]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/posix-timers.c
Merge branch 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / kernel / time / posix-timers.c
1 /*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/hash.h>
44 #include <linux/posix-clock.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/export.h>
50 #include <linux/hashtable.h>
51
52 #include "timekeeping.h"
53
54 /*
55 * Management arrays for POSIX timers. Timers are now kept in static hash table
56 * with 512 entries.
57 * Timer ids are allocated by local routine, which selects proper hash head by
58 * key, constructed from current->signal address and per signal struct counter.
59 * This keeps timer ids unique per process, but now they can intersect between
60 * processes.
61 */
62
63 /*
64 * Lets keep our timers in a slab cache :-)
65 */
66 static struct kmem_cache *posix_timers_cache;
67
68 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
69 static DEFINE_SPINLOCK(hash_lock);
70
71 /*
72 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
73 * SIGEV values. Here we put out an error if this assumption fails.
74 */
75 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
76 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
77 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
78 #endif
79
80 /*
81 * parisc wants ENOTSUP instead of EOPNOTSUPP
82 */
83 #ifndef ENOTSUP
84 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
85 #else
86 # define ENANOSLEEP_NOTSUP ENOTSUP
87 #endif
88
89 /*
90 * The timer ID is turned into a timer address by idr_find().
91 * Verifying a valid ID consists of:
92 *
93 * a) checking that idr_find() returns other than -1.
94 * b) checking that the timer id matches the one in the timer itself.
95 * c) that the timer owner is in the callers thread group.
96 */
97
98 /*
99 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
100 * to implement others. This structure defines the various
101 * clocks.
102 *
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
110 *
111 * FUNCTIONS: The CLOCKs structure defines possible functions to
112 * handle various clock functions.
113 *
114 * The standard POSIX timer management code assumes the
115 * following: 1.) The k_itimer struct (sched.h) is used for
116 * the timer. 2.) The list, it_lock, it_clock, it_id and
117 * it_pid fields are not modified by timer code.
118 *
119 * Permissions: It is assumed that the clock_settime() function defined
120 * for each clock will take care of permission checks. Some
121 * clocks may be set able by any user (i.e. local process
122 * clocks) others not. Currently the only set able clock we
123 * have is CLOCK_REALTIME and its high res counter part, both of
124 * which we beg off on and pass to do_sys_settimeofday().
125 */
126
127 static struct k_clock posix_clocks[MAX_CLOCKS];
128
129 /*
130 * These ones are defined below.
131 */
132 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
133 struct timespec __user *rmtp);
134 static int common_timer_create(struct k_itimer *new_timer);
135 static void common_timer_get(struct k_itimer *, struct itimerspec *);
136 static int common_timer_set(struct k_itimer *, int,
137 struct itimerspec *, struct itimerspec *);
138 static int common_timer_del(struct k_itimer *timer);
139
140 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
141
142 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
143
144 #define lock_timer(tid, flags) \
145 ({ struct k_itimer *__timr; \
146 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
147 __timr; \
148 })
149
150 static int hash(struct signal_struct *sig, unsigned int nr)
151 {
152 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
153 }
154
155 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
156 struct signal_struct *sig,
157 timer_t id)
158 {
159 struct k_itimer *timer;
160
161 hlist_for_each_entry_rcu(timer, head, t_hash) {
162 if ((timer->it_signal == sig) && (timer->it_id == id))
