int error;
1057
1058 if (!kc)
1059 return -EINVAL;
1060
1061 error = kc->clock_get(which_clock, &kernel_tp);
1062
1063 if (!error && put_timespec64(&kernel_tp, tp))
1064 error = -EFAULT;
1065
1066 return error;
1067 }
1068
1069 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1070 struct timex __user *, utx)
1071 {
1072 const struct k_clock *kc = clockid_to_kclock(which_clock);
1073 struct timex ktx;
1074 int err;
1075
1076 if (!kc)
1077 return -EINVAL;
1078 if (!kc->clock_adj)
1079 return -EOPNOTSUPP;
1080
1081 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1082 return -EFAULT;
1083
1084 err = kc->clock_adj(which_clock, &ktx);
1085
1086 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1087 return -EFAULT;
1088
1089 return err;
1090 }
1091
1092 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1093 struct timespec __user *, tp)
1094 {
1095 const struct k_clock *kc = clockid_to_kclock(which_clock);
1096 struct timespec64 rtn_tp;
1097 int error;
1098
1099 if (!kc)
1100 return -EINVAL;
1101
1102 error = kc->clock_getres(which_clock, &rtn_tp);
1103
1104 if (!error && tp && put_timespec64(&rtn_tp, tp))
1105 error = -EFAULT;
1106
1107 return error;
1108 }
1109
1110 #ifdef CONFIG_COMPAT
1111
1112 COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1113 struct compat_timespec __user *, tp)
1114 {
1115 const struct k_clock *kc = clockid_to_kclock(which_clock);
1116 struct timespec64 ts;
1117
1118 if (!kc || !kc->clock_set)
1119 return -EINVAL;
1120
1121 if (compat_get_timespec64(&ts, tp))
1122 return -EFAULT;
1123
1124 return kc->clock_set(which_clock, &ts);
1125 }
1126
1127 COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1128 struct compat_timespec __user *, tp)
1129 {
1130 const struct k_clock *kc = clockid_to_kclock(which_clock);
1131 struct timespec64 ts;
1132 int err;
1133
1134 if (!kc)
1135 return -EINVAL;
1136
1137 err = kc->clock_get(which_clock, &ts);
1138
1139 if (!err && compat_put_timespec64(&ts, tp))
1140 err = -EFAULT;
1141
1142 return err;
1143 }
1144
1145 COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1146 struct compat_timex __user *, utp)
1147 {
1148 const struct k_clock *kc = clockid_to_kclock(which_clock);
1149 struct timex ktx;
1150 int err;
1151
1152 if (!kc)
1153 return -EINVAL;
1154 if (!kc->clock_adj)
1155 return -EOPNOTSUPP;
1156
1157 err = compat_get_timex(&ktx, utp);
1158 if (err)
1159 return err;
1160
1161 err = kc->clock_adj(which_clock, &ktx);
1162
1163 if (err >= 0)
1164 err = compat_put_timex(utp, &ktx);
1165
1166 return err;
1167 }
1168
1169 COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1170 struct compat_timespec __user *, tp)
1171 {
1172 const struct k_clock *kc = clockid_to_kclock(which_clock);
1173 struct timespec64 ts;
1174 int err;
1175
1176 if (!kc)
1177 return -EINVAL;
1178
1179 err = kc->clock_getres(which_clock, &ts);
1180 if (!err && tp && compat_put_timespec64(&ts, tp))
1181 return -EFAULT;
1182
1183 return err;
1184 }
1185
1186 #endif
1187
1188 /*
1189 * nanosleep for monotonic and realtime clocks
1190 */
1191 static int common_nsleep(const clockid_t which_clock, int flags,
1192 const struct timespec64 *rqtp)
1193 {
1194 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1195 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1196 which_clock);
1197 }
1198
1199 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1200 const struct timespec __user *, rqtp,
1201 struct timespec __user *, rmtp)
1202 {
1203 const struct k_clock *kc = clockid_to_kclock(which_clock);
1204 struct timespec64 t;
1205
1206 if (!kc)
1207 return -EINVAL;
1208 if (!kc->nsleep)
1209 return -ENANOSLEEP_NOTSUP;
1210
1211 if (get_timespec64(&t, rqtp))
1212 return -EFAULT;
1213
1214 if (!timespec64_valid(&t))
1215 return -EINVAL;
1216 if (flags & TIMER_ABSTIME)
1217 rmtp = NULL;
1218 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1219 current->restart_block.nanosleep.rmtp = rmtp;
1220
1221 return kc->nsleep(which_clock, flags, &t);
1222 }
1223
1224 #ifdef CONFIG_COMPAT
1225 COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1226 struct compat_timespec __user *, rqtp,
1227 struct compat_timespec __user *, rmtp)
1228 {
1229 const struct k_clock *kc = clockid_to_kclock(which_clock);
