]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/time/posix-timers.c
x86/speculation/mds: Conditionally clear CPU buffers on idle entry
[mirror_ubuntu-bionic-kernel.git] / kernel / time / posix-timers.c
1 /*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 #include <linux/sched/task.h>
39
40 #include <linux/uaccess.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/hash.h>
45 #include <linux/posix-clock.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/export.h>
51 #include <linux/hashtable.h>
52 #include <linux/compat.h>
53 #include <linux/nospec.h>
54
55 #include "timekeeping.h"
56 #include "posix-timers.h"
57
58 /*
59 * Management arrays for POSIX timers. Timers are now kept in static hash table
60 * with 512 entries.
61 * Timer ids are allocated by local routine, which selects proper hash head by
62 * key, constructed from current->signal address and per signal struct counter.
63 * This keeps timer ids unique per process, but now they can intersect between
64 * processes.
65 */
66
67 /*
68 * Lets keep our timers in a slab cache :-)
69 */
70 static struct kmem_cache *posix_timers_cache;
71
72 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
73 static DEFINE_SPINLOCK(hash_lock);
74
75 static const struct k_clock * const posix_clocks[];
76 static const struct k_clock *clockid_to_kclock(const clockid_t id);
77 static const struct k_clock clock_realtime, clock_monotonic;
78
79 /*
80 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
81 * SIGEV values. Here we put out an error if this assumption fails.
82 */
83 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
84 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
85 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
86 #endif
87
88 /*
89 * parisc wants ENOTSUP instead of EOPNOTSUPP
90 */
91 #ifndef ENOTSUP
92 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
93 #else
94 # define ENANOSLEEP_NOTSUP ENOTSUP
95 #endif
96
97 /*
98 * The timer ID is turned into a timer address by idr_find().
99 * Verifying a valid ID consists of:
100 *
101 * a) checking that idr_find() returns other than -1.
102 * b) checking that the timer id matches the one in the timer itself.
103 * c) that the timer owner is in the callers thread group.
104 */
105
106 /*
107 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
108 * to implement others. This structure defines the various
109 * clocks.
110 *
111 * RESOLUTION: Clock resolution is used to round up timer and interval
112 * times, NOT to report clock times, which are reported with as
113 * much resolution as the system can muster. In some cases this
114 * resolution may depend on the underlying clock hardware and
115 * may not be quantifiable until run time, and only then is the
116 * necessary code is written. The standard says we should say
117 * something about this issue in the documentation...
118 *
119 * FUNCTIONS: The CLOCKs structure defines possible functions to
120 * handle various clock functions.
121 *
122 * The standard POSIX timer management code assumes the
123 * following: 1.) The k_itimer struct (sched.h) is used for
124 * the timer. 2.) The list, it_lock, it_clock, it_id and
125 * it_pid fields are not modified by timer code.
126 *
127 * Permissions: It is assumed that the clock_settime() function defined
128 * for each clock will take care of permission checks. Some
129 * clocks may be set able by any user (i.e. local process
130 * clocks) others not. Currently the only set able clock we
131 * have is CLOCK_REALTIME and its high res counter part, both of
132 * which we beg off on and pass to do_sys_settimeofday().
133 */
134 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
135
136 #define lock_timer(tid, flags) \
137 ({ struct k_itimer *__timr; \
138 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
139 __timr; \
140 })
141
142 static int hash(struct signal_struct *sig, unsigned int nr)
143 {
144 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
145 }
146
147 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
148 struct signal_struct *sig,
149 timer_t id)
150 {
151 struct k_itimer *timer;
152
153 hlist_for_each_entry_rcu(timer, head, t_hash) {
154 if ((timer->it_signal == sig) && (timer->it_id == id))
155 return timer;
156 }
157 return NULL;
158 }
159
160 static struct k_itimer *posix_timer_by_id(timer_t id)
161 {
162 struct signal_struct *sig = current->signal;
163 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
164
165 return __posix_timers_find(head, sig, id);
166 }
167
168 static int posix_timer_add(struct k_itimer *timer)
169 {
170 struct signal_struct *sig = current->signal;
171 int first_free_id = sig->posix_timer_id;
172 struct hlist_head *head;
173 int ret = -ENOENT;
174
175 do {
176 spin_lock(&hash_lock);
177 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
178 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
179 hlist_add_head_rcu(&timer->t_hash, head);
180 ret = sig->posix_timer_id;
181 }
182 if (++sig->posix_timer_id < 0)
183 sig->posix_timer_id = 0;
184 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
185 /* Loop over all possible ids completed */
186 ret = -EAGAIN;
187 spin_unlock(&hash_lock);
188 } while (ret == -ENOENT);
189 return ret;
190 }
191
192 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
193 {
194 spin_unlock_irqrestore(&timr->it_lock, flags);
195 }
196
197 /* Get clock_realtime */