163 return timer;
164 }
165 return NULL;
166 }
167
168 static struct k_itimer *posix_timer_by_id(timer_t id)
169 {
170 struct signal_struct *sig = current->signal;
171 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
172
173 return __posix_timers_find(head, sig, id);
174 }
175
176 static int posix_timer_add(struct k_itimer *timer)
177 {
178 struct signal_struct *sig = current->signal;
179 int first_free_id = sig->posix_timer_id;
180 struct hlist_head *head;
181 int ret = -ENOENT;
182
183 do {
184 spin_lock(&hash_lock);
185 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
186 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
187 hlist_add_head_rcu(&timer->t_hash, head);
188 ret = sig->posix_timer_id;
189 }
190 if (++sig->posix_timer_id < 0)
191 sig->posix_timer_id = 0;
192 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
193 /* Loop over all possible ids completed */
194 ret = -EAGAIN;
195 spin_unlock(&hash_lock);
196 } while (ret == -ENOENT);
197 return ret;
198 }
199
200 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
201 {
202 spin_unlock_irqrestore(&timr->it_lock, flags);
203 }
204
205 /* Get clock_realtime */
206 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
207 {
208 ktime_get_real_ts(tp);
209 return 0;
210 }
211
212 /* Set clock_realtime */
213 static int posix_clock_realtime_set(const clockid_t which_clock,
214 const struct timespec *tp)
215 {
216 return do_sys_settimeofday(tp, NULL);
217 }
218
219 static int posix_clock_realtime_adj(const clockid_t which_clock,
220 struct timex *t)
221 {
222 return do_adjtimex(t);
223 }
224
225 /*
226 * Get monotonic time for posix timers
227 */
228 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
229 {
230 ktime_get_ts(tp);
231 return 0;
232 }
233
234 /*
235 * Get monotonic-raw time for posix timers
236 */
237 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
238 {
239 getrawmonotonic(tp);
240 return 0;
241 }
242
243
244 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
245 {
246 *tp = current_kernel_time();
247 return 0;
248 }
249
250 static int posix_get_monotonic_coarse(clockid_t which_clock,
251 struct timespec *tp)
252 {
253 *tp = get_monotonic_coarse();
254 return 0;
255 }
256
257 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
258 {
259 *tp = ktime_to_timespec(KTIME_LOW_RES);
260 return 0;
261 }
262
263 static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp)
264 {
265 get_monotonic_boottime(tp);
266 return 0;
267 }
268
269 static int posix_get_tai(clockid_t which_clock, struct timespec *tp)
270 {
271 timekeeping_clocktai(tp);
272 return 0;
273 }
274
275 /*
276 * Initialize everything, well, just everything in Posix clocks/timers ;)
277 */
278 static __init int init_posix_timers(void)
279 {
280 struct k_clock clock_realtime = {
281 .clock_getres = hrtimer_get_res,
282 .clock_get = posix_clock_realtime_get,
283 .clock_set = posix_clock_realtime_set,
284 .clock_adj = posix_clock_realtime_adj,
285 .nsleep = common_nsleep,
286 .nsleep_restart = hrtimer_nanosleep_restart,
287 .timer_create = common_timer_create,
288 .timer_set = common_timer_set,
289 .timer_get = common_timer_get,
290 .timer_del = common_timer_del,
291 };
292 struct k_clock clock_monotonic = {
293 .clock_getres = hrtimer_get_res,
294 .clock_get = posix_ktime_get_ts,
295 .nsleep = common_nsleep,
296 .nsleep_restart = hrtimer_nanosleep_restart,
297 .timer_create = common_timer_create,
298 .timer_set = common_timer_set,
299 .timer_get = common_timer_get,
300 .timer_del = common_timer_del,
301 };
302 struct k_clock clock_monotonic_raw = {
303 .clock_getres = hrtimer_get_res,
304 .clock_get = posix_get_monotonic_raw,
305 };
306 struct k_clock clock_realtime_coarse = {
307 .clock_getres = posix_get_coarse_res,
308 .clock_get = posix_get_realtime_coarse,
309 };
310 struct k_clock clock_monotonic_coarse = {
311 .clock_getres = posix_get_coarse_res,