1230 struct timespec64 t;
1231
1232 if (!kc)
1233 return -EINVAL;
1234 if (!kc->nsleep)
1235 return -ENANOSLEEP_NOTSUP;
1236
1237 if (compat_get_timespec64(&t, rqtp))
1238 return -EFAULT;
1239
1240 if (!timespec64_valid(&t))
1241 return -EINVAL;
1242 if (flags & TIMER_ABSTIME)
1243 rmtp = NULL;
1244 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1245 current->restart_block.nanosleep.compat_rmtp = rmtp;
1246
1247 return kc->nsleep(which_clock, flags, &t);
1248 }
1249 #endif
1250
1251 static const struct k_clock clock_realtime = {
1252 .clock_getres = posix_get_hrtimer_res,
1253 .clock_get = posix_clock_realtime_get,
1254 .clock_set = posix_clock_realtime_set,
1255 .clock_adj = posix_clock_realtime_adj,
1256 .nsleep = common_nsleep,
1257 .timer_create = common_timer_create,
1258 .timer_set = common_timer_set,
1259 .timer_get = common_timer_get,
1260 .timer_del = common_timer_del,
1261 .timer_rearm = common_hrtimer_rearm,
1262 .timer_forward = common_hrtimer_forward,
1263 .timer_remaining = common_hrtimer_remaining,
1264 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1265 .timer_arm = common_hrtimer_arm,
1266 };
1267
1268 static const struct k_clock clock_monotonic = {
1269 .clock_getres = posix_get_hrtimer_res,
1270 .clock_get = posix_ktime_get_ts,
1271 .nsleep = common_nsleep,
1272 .timer_create = common_timer_create,
1273 .timer_set = common_timer_set,
1274 .timer_get = common_timer_get,
1275 .timer_del = common_timer_del,
1276 .timer_rearm = common_hrtimer_rearm,
1277 .timer_forward = common_hrtimer_forward,
1278 .timer_remaining = common_hrtimer_remaining,
1279 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1280 .timer_arm = common_hrtimer_arm,
1281 };
1282
1283 static const struct k_clock clock_monotonic_raw = {
1284 .clock_getres = posix_get_hrtimer_res,
1285 .clock_get = posix_get_monotonic_raw,
1286 };
1287
1288 static const struct k_clock clock_realtime_coarse = {
1289 .clock_getres = posix_get_coarse_res,
1290 .clock_get = posix_get_realtime_coarse,
1291 };
1292
1293 static const struct k_clock clock_monotonic_coarse = {
1294 .clock_getres = posix_get_coarse_res,
1295 .clock_get = posix_get_monotonic_coarse,
1296 };
1297
1298 static const struct k_clock clock_tai = {
1299 .clock_getres = posix_get_hrtimer_res,
1300 .clock_get = posix_get_tai,
1301 .nsleep = common_nsleep,
1302 .timer_create = common_timer_create,
1303 .timer_set = common_timer_set,
1304 .timer_get = common_timer_get,
1305 .timer_del = common_timer_del,
1306 .timer_rearm = common_hrtimer_rearm,
1307 .timer_forward = common_hrtimer_forward,
1308 .timer_remaining = common_hrtimer_remaining,
1309 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1310 .timer_arm = common_hrtimer_arm,
1311 };
1312
1313 static const struct k_clock clock_boottime = {
1314 .clock_getres = posix_get_hrtimer_res,
1315 .clock_get = posix_get_boottime,
1316 .nsleep = common_nsleep,
1317 .timer_create = common_timer_create,
1318 .timer_set = common_timer_set,
1319 .timer_get = common_timer_get,
1320 .timer_del = common_timer_del,
1321 .timer_rearm = common_hrtimer_rearm,
1322 .timer_forward = common_hrtimer_forward,
1323 .timer_remaining = common_hrtimer_remaining,
1324 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1325 .timer_arm = common_hrtimer_arm,
1326 };
1327
1328 static const struct k_clock * const posix_clocks[] = {
1329 [CLOCK_REALTIME] = &clock_realtime,
1330 [CLOCK_MONOTONIC] = &clock_monotonic,
1331 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1332 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1333 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1334 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1335 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
1336 [CLOCK_BOOTTIME] = &clock_boottime,
1337 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1338 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1339 [CLOCK_TAI] = &clock_tai,
1340 };
1341
1342 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1343 {
1344 if (id < 0)
1345 return (id & CLOCKFD_MASK) == CLOCKFD ?
1346 &clock_posix_dynamic : &clock_posix_cpu;
1347
1348 if (id >= ARRAY_SIZE(posix_clocks) || !posix_clocks[id])
1349 return NULL;
1350 return posix_clocks[id];
1351 }