198 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
199 {
200 ktime_get_real_ts64(tp);
201 return 0;
202 }
203
204 /* Set clock_realtime */
205 static int posix_clock_realtime_set(const clockid_t which_clock,
206 const struct timespec64 *tp)
207 {
208 return do_sys_settimeofday64(tp, NULL);
209 }
210
211 static int posix_clock_realtime_adj(const clockid_t which_clock,
212 struct timex *t)
213 {
214 return do_adjtimex(t);
215 }
216
217 /*
218 * Get monotonic time for posix timers
219 */
220 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
221 {
222 ktime_get_ts64(tp);
223 return 0;
224 }
225
226 /*
227 * Get monotonic-raw time for posix timers
228 */
229 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
230 {
231 getrawmonotonic64(tp);
232 return 0;
233 }
234
235
236 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
237 {
238 *tp = current_kernel_time64();
239 return 0;
240 }
241
242 static int posix_get_monotonic_coarse(clockid_t which_clock,
243 struct timespec64 *tp)
244 {
245 *tp = get_monotonic_coarse64();
246 return 0;
247 }
248
249 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
250 {
251 *tp = ktime_to_timespec64(KTIME_LOW_RES);
252 return 0;
253 }
254
255 static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
256 {
257 get_monotonic_boottime64(tp);
258 return 0;
259 }
260
261 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
262 {
263 timekeeping_clocktai64(tp);
264 return 0;
265 }
266
267 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
268 {
269 tp->tv_sec = 0;
270 tp->tv_nsec = hrtimer_resolution;
271 return 0;
272 }
273
274 /*
275 * Initialize everything, well, just everything in Posix clocks/timers ;)
276 */
277 static __init int init_posix_timers(void)
278 {
279 posix_timers_cache = kmem_cache_create("posix_timers_cache",
280 sizeof (struct k_itimer), 0, SLAB_PANIC,
281 NULL);
282 return 0;
283 }
284 __initcall(init_posix_timers);
285
286 /*
287 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
288 * are of type int. Clamp the overrun value to INT_MAX
289 */
290 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
291 {
292 s64 sum = timr->it_overrun_last + (s64)baseval;
293
294 return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
295 }
296
297 static void common_hrtimer_rearm(struct k_itimer *timr)
298 {
299 struct hrtimer *timer = &timr->it.real.timer;
300
301 if (!timr->it_interval)
302 return;
303
304 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
305 timr->it_interval);
306 hrtimer_restart(timer);
307 }
308
309 /*
310 * This function is exported for use by the signal deliver code. It is
311 * called just prior to the info block being released and passes that
312 * block to us. It's function is to update the overrun entry AND to
313 * restart the timer. It should only be called if the timer is to be
314 * restarted (i.e. we have flagged this in the sys_private entry of the
315 * info block).
316 *
317 * To protect against the timer going away while the interrupt is queued,
318 * we require that the it_requeue_pending flag be set.
319 */
320 void posixtimer_rearm(struct siginfo *info)
321 {
322 struct k_itimer *timr;
323 unsigned long flags;
324
325 timr = lock_timer(info->si_tid, &flags);
326 if (!timr)
327 return;
328
329 if (timr->it_requeue_pending == info->si_sys_private) {
330 timr->kclock->timer_rearm(timr);
331
332 timr->it_active = 1;
333 timr->it_overrun_last = timr->it_overrun;
334 timr->it_overrun = -1LL;
335 ++timr->it_requeue_pending;
336
337 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
338 }
339
340 unlock_timer(timr, flags);
341 }
342
343 int posix_timer_event(struct k_itimer *timr, int si_private)
344 {
345 struct task_struct *task;
346 int shared, ret = -1;
347 /*
348 * FIXME: if ->sigq is queued we can race with
349 * dequeue_signal()->posixtimer_rearm().
350 *
351 * If dequeue_signal() sees the "right" value of
352 * si_sys_private it calls posixtimer_rearm().
353 * We re-queue ->sigq and drop ->it_lock().
354 * posixtimer_rearm() locks the timer
355 * and re-schedules it while ->sigq is pending.
356 * Not really bad, but not that we want.
357 */
358 timr->sigq->info.si_sys_private = si_private;
359
360 rcu_read_lock();
361 task = pid_task(timr->it_pid, PIDTYPE_PID);
362 if (task) {
363 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
364 ret = send_sigqueue(timr->sigq, task, shared);
365 }
366 rcu_read_unlock();
367 /* If we failed to send the signal the timer stops. */
368 return ret > 0;
369 }
370
371 /*
372 * This function gets called when a POSIX.1b interval timer expires. It
373 * is used as a callback from the kernel internal timer. The
374 * run_timer_list code ALWAYS calls with interrupts on.
375
376 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
377 */
378 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
379 {
380 struct k_itimer *timr;
381 unsigned long flags;
382 int si_private = 0;
383 enum hrtimer_restart ret = HRTIMER_NORESTART;
384
385 timr = container_of(timer, struct k_itimer, it.real.timer);
386 spin_lock_irqsave(&timr->it_lock, flags);
387
388 timr->it_active = 0;
389 if (timr->it_interval != 0)
390 si_private = ++timr->it_requeue_pending;
391
392 if (posix_timer_event(timr, si_private)) {
393 /*
394 * signal was not sent because of sig_ignor
395 * we will not get a call back to restart it AND
396 * it should be restarted.