312 .clock_get = posix_get_monotonic_coarse,
313 };
314 struct k_clock clock_tai = {
315 .clock_getres = hrtimer_get_res,
316 .clock_get = posix_get_tai,
317 .nsleep = common_nsleep,
318 .nsleep_restart = hrtimer_nanosleep_restart,
319 .timer_create = common_timer_create,
320 .timer_set = common_timer_set,
321 .timer_get = common_timer_get,
322 .timer_del = common_timer_del,
323 };
324 struct k_clock clock_boottime = {
325 .clock_getres = hrtimer_get_res,
326 .clock_get = posix_get_boottime,
327 .nsleep = common_nsleep,
328 .nsleep_restart = hrtimer_nanosleep_restart,
329 .timer_create = common_timer_create,
330 .timer_set = common_timer_set,
331 .timer_get = common_timer_get,
332 .timer_del = common_timer_del,
333 };
334
335 posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
336 posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
337 posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
338 posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
339 posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
340 posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
341 posix_timers_register_clock(CLOCK_TAI, &clock_tai);
342
343 posix_timers_cache = kmem_cache_create("posix_timers_cache",
344 sizeof (struct k_itimer), 0, SLAB_PANIC,
345 NULL);
346 return 0;
347 }
348
349 __initcall(init_posix_timers);
350
351 static void schedule_next_timer(struct k_itimer *timr)
352 {
353 struct hrtimer *timer = &timr->it.real.timer;
354
355 if (timr->it.real.interval.tv64 == 0)
356 return;
357
358 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
359 timer->base->get_time(),
360 timr->it.real.interval);
361
362 timr->it_overrun_last = timr->it_overrun;
363 timr->it_overrun = -1;
364 ++timr->it_requeue_pending;
365 hrtimer_restart(timer);
366 }
367
368 /*
369 * This function is exported for use by the signal deliver code. It is
370 * called just prior to the info block being released and passes that
371 * block to us. It's function is to update the overrun entry AND to
372 * restart the timer. It should only be called if the timer is to be
373 * restarted (i.e. we have flagged this in the sys_private entry of the
374 * info block).
375 *
376 * To protect against the timer going away while the interrupt is queued,
377 * we require that the it_requeue_pending flag be set.
378 */
379 void do_schedule_next_timer(struct siginfo *info)
380 {
381 struct k_itimer *timr;
382 unsigned long flags;
383
384 timr = lock_timer(info->si_tid, &flags);
385
386 if (timr && timr->it_requeue_pending == info->si_sys_private) {
387 if (timr->it_clock < 0)
388 posix_cpu_timer_schedule(timr);
389 else
390 schedule_next_timer(timr);
391
392 info->si_overrun += timr->it_overrun_last;
393 }
394
395 if (timr)
396 unlock_timer(timr, flags);
397 }
398
399 int posix_timer_event(struct k_itimer *timr, int si_private)
400 {
401 struct task_struct *task;
402 int shared, ret = -1;
403 /*
404 * FIXME: if ->sigq is queued we can race with
405 * dequeue_signal()->do_schedule_next_timer().
406 *
407 * If dequeue_signal() sees the "right" value of
408 * si_sys_private it calls do_schedule_next_timer().
409 * We re-queue ->sigq and drop ->it_lock().
410 * do_schedule_next_timer() locks the timer
411 * and re-schedules it while ->sigq is pending.
412 * Not really bad, but not that we want.
413 */
414 timr->sigq->info.si_sys_private = si_private;
415
416 rcu_read_lock();
417 task = pid_task(timr->it_pid, PIDTYPE_PID);
418 if (task) {
419 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
420 ret = send_sigqueue(timr->sigq, task, shared);
421 }
422 rcu_read_unlock();
423 /* If we failed to send the signal the timer stops. */
424 return ret > 0;
425 }
426 EXPORT_SYMBOL_GPL(posix_timer_event);
427
428 /*
429 * This function gets called when a POSIX.1b interval timer expires. It
430 * is used as a callback from the kernel internal timer. The
431 * run_timer_list code ALWAYS calls with interrupts on.