397 */
398 if (timr->it_interval != 0) {
399 ktime_t now = hrtimer_cb_get_time(timer);
400
401 /*
402 * FIXME: What we really want, is to stop this
403 * timer completely and restart it in case the
404 * SIG_IGN is removed. This is a non trivial
405 * change which involves sighand locking
406 * (sigh !), which we don't want to do late in
407 * the release cycle.
408 *
409 * For now we just let timers with an interval
410 * less than a jiffie expire every jiffie to
411 * avoid softirq starvation in case of SIG_IGN
412 * and a very small interval, which would put
413 * the timer right back on the softirq pending
414 * list. By moving now ahead of time we trick
415 * hrtimer_forward() to expire the timer
416 * later, while we still maintain the overrun
417 * accuracy, but have some inconsistency in
418 * the timer_gettime() case. This is at least
419 * better than a starved softirq. A more
420 * complex fix which solves also another related
421 * inconsistency is already in the pipeline.
422 */
423 #ifdef CONFIG_HIGH_RES_TIMERS
424 {
425 ktime_t kj = NSEC_PER_SEC / HZ;
426
427 if (timr->it_interval < kj)
428 now = ktime_add(now, kj);
429 }
430 #endif
431 timr->it_overrun += hrtimer_forward(timer, now,
432 timr->it_interval);
433 ret = HRTIMER_RESTART;
434 ++timr->it_requeue_pending;
435 timr->it_active = 1;
436 }
437 }
438
439 unlock_timer(timr, flags);
440 return ret;
441 }
442
443 static struct pid *good_sigevent(sigevent_t * event)
444 {
445 struct task_struct *rtn = current->group_leader;
446
447 switch (event->sigev_notify) {
448 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
449 rtn = find_task_by_vpid(event->sigev_notify_thread_id);
450 if (!rtn || !same_thread_group(rtn, current))
451 return NULL;
452 /* FALLTHRU */
453 case SIGEV_SIGNAL:
454 case SIGEV_THREAD:
455 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
456 return NULL;
457 /* FALLTHRU */
458 case SIGEV_NONE:
459 return task_pid(rtn);
460 default:
461 return NULL;
462 }
463 }
464
465 static struct k_itimer * alloc_posix_timer(void)
466 {
467 struct k_itimer *tmr;
468 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
469 if (!tmr)
470 return tmr;
471 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
472 kmem_cache_free(posix_timers_cache, tmr);
473 return NULL;
474 }
475 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
476 return tmr;
477 }
478
479 static void k_itimer_rcu_free(struct rcu_head *head)
480 {
481 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
482
483 kmem_cache_free(posix_timers_cache, tmr);
484 }
485
486 #define IT_ID_SET 1
487 #define IT_ID_NOT_SET 0
488 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
489 {
490 if (it_id_set) {
491 unsigned long flags;
492 spin_lock_irqsave(&hash_lock, flags);
493 hlist_del_rcu(&tmr->t_hash);
494 spin_unlock_irqrestore(&hash_lock, flags);
495 }
496 put_pid(tmr->it_pid);
497 sigqueue_free(tmr->sigq);
498 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
499 }
500
501 static int common_timer_create(struct k_itimer *new_timer)
502 {
503 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
504 return 0;
505 }
506
507 /* Create a POSIX.1b interval timer. */
508 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
509 timer_t __user *created_timer_id)
510 {
511 const struct k_clock *kc = clockid_to_kclock(which_clock);
512 struct k_itimer *new_timer;
513 int error, new_timer_id;
514 int it_id_set = IT_ID_NOT_SET;
515
516 if (!kc)
517 return -EINVAL;
518 if (!kc->timer_create)
519 return -EOPNOTSUPP;
520
521 new_timer = alloc_posix_timer();
522 if (unlikely(!new_timer))
523 return -EAGAIN;
524
525 spin_lock_init(&new_timer->it_lock);
526 new_timer_id = posix_timer_add(new_timer);
527 if (new_timer_id < 0) {
528 error = new_timer_id;
529 goto out;
530 }
531
532 it_id_set = IT_ID_SET;
533 new_timer->it_id = (timer_t) new_timer_id;
534 new_timer->it_clock = which_clock;
535 new_timer->kclock = kc;
536 new_timer->it_overrun = -1LL;
537
538 if (event) {
539 rcu_read_lock();
540 new_timer->it_pid = get_pid(good_sigevent(event));
541 rcu_read_unlock();
542 if (!new_timer->it_pid) {
543 error = -EINVAL;
544 goto out;
545 }
546 new_timer->it_sigev_notify = event->sigev_notify;
547 new_timer->sigq->info.si_signo = event->sigev_signo;
548 new_timer->sigq->info.si_value = event->sigev_value;
549 } else {
550 new_timer->it_sigev_notify = SIGEV_SIGNAL;
551 new_timer->sigq->info.si_signo = SIGALRM;
552 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
553 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
554 new_timer->it_pid = get_pid(task_tgid(current));
555 }
556
557 new_timer->sigq->info.si_tid = new_timer->it_id;
558 new_timer->sigq->info.si_code = SI_TIMER;
559
560 if (copy_to_user(created_timer_id,
561 &new_timer_id, sizeof (new_timer_id))) {
562 error = -EFAULT;
563 goto out;
564 }
565
566 error = kc->timer_create(new_timer);
567 if (error)
568 goto out;
569
570 spin_lock_irq(&current->sighand->siglock);
571 new_timer->it_signal = current->signal;
572 list_add(&new_timer->list, &current->signal->posix_timers);
573 spin_unlock_irq(&current->sighand->siglock);
574
575 return 0;
576 /*
577 * In the case of the timer belonging to another task, after
578 * the task is unlocked, the timer is owned by the other task
579 * and may cease to exist at any time. Don't use or modify
580 * new_timer after the unlock call.