432
433 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
434 */
435 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
436 {
437 struct k_itimer *timr;
438 unsigned long flags;
439 int si_private = 0;
440 enum hrtimer_restart ret = HRTIMER_NORESTART;
441
442 timr = container_of(timer, struct k_itimer, it.real.timer);
443 spin_lock_irqsave(&timr->it_lock, flags);
444
445 if (timr->it.real.interval.tv64 != 0)
446 si_private = ++timr->it_requeue_pending;
447
448 if (posix_timer_event(timr, si_private)) {
449 /*
450 * signal was not sent because of sig_ignor
451 * we will not get a call back to restart it AND
452 * it should be restarted.
453 */
454 if (timr->it.real.interval.tv64 != 0) {
455 ktime_t now = hrtimer_cb_get_time(timer);
456
457 /*
458 * FIXME: What we really want, is to stop this
459 * timer completely and restart it in case the
460 * SIG_IGN is removed. This is a non trivial
461 * change which involves sighand locking
462 * (sigh !), which we don't want to do late in
463 * the release cycle.
464 *
465 * For now we just let timers with an interval
466 * less than a jiffie expire every jiffie to
467 * avoid softirq starvation in case of SIG_IGN
468 * and a very small interval, which would put
469 * the timer right back on the softirq pending
470 * list. By moving now ahead of time we trick
471 * hrtimer_forward() to expire the timer
472 * later, while we still maintain the overrun
473 * accuracy, but have some inconsistency in
474 * the timer_gettime() case. This is at least
475 * better than a starved softirq. A more
476 * complex fix which solves also another related
477 * inconsistency is already in the pipeline.
478 */
479 #ifdef CONFIG_HIGH_RES_TIMERS
480 {
481 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
482
483 if (timr->it.real.interval.tv64 < kj.tv64)
484 now = ktime_add(now, kj);
485 }
486 #endif
487 timr->it_overrun += (unsigned int)
488 hrtimer_forward(timer, now,
489 timr->it.real.interval);
490 ret = HRTIMER_RESTART;
491 ++timr->it_requeue_pending;
492 }
493 }
494
495 unlock_timer(timr, flags);
496 return ret;
497 }
498
499 static struct pid *good_sigevent(sigevent_t * event)
500 {
501 struct task_struct *rtn = current->group_leader;
502
503 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
504 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
505 !same_thread_group(rtn, current) ||
506 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
507 return NULL;
508
509 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
510 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
511 return NULL;
512
513 return task_pid(rtn);
514 }
515
516 void posix_timers_register_clock(const clockid_t clock_id,
517 struct k_clock *new_clock)
518 {
519 if ((unsigned) clock_id >= MAX_CLOCKS) {
520 printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
521 clock_id);
522 return;
523 }
524
525 if (!new_clock->clock_get) {
526 printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
527 clock_id);
528 return;
529 }
530 if (!new_clock->clock_getres) {
531 printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
532 clock_id);
533 return;
534 }
535
536 posix_clocks[clock_id] = *new_clock;
537 }
538 EXPORT_SYMBOL_GPL(posix_timers_register_clock);
539
540 static struct k_itimer * alloc_posix_timer(void)
541 {
542 struct k_itimer *tmr;
543 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
544 if (!tmr)
545 return tmr;
546 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
547 kmem_cache_free(posix_timers_cache, tmr);
548 return NULL;
549 }
550 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
551 return tmr;
552 }
553
554 static void k_itimer_rcu_free(struct rcu_head *head)
555 {
556 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
557
558 kmem_cache_free(posix_timers_cache, tmr);
559 }
560
561 #define IT_ID_SET 1
562 #define IT_ID_NOT_SET 0
563 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
564 {
565 if (it_id_set) {
566 unsigned long flags;
567 spin_lock_irqsave(&hash_lock, flags);
568 hlist_del_rcu(&tmr->t_hash);
569 spin_unlock_irqrestore(&hash_lock, flags);
570 }
571 put_pid(tmr->it_pid);
572 sigqueue_free(tmr->sigq);
573 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
574 }
575
576 static struct k_clock *clockid_to_kclock(const clockid_t id)
577 {
578 if (id < 0)
579 return (id & CLOCKFD_MASK) == CLOCKFD ?
580 &clock_posix_dynamic : &clock_posix_cpu;
581
582 if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
583 return NULL;
584 return &posix_clocks[id];
585 }
586
587 static int common_timer_create(struct k_itimer *new_timer)
588 {
589 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
590 return 0;
591 }
592
593 /* Create a POSIX.1b interval timer. */
594
595 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
596 struct sigevent __user *, timer_event_spec,
597 timer_t __user *, created_timer_id)
598 {
599 struct k_clock *kc = clockid_to_kclock(which_clock);
600 struct k_itimer *new_timer;
601 int error, new_timer_id;
602 sigevent_t event;
603 int it_id_set = IT_ID_NOT_SET;
604
605 if (!kc)
606 return -EINVAL;
607 if (!kc->timer_create)
608 return -EOPNOTSUPP;
609
610 new_timer = alloc_posix_timer();
611 if (unlikely(!new_timer))
612 return -EAGAIN;
613
614 spin_lock_init(&new_timer->it_lock);
615 new_timer_id = posix_timer_add(new_timer);
616 if (new_timer_id < 0) {
617 error = new_timer_id;
618 goto out;
619 }
620
621 it_id_set = IT_ID_SET;
622 new_timer->it_id = (timer_t) new_timer_id;
623 new_timer->it_clock = which_clock;
624 new_timer->it_overrun = -1;
625
626 if (timer_event_spec) {
627 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
628 error = -EFAULT;
629 goto out;
630 }
631 rcu_read_lock();
632 new_timer->it_pid = get_pid(good_sigevent(&event));
633 rcu_read_unlock();
634 if (!new_timer->it_pid) {
635 error = -EINVAL;
636 goto out;
637 }
638 } else {
639 memset(&event.sigev_value, 0, sizeof(event.sigev_value));
640 event.sigev_notify = SIGEV_SIGNAL;
641 event.sigev_signo = SIGALRM;
642 event.sigev_value.sival_int = new_timer->it_id;
643 new_timer->it_pid = get_pid(task_tgid(current));
644 }
645
646 new_timer->it_sigev_notify = event.sigev_notify;
647 new_timer->sigq->info.si_signo = event.sigev_signo;
648 new_timer->sigq->info.si_value = event.sigev_value;
649 new_timer->sigq->info.si_tid = new_timer->it_id;
650 new_timer->sigq->info.si_code = SI_TIMER;
651
652 if (copy_to_user(created_timer_id,
653 &new_timer_id, sizeof (new_timer_id))) {
654 error = -EFAULT;
655 goto out;
656 }
657
658 error = kc->timer_create(new_timer);
659 if (error)
660 goto out;
661
662 spin_lock_irq(&current->sighand->siglock);
663 new_timer->it_signal = current->signal;
664 list_add(&new_timer->list, &current->signal->posix_timers);
665 spin_unlock_irq(&current->sighand->siglock);
666
667 return 0;
668 /*
669 * In the case of the timer belonging to another task, after
670 * the task is unlocked, the timer is owned by the other task
671 * and may cease to exist at any time. Don't use or modify
672 * new_timer after the unlock call.
673 */
674 out:
675 release_posix_timer(new_timer, it_id_set);
676 return error;
677 }
678
679 /*
680 * Locking issues: We need to protect the result of the id look up until
681 * we get the timer locked down so it is not deleted under us. The
682 * removal is done under the idr spinlock so we use that here to bridge
683 * the find to the timer lock. To avoid a dead lock, the timer id MUST
684 * be release with out holding the timer lock.
685 */
686 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
687 {
688 struct k_itimer *timr;
689
690 /*
691 * timer_t could be any type >= int and we want to make sure any
692 * @timer_id outside positive int range fails lookup.
693 */
694 if ((unsigned long long)timer_id > INT_MAX)
695 return NULL;
696
697 rcu_read_lock();
698 timr = posix_timer_by_id(timer_id);
699 if (timr) {
700 spin_lock_irqsave(&timr->it_lock, *flags);
701 if (timr->it_signal == current->signal) {
702 rcu_read_unlock();
703 return timr;
704 }
705 spin_unlock_irqrestore(&timr->it_lock, *flags);
706 }
707 rcu_read_unlock();
708
709 return NULL;
710 }
711
712 /*
713 * Get the time remaining on a POSIX.1b interval timer. This function
714 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
715 * mess with irq.