581 */
582 out:
583 release_posix_timer(new_timer, it_id_set);
584 return error;
585 }
586
587 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
588 struct sigevent __user *, timer_event_spec,
589 timer_t __user *, created_timer_id)
590 {
591 if (timer_event_spec) {
592 sigevent_t event;
593
594 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
595 return -EFAULT;
596 return do_timer_create(which_clock, &event, created_timer_id);
597 }
598 return do_timer_create(which_clock, NULL, created_timer_id);
599 }
600
601 #ifdef CONFIG_COMPAT
602 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
603 struct compat_sigevent __user *, timer_event_spec,
604 timer_t __user *, created_timer_id)
605 {
606 if (timer_event_spec) {
607 sigevent_t event;
608
609 if (get_compat_sigevent(&event, timer_event_spec))
610 return -EFAULT;
611 return do_timer_create(which_clock, &event, created_timer_id);
612 }
613 return do_timer_create(which_clock, NULL, created_timer_id);
614 }
615 #endif
616
617 /*
618 * Locking issues: We need to protect the result of the id look up until
619 * we get the timer locked down so it is not deleted under us. The
620 * removal is done under the idr spinlock so we use that here to bridge
621 * the find to the timer lock. To avoid a dead lock, the timer id MUST
622 * be release with out holding the timer lock.
623 */
624 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
625 {
626 struct k_itimer *timr;
627
628 /*
629 * timer_t could be any type >= int and we want to make sure any
630 * @timer_id outside positive int range fails lookup.
631 */
632 if ((unsigned long long)timer_id > INT_MAX)
633 return NULL;
634
635 rcu_read_lock();
636 timr = posix_timer_by_id(timer_id);
637 if (timr) {
638 spin_lock_irqsave(&timr->it_lock, *flags);
639 if (timr->it_signal == current->signal) {
640 rcu_read_unlock();
641 return timr;
642 }
643 spin_unlock_irqrestore(&timr->it_lock, *flags);
644 }
645 rcu_read_unlock();
646
647 return NULL;
648 }
649
650 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
651 {
652 struct hrtimer *timer = &timr->it.real.timer;
653
654 return __hrtimer_expires_remaining_adjusted(timer, now);
655 }
656
657 static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
658 {
659 struct hrtimer *timer = &timr->it.real.timer;
660
661 return (int)hrtimer_forward(timer, now, timr->it_interval);
662 }
663
664 /*
665 * Get the time remaining on a POSIX.1b interval timer. This function
666 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
667 * mess with irq.
668 *
669 * We have a couple of messes to clean up here. First there is the case
670 * of a timer that has a requeue pending. These timers should appear to
671 * be in the timer list with an expiry as if we were to requeue them
672 * now.
673 *
674 * The second issue is the SIGEV_NONE timer which may be active but is
675 * not really ever put in the timer list (to save system resources).
676 * This timer may be expired, and if so, we will do it here. Otherwise
677 * it is the same as a requeue pending timer WRT to what we should
678 * report.
679 */
680 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
681 {
682 const struct k_clock *kc = timr->kclock;
683 ktime_t now, remaining, iv;
684 struct timespec64 ts64;
685 bool sig_none;
686
687 sig_none = timr->it_sigev_notify == SIGEV_NONE;
688 iv = timr->it_interval;
689
690 /* interval timer ? */
691 if (iv) {
692 cur_setting->it_interval = ktime_to_timespec64(iv);
693 } else if (!timr->it_active) {
694 /*
695 * SIGEV_NONE oneshot timers are never queued. Check them
696 * below.
697 */
698 if (!sig_none)
699 return;
700 }
701
702 /*
703 * The timespec64 based conversion is suboptimal, but it's not
704 * worth to implement yet another callback.
705 */
706 kc->clock_get(timr->it_clock, &ts64);
707 now = timespec64_to_ktime(ts64);
708
709 /*
710 * When a requeue is pending or this is a SIGEV_NONE timer move the
711 * expiry time forward by intervals, so expiry is > now.