716 *
717 * We have a couple of messes to clean up here. First there is the case
718 * of a timer that has a requeue pending. These timers should appear to
719 * be in the timer list with an expiry as if we were to requeue them
720 * now.
721 *
722 * The second issue is the SIGEV_NONE timer which may be active but is
723 * not really ever put in the timer list (to save system resources).
724 * This timer may be expired, and if so, we will do it here. Otherwise
725 * it is the same as a requeue pending timer WRT to what we should
726 * report.
727 */
728 static void
729 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
730 {
731 ktime_t now, remaining, iv;
732 struct hrtimer *timer = &timr->it.real.timer;
733
734 memset(cur_setting, 0, sizeof(struct itimerspec));
735
736 iv = timr->it.real.interval;
737
738 /* interval timer ? */
739 if (iv.tv64)
740 cur_setting->it_interval = ktime_to_timespec(iv);
741 else if (!hrtimer_active(timer) &&
742 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
743 return;
744
745 now = timer->base->get_time();
746
747 /*
748 * When a requeue is pending or this is a SIGEV_NONE
749 * timer move the expiry time forward by intervals, so
750 * expiry is > now.
751 */
752 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
753 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
754 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
755
756 remaining = ktime_sub(hrtimer_get_expires(timer), now);
757 /* Return 0 only, when the timer is expired and not pending */
758 if (remaining.tv64 <= 0) {
759 /*
760 * A single shot SIGEV_NONE timer must return 0, when
761 * it is expired !
762 */
763 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
764 cur_setting->it_value.tv_nsec = 1;
765 } else
766 cur_setting->it_value = ktime_to_timespec(remaining);
767 }
768
769 /* Get the time remaining on a POSIX.1b interval timer. */
770 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
771 struct itimerspec __user *, setting)
772 {
773 struct itimerspec cur_setting;
774 struct k_itimer *timr;
775 struct k_clock *kc;
776 unsigned long flags;
777 int ret = 0;
778
779 timr = lock_timer(timer_id, &flags);
780 if (!timr)
781 return -EINVAL;
782
783 kc = clockid_to_kclock(timr->it_clock);
784 if (WARN_ON_ONCE(!kc || !kc->timer_get))
785 ret = -EINVAL;
786 else
787 kc->timer_get(timr, &cur_setting);
788
789 unlock_timer(timr, flags);
790
791 if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
792 return -EFAULT;
793
794 return ret;
795 }
796
797 /*
798 * Get the number of overruns of a POSIX.1b interval timer. This is to
799 * be the overrun of the timer last delivered. At the same time we are
800 * accumulating overruns on the next timer. The overrun is frozen when
801 * the signal is delivered, either at the notify time (if the info block
802 * is not queued) or at the actual delivery time (as we are informed by
803 * the call back to do_schedule_next_timer(). So all we need to do is
804 * to pick up the frozen overrun.
805 */
806 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
807 {
808 struct k_itimer *timr;
809 int overrun;
810 unsigned long flags;
811
812 timr = lock_timer(timer_id, &flags);
813 if (!timr)
814 return -EINVAL;
815
816 overrun = timr->it_overrun_last;
817 unlock_timer(timr, flags);
818
819 return overrun;
820 }
821
822 /* Set a POSIX.1b interval timer. */
823 /* timr->it_lock is taken. */
824 static int
825 common_timer_set(struct k_itimer *timr, int flags,
826 struct itimerspec *new_setting, struct itimerspec *old_setting)
827 {
828 struct hrtimer *timer = &timr->it.real.timer;
829 enum hrtimer_mode mode;
830
831 if (old_setting)
832 common_timer_get(timr, old_setting);
833
834 /* disable the timer */
835 timr->it.real.interval.tv64 = 0;
836 /*
837 * careful here. If smp we could be in the "fire" routine which will
838 * be spinning as we hold the lock. But this is ONLY an SMP issue.