712 */
713 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
714 timr->it_overrun += kc->timer_forward(timr, now);
715
716 remaining = kc->timer_remaining(timr, now);
717 /* Return 0 only, when the timer is expired and not pending */
718 if (remaining <= 0) {
719 /*
720 * A single shot SIGEV_NONE timer must return 0, when
721 * it is expired !
722 */
723 if (!sig_none)
724 cur_setting->it_value.tv_nsec = 1;
725 } else {
726 cur_setting->it_value = ktime_to_timespec64(remaining);
727 }
728 }
729
730 /* Get the time remaining on a POSIX.1b interval timer. */
731 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
732 {
733 struct k_itimer *timr;
734 const struct k_clock *kc;
735 unsigned long flags;
736 int ret = 0;
737
738 timr = lock_timer(timer_id, &flags);
739 if (!timr)
740 return -EINVAL;
741
742 memset(setting, 0, sizeof(*setting));
743 kc = timr->kclock;
744 if (WARN_ON_ONCE(!kc || !kc->timer_get))
745 ret = -EINVAL;
746 else
747 kc->timer_get(timr, setting);
748
749 unlock_timer(timr, flags);
750 return ret;
751 }
752
753 /* Get the time remaining on a POSIX.1b interval timer. */
754 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
755 struct itimerspec __user *, setting)
756 {
757 struct itimerspec64 cur_setting;
758
759 int ret = do_timer_gettime(timer_id, &cur_setting);
760 if (!ret) {
761 if (put_itimerspec64(&cur_setting, setting))
762 ret = -EFAULT;
763 }
764 return ret;
765 }
766
767 #ifdef CONFIG_COMPAT
768 COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
769 struct compat_itimerspec __user *, setting)
770 {
771 struct itimerspec64 cur_setting;
772
773 int ret = do_timer_gettime(timer_id, &cur_setting);
774 if (!ret) {
775 if (put_compat_itimerspec64(&cur_setting, setting))
776 ret = -EFAULT;
777 }
778 return ret;
779 }
780 #endif
781
782 /*
783 * Get the number of overruns of a POSIX.1b interval timer. This is to
784 * be the overrun of the timer last delivered. At the same time we are
785 * accumulating overruns on the next timer. The overrun is frozen when
786 * the signal is delivered, either at the notify time (if the info block
787 * is not queued) or at the actual delivery time (as we are informed by
788 * the call back to posixtimer_rearm(). So all we need to do is
789 * to pick up the frozen overrun.
790 */
791 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
792 {
793 struct k_itimer *timr;
794 int overrun;
795 unsigned long flags;
796
797 timr = lock_timer(timer_id, &flags);
798 if (!timr)
799 return -EINVAL;
800
801 overrun = timer_overrun_to_int(timr, 0);
802 unlock_timer(timr, flags);
803
804 return overrun;
805 }
806
807 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
808 bool absolute, bool sigev_none)
809 {
810 struct hrtimer *timer = &timr->it.real.timer;
811 enum hrtimer_mode mode;
812
813 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
814 /*
815 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
816 * clock modifications, so they become CLOCK_MONOTONIC based under the
817 * hood. See hrtimer_init(). Update timr->kclock, so the generic
818 * functions which use timr->kclock->clock_get() work.
819 *
820 * Note: it_clock stays unmodified, because the next timer_set() might
821 * use ABSTIME, so it needs to switch back.
822 */
823 if (timr->it_clock == CLOCK_REALTIME)
824 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
825
826 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
827 timr->it.real.timer.function = posix_timer_fn;
828
829 if (!absolute)
830 expires = ktime_add_safe(expires, timer->base->get_time());
831 hrtimer_set_expires(timer, expires);
832
833 if (!sigev_none)
834 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
835 }
836
837 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
838 {
839 return hrtimer_try_to_cancel(&timr->it.real.timer);
840 }
841
842 /* Set a POSIX.1b interval timer. */
843 int common_timer_set(struct k_itimer *timr, int flags,
844 struct itimerspec64 *new_setting,
845 struct itimerspec64 *old_setting)
846 {
847 const struct k_clock *kc = timr->kclock;
848 bool sigev_none;
849 ktime_t expires;
850
851 if (old_setting)
852 common_timer_get(timr, old_setting);
853
854 /* Prevent rearming by clearing the interval */
855 timr->it_interval = 0;
856 /*
857 * Careful here. On SMP systems the timer expiry function could be
858 * active and spinning on timr->it_lock.
859 */
860 if (kc->timer_try_to_cancel(timr) < 0)
861 return TIMER_RETRY;
862
863 timr->it_active = 0;
864 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
865 ~REQUEUE_PENDING;
866 timr->it_overrun_last = 0;
867
868 /* Switch off the timer when it_value is zero */
869 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
870 return 0;
871
872 timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
873 expires = timespec64_to_ktime(new_setting->it_value);
874 sigev_none = timr->it_sigev_notify == SIGEV_NONE;
875
876 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
877 timr->it_active = !sigev_none;
878 return 0;
879 }
880
881 static int do_timer_settime(timer_t timer_id, int flags,
882 struct itimerspec64 *new_spec64,
883 struct itimerspec64 *old_spec64)
884 {
885 const struct k_clock *kc;
886 struct k_itimer *timr;
887 unsigned long flag;
888 int error = 0;
889
890 if (!timespec64_valid(&new_spec64->it_interval) ||
891 !timespec64_valid(&new_spec64->it_value))
892 return -EINVAL;
893
894 if (old_spec64)
895 memset(old_spec64, 0, sizeof(*old_spec64));
896 retry:
897 timr = lock_timer(timer_id, &flag);
898 if (!timr)
899 return -EINVAL;
900
901 kc = timr->kclock;
902 if (WARN_ON_ONCE(!kc || !kc->timer_set))
903 error = -EINVAL;
904 else
905 error = kc->timer_set(timr, flags, new_spec64, old_spec64);
906
907 unlock_timer(timr, flag);
908 if (error == TIMER_RETRY) {
909 old_spec64 = NULL; // We already got the old time...
910 goto retry;
911 }
912
913 return error;
914 }
915
916 /* Set a POSIX.1b interval timer */
917 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
918 const struct itimerspec __user *, new_setting,
919 struct itimerspec __user *, old_setting)
920 {
921 struct itimerspec64 new_spec, old_spec;
922 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
923 int error = 0;
924
925 if (!new_setting)
926 return -EINVAL;
927
928 if (get_itimerspec64(&new_spec, new_setting))
929 return -EFAULT;
930
931 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
932 if (!error && old_setting) {
933 if (put_itimerspec64(&old_spec, old_setting))
934 error = -EFAULT;
935 }
936 return error;
937 }
938
939 #ifdef CONFIG_COMPAT
940 COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
941 struct compat_itimerspec __user *, new,
942 struct compat_itimerspec __user *, old)
943 {
944 struct itimerspec64 new_spec, old_spec;
945 struct itimerspec64 *rtn = old ? &old_spec : NULL;
946 int error = 0;
947
948 if (!new)
949 return -EINVAL;
950 if (get_compat_itimerspec64(&new_spec, new))
951 return -EFAULT;
952
953 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
954 if (!error && old) {
955 if (put_compat_itimerspec64(&old_spec, old))
956 error = -EFAULT;
957 }
958 return error;
959 }
960 #endif
961
962 int common_timer_del(struct k_itimer *timer)
963 {
964 const struct k_clock *kc = timer->kclock;
965
966 timer->it_interval = 0;
967 if (kc->timer_try_to_cancel(timer) < 0)
968 return TIMER_RETRY;
969 timer->it_active = 0;
970 return 0;
971 }
972
973 static inline int timer_delete_hook(struct k_itimer *timer)
974 {
975 const struct k_clock *kc = timer->kclock;
976
977 if (WARN_ON_ONCE(!kc || !kc->timer_del))
978 return -EINVAL;
979 return kc->timer_del(timer);
980 }
981
982 /* Delete a POSIX.1b interval timer. */
983 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
984 {
985 struct k_itimer *timer;
986 unsigned long flags;
987
988 retry_delete:
989 timer = lock_timer(timer_id, &flags);
990 if (!timer)
991 return -EINVAL;
992
993 if (timer_delete_hook(timer) == TIMER_RETRY) {
994 unlock_timer(timer, flags);
995 goto retry_delete;
996 }
997
998 spin_lock(&current->sighand->siglock);
999 list_del(&timer->list);
1000 spin_unlock(&current->sighand->siglock);
1001 /*
1002 * This keeps any tasks waiting on the spin lock from thinking
1003 * they got something (see the lock code above).
1004 */
1005 timer->it_signal = NULL;
1006
1007 unlock_timer(timer, flags);
1008 release_posix_timer(timer, IT_ID_SET);
1009 return 0;
1010 }
1011
1012 /*
1013 * return timer owned by the process, used by exit_itimers
1014 */
1015 static void itimer_delete(struct k_itimer *timer)
1016 {
1017 unsigned long flags;
1018
1019 retry_delete:
1020 spin_lock_irqsave(&timer->it_lock, flags);
1021
1022 if (timer_delete_hook(timer) == TIMER_RETRY) {
1023 unlock_timer(timer, flags);
1024 goto retry_delete;
1025 }
1026 list_del(&timer->list);
1027 /*
1028 * This keeps any tasks waiting on the spin lock from thinking
1029 * they got something (see the lock code above).
1030 */
1031 timer->it_signal = NULL;
1032
1033 unlock_timer(timer, flags);
1034 release_posix_timer(timer, IT_ID_SET);
1035 }
1036
1037 /*
1038 * This is called by do_exit or de_thread, only when there are no more
1039 * references to the shared signal_struct.