839 */
840 if (hrtimer_try_to_cancel(timer) < 0)
841 return TIMER_RETRY;
842
843 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
844 ~REQUEUE_PENDING;
845 timr->it_overrun_last = 0;
846
847 /* switch off the timer when it_value is zero */
848 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
849 return 0;
850
851 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
852 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
853 timr->it.real.timer.function = posix_timer_fn;
854
855 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
856
857 /* Convert interval */
858 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
859
860 /* SIGEV_NONE timers are not queued ! See common_timer_get */
861 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
862 /* Setup correct expiry time for relative timers */
863 if (mode == HRTIMER_MODE_REL) {
864 hrtimer_add_expires(timer, timer->base->get_time());
865 }
866 return 0;
867 }
868
869 hrtimer_start_expires(timer, mode);
870 return 0;
871 }
872
873 /* Set a POSIX.1b interval timer */
874 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
875 const struct itimerspec __user *, new_setting,
876 struct itimerspec __user *, old_setting)
877 {
878 struct k_itimer *timr;
879 struct itimerspec new_spec, old_spec;
880 int error = 0;
881 unsigned long flag;
882 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
883 struct k_clock *kc;
884
885 if (!new_setting)
886 return -EINVAL;
887
888 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
889 return -EFAULT;
890
891 if (!timespec_valid(&new_spec.it_interval) ||
892 !timespec_valid(&new_spec.it_value))
893 return -EINVAL;
894 retry:
895 timr = lock_timer(timer_id, &flag);
896 if (!timr)
897 return -EINVAL;
898
899 kc = clockid_to_kclock(timr->it_clock);
900 if (WARN_ON_ONCE(!kc || !kc->timer_set))
901 error = -EINVAL;
902 else
903 error = kc->timer_set(timr, flags, &new_spec, rtn);
904
905 unlock_timer(timr, flag);
906 if (error == TIMER_RETRY) {
907 rtn = NULL; // We already got the old time...
908 goto retry;
909 }
910
911 if (old_setting && !error &&
912 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
913 error = -EFAULT;
914
915 return error;
916 }
917
918 static int common_timer_del(struct k_itimer *timer)
919 {
920 timer->it.real.interval.tv64 = 0;
921
922 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
923 return TIMER_RETRY;
924 return 0;
925 }
926
927 static inline int timer_delete_hook(struct k_itimer *timer)
928 {
929 struct k_clock *kc = clockid_to_kclock(timer->it_clock);
930
931 if (WARN_ON_ONCE(!kc || !kc->timer_del))
932 return -EINVAL;
933 return kc->timer_del(timer);
934 }
935
936 /* Delete a POSIX.1b interval timer. */
937 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
938 {
939 struct k_itimer *timer;
940 unsigned long flags;
941
942 retry_delete:
943 timer = lock_timer(timer_id, &flags);
944 if (!timer)
945 return -EINVAL;
946
947 if (timer_delete_hook(timer) == TIMER_RETRY) {
948 unlock_timer(timer, flags);
949 goto retry_delete;
950 }
951
952 spin_lock(&current->sighand->siglock);
953 list_del(&timer->list);
954 spin_unlock(&current->sighand->siglock);
955 /*
956 * This keeps any tasks waiting on the spin lock from thinking
957 * they got something (see the lock code above).
958 */
959 timer->it_signal = NULL;
960
961 unlock_timer(timer, flags);
962 release_posix_timer(timer, IT_ID_SET);
963 return 0;
964 }
965
966 /*
967 * return timer owned by the process, used by exit_itimers
968 */
969 static void itimer_delete(struct k_itimer *timer)
970 {
971 unsigned long flags;
972
973 retry_delete:
974 spin_lock_irqsave(&timer->it_lock, flags);
975
976 if (timer_delete_hook(timer) == TIMER_RETRY) {
977 unlock_timer(timer, flags);
978 goto retry_delete;
979 }
980 list_del(&timer->list);
981 /*
982 * This keeps any tasks waiting on the spin lock from thinking
983 * they got something (see the lock code above).