1040 */
1041 void exit_itimers(struct signal_struct *sig)
1042 {
1043 struct k_itimer *tmr;
1044
1045 while (!list_empty(&sig->posix_timers)) {
1046 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1047 itimer_delete(tmr);
1048 }
1049 }
1050
1051 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1052 const struct timespec __user *, tp)
1053 {
1054 const struct k_clock *kc = clockid_to_kclock(which_clock);
1055 struct timespec64 new_tp;
1056
1057 if (!kc || !kc->clock_set)
1058 return -EINVAL;
1059
1060 if (get_timespec64(&new_tp, tp))
1061 return -EFAULT;
1062
1063 return kc->clock_set(which_clock, &new_tp);
1064 }
1065
1066 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1067 struct timespec __user *,tp)
1068 {
1069 const struct k_clock *kc = clockid_to_kclock(which_clock);
1070 struct timespec64 kernel_tp;
1071 int error;
1072
1073 if (!kc)
1074 return -EINVAL;
1075
1076 error = kc->clock_get(which_clock, &kernel_tp);
1077
1078 if (!error && put_timespec64(&kernel_tp, tp))
1079 error = -EFAULT;
1080
1081 return error;
1082 }
1083
1084 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1085 struct timex __user *, utx)
1086 {
1087 const struct k_clock *kc = clockid_to_kclock(which_clock);
1088 struct timex ktx;
1089 int err;
1090
1091 if (!kc)
1092 return -EINVAL;
1093 if (!kc->clock_adj)
1094 return -EOPNOTSUPP;
1095
1096 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1097 return -EFAULT;
1098
1099 err = kc->clock_adj(which_clock, &ktx);
1100
1101 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1102 return -EFAULT;
1103
1104 return err;
1105 }
1106
1107 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1108 struct timespec __user *, tp)
1109 {
1110 const struct k_clock *kc = clockid_to_kclock(which_clock);
1111 struct timespec64 rtn_tp;
1112 int error;
1113
1114 if (!kc)
1115 return -EINVAL;
1116
1117 error = kc->clock_getres(which_clock, &rtn_tp);
1118
1119 if (!error && tp && put_timespec64(&rtn_tp, tp))
1120 error = -EFAULT;
1121
1122 return error;
1123 }
1124
1125 #ifdef CONFIG_COMPAT
1126
1127 COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1128 struct compat_timespec __user *, tp)
1129 {
1130 const struct k_clock *kc = clockid_to_kclock(which_clock);
1131 struct timespec64 ts;
1132
1133 if (!kc || !kc->clock_set)
1134 return -EINVAL;
1135
1136 if (compat_get_timespec64(&ts, tp))
1137 return -EFAULT;
1138
1139 return kc->clock_set(which_clock, &ts);
1140 }
1141
1142 COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1143 struct compat_timespec __user *, tp)
1144 {
1145 const struct k_clock *kc = clockid_to_kclock(which_clock);
1146 struct timespec64 ts;
1147 int err;
1148
1149 if (!kc)
1150 return -EINVAL;
1151
1152 err = kc->clock_get(which_clock, &ts);
1153
1154 if (!err && compat_put_timespec64(&ts, tp))
1155 err = -EFAULT;
1156
1157 return err;
1158 }
1159
1160 COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1161 struct compat_timex __user *, utp)
1162 {
1163 const struct k_clock *kc = clockid_to_kclock(which_clock);
1164 struct timex ktx;
1165 int err;
1166
1167 if (!kc)
1168 return -EINVAL;
1169 if (!kc->clock_adj)
1170 return -EOPNOTSUPP;
1171
1172 err = compat_get_timex(&ktx, utp);
1173 if (err)
1174 return err;
1175
1176 err = kc->clock_adj(which_clock, &ktx);
1177
1178 if (err >= 0)
1179 err = compat_put_timex(utp, &ktx);
1180
1181 return err;
1182 }
1183
1184 COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1185 struct compat_timespec __user *, tp)
1186 {
1187 const struct k_clock *kc = clockid_to_kclock(which_clock);
1188 struct timespec64 ts;
1189 int err;
1190
1191 if (!kc)
1192 return -EINVAL;
1193
1194 err = kc->clock_getres(which_clock, &ts);
1195 if (!err && tp && compat_put_timespec64(&ts, tp))
1196 return -EFAULT;
1197
1198 return err;
1199 }
1200
1201 #endif
1202
1203 /*
1204 * nanosleep for monotonic and realtime clocks
1205 */
1206 static int common_nsleep(const clockid_t which_clock, int flags,
1207 const struct timespec64 *rqtp)
1208 {
1209 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1210 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1211 which_clock);
1212 }
1213
1214 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1215 const struct timespec __user *, rqtp,
1216 struct timespec __user *, rmtp)
1217 {
1218 const struct k_clock *kc = clockid_to_kclock(which_clock);
1219 struct timespec64 t;
1220
1221 if (!kc)
1222 return -EINVAL;
1223 if (!kc->nsleep)
1224 return -ENANOSLEEP_NOTSUP;
1225
1226 if (get_timespec64(&t, rqtp))
1227 return -EFAULT;
1228
1229 if (!timespec64_valid(&t))
1230 return -EINVAL;
1231 if (flags & TIMER_ABSTIME)
1232 rmtp = NULL;
1233 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1234 current->restart_block.nanosleep.rmtp = rmtp;
1235
1236 return kc->nsleep(which_clock, flags, &t);
1237 }
1238
1239 #ifdef CONFIG_COMPAT
1240 COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1241 struct compat_timespec __user *, rqtp,
1242 struct compat_timespec __user *, rmtp)
1243 {
1244 const struct k_clock *kc = clockid_to_kclock(which_clock);
1245 struct timespec64 t;
1246
1247 if (!kc)
1248 return -EINVAL;
1249 if (!kc->nsleep)
1250 return -ENANOSLEEP_NOTSUP;
1251
1252 if (compat_get_timespec64(&t, rqtp))
1253 return -EFAULT;
1254
1255 if (!timespec64_valid(&t))
1256 return -EINVAL;
1257 if (flags & TIMER_ABSTIME)
1258 rmtp = NULL;
1259 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1260 current->restart_block.nanosleep.compat_rmtp = rmtp;
1261
1262 return kc->nsleep(which_clock, flags, &t);
1263 }
1264 #endif
1265
1266 static const struct k_clock clock_realtime = {
1267 .clock_getres = posix_get_hrtimer_res,
1268 .clock_get = posix_clock_realtime_get,
1269 .clock_set = posix_clock_realtime_set,
1270 .clock_adj = posix_clock_realtime_adj,
1271 .nsleep = common_nsleep,
1272 .timer_create = common_timer_create,
1273 .timer_set = common_timer_set,
1274 .timer_get = common_timer_get,
1275 .timer_del = common_timer_del,
1276 .timer_rearm = common_hrtimer_rearm,
1277 .timer_forward = common_hrtimer_forward,
1278 .timer_remaining = common_hrtimer_remaining,
1279 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1280 .timer_arm = common_hrtimer_arm,
1281 };
1282
1283 static const struct k_clock clock_monotonic = {
1284 .clock_getres = posix_get_hrtimer_res,
1285 .clock_get = posix_ktime_get_ts,
1286 .nsleep = common_nsleep,
1287 .timer_create = common_timer_create,
1288 .timer_set = common_timer_set,
1289 .timer_get = common_timer_get,
1290 .timer_del = common_timer_del,
1291 .timer_rearm = common_hrtimer_rearm,
1292 .timer_forward = common_hrtimer_forward,
1293 .timer_remaining = common_hrtimer_remaining,
1294 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1295 .timer_arm = common_hrtimer_arm,
1296 };
1297
1298 static const struct k_clock clock_monotonic_raw = {
1299 .clock_getres = posix_get_hrtimer_res,
1300 .clock_get = posix_get_monotonic_raw,
1301 };
1302
1303 static const struct k_clock clock_realtime_coarse = {
1304 .clock_getres = posix_get_coarse_res,
1305 .clock_get = posix_get_realtime_coarse,
1306 };
1307
1308 static const struct k_clock clock_monotonic_coarse = {
1309 .clock_getres = posix_get_coarse_res,
1310 .clock_get = posix_get_monotonic_coarse,
1311 };
1312
1313 static const struct k_clock clock_tai = {
1314 .clock_getres = posix_get_hrtimer_res,
1315 .clock_get = posix_get_tai,
1316 .nsleep = common_nsleep,
1317 .timer_create = common_timer_create,
1318 .timer_set = common_timer_set,
1319 .timer_get = common_timer_get,
1320 .timer_del = common_timer_del,
1321 .timer_rearm = common_hrtimer_rearm,
1322 .timer_forward = common_hrtimer_forward,
1323 .timer_remaining = common_hrtimer_remaining,
1324 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1325 .timer_arm = common_hrtimer_arm,
1326 };
1327
1328 static const struct k_clock clock_boottime = {
1329 .clock_getres = posix_get_hrtimer_res,
1330 .clock_get = posix_get_boottime,
1331 .nsleep = common_nsleep,
1332 .timer_create = common_timer_create,
1333 .timer_set = common_timer_set,
1334 .timer_get = common_timer_get,
1335 .timer_del = common_timer_del,
1336 .timer_rearm = common_hrtimer_rearm,
1337 .timer_forward = common_hrtimer_forward,
1338 .timer_remaining = common_hrtimer_remaining,
1339 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1340 .timer_arm = common_hrtimer_arm,
1341 };
1342
1343 static const struct k_clock * const posix_clocks[] = {
1344 [CLOCK_REALTIME] = &clock_realtime,
1345 [CLOCK_MONOTONIC] = &clock_monotonic,
1346 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1347 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1348 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1349 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1350 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
1351 [CLOCK_BOOTTIME] = &clock_boottime,
1352 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1353 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1354 [CLOCK_TAI] = &clock_tai,
1355 };
1356
1357 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1358 {
1359 clockid_t idx = id;
1360
1361 if (id < 0) {
1362 return (id & CLOCKFD_MASK) == CLOCKFD ?
1363 &clock_posix_dynamic : &clock_posix_cpu;
1364 }
1365
1366 if (id >= ARRAY_SIZE(posix_clocks))
1367 return NULL;
1368
1369 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1370 }