984 */
985 timer->it_signal = NULL;
986
987 unlock_timer(timer, flags);
988 release_posix_timer(timer, IT_ID_SET);
989 }
990
991 /*
992 * This is called by do_exit or de_thread, only when there are no more
993 * references to the shared signal_struct.
994 */
995 void exit_itimers(struct signal_struct *sig)
996 {
997 struct k_itimer *tmr;
998
999 while (!list_empty(&sig->posix_timers)) {
1000 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1001 itimer_delete(tmr);
1002 }
1003 }
1004
1005 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1006 const struct timespec __user *, tp)
1007 {
1008 struct k_clock *kc = clockid_to_kclock(which_clock);
1009 struct timespec new_tp;
1010
1011 if (!kc || !kc->clock_set)
1012 return -EINVAL;
1013
1014 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1015 return -EFAULT;
1016
1017 return kc->clock_set(which_clock, &new_tp);
1018 }
1019
1020 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1021 struct timespec __user *,tp)
1022 {
1023 struct k_clock *kc = clockid_to_kclock(which_clock);
1024 struct timespec kernel_tp;
1025 int error;
1026
1027 if (!kc)
1028 return -EINVAL;
1029
1030 error = kc->clock_get(which_clock, &kernel_tp);
1031
1032 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1033 error = -EFAULT;
1034
1035 return error;
1036 }
1037
1038 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1039 struct timex __user *, utx)
1040 {
1041 struct k_clock *kc = clockid_to_kclock(which_clock);
1042 struct timex ktx;
1043 int err;
1044
1045 if (!kc)
1046 return -EINVAL;
1047 if (!kc->clock_adj)
1048 return -EOPNOTSUPP;
1049
1050 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1051 return -EFAULT;
1052
1053 err = kc->clock_adj(which_clock, &ktx);
1054
1055 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1056 return -EFAULT;
1057
1058 return err;
1059 }
1060
1061 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1062 struct timespec __user *, tp)
1063 {
1064 struct k_clock *kc = clockid_to_kclock(which_clock);
1065 struct timespec rtn_tp;
1066 int error;
1067
1068 if (!kc)
1069 return -EINVAL;
1070
1071 error = kc->clock_getres(which_clock, &rtn_tp);
1072
1073 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1074 error = -EFAULT;
1075
1076 return error;
1077 }
1078
1079 /*
1080 * nanosleep for monotonic and realtime clocks
1081 */
1082 static int common_nsleep(const clockid_t which_clock, int flags,
1083 struct timespec *tsave, struct timespec __user *rmtp)
1084 {
1085 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1086 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1087 which_clock);
1088 }
1089
1090 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1091 const struct timespec __user *, rqtp,
1092 struct timespec __user *, rmtp)
1093 {
1094 struct k_clock *kc = clockid_to_kclock(which_clock);
1095 struct timespec t;
1096
1097 if (!kc)
1098 return -EINVAL;
1099 if (!kc->nsleep)
1100 return -ENANOSLEEP_NOTSUP;
1101
1102 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1103 return -EFAULT;
1104
1105 if (!timespec_valid(&t))
1106 return -EINVAL;
1107
1108 return kc->nsleep(which_clock, flags, &t, rmtp);
1109 }
1110
1111 /*
1112 * This will restart clock_nanosleep. This is required only by
1113 * compat_clock_nanosleep_restart for now.
1114 */
1115 long clock_nanosleep_restart(struct restart_block *restart_block)
1116 {
1117 clockid_t which_clock = restart_block->nanosleep.clockid;
1118 struct k_clock *kc = clockid_to_kclock(which_clock);
1119
1120 if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1121 return -EINVAL;
1122
1123 return kc->nsleep_restart(restart_block);
1124 }