]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/time/posix-timers.c
UBUNTU: Ubuntu-5.11.0-20.21
[mirror_ubuntu-hirsute-kernel.git] / kernel / time / posix-timers.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * 2002-10-15 Posix Clocks & timers
4 * by George Anzinger george@mvista.com
5 * Copyright (C) 2002 2003 by MontaVista Software.
6 *
7 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
8 * Copyright (C) 2004 Boris Hu
9 *
10 * These are all the functions necessary to implement POSIX clocks & timers
11 */
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/slab.h>
15 #include <linux/time.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/task.h>
18
19 #include <linux/uaccess.h>
20 #include <linux/list.h>
21 #include <linux/init.h>
22 #include <linux/compiler.h>
23 #include <linux/hash.h>
24 #include <linux/posix-clock.h>
25 #include <linux/posix-timers.h>
26 #include <linux/syscalls.h>
27 #include <linux/wait.h>
28 #include <linux/workqueue.h>
29 #include <linux/export.h>
30 #include <linux/hashtable.h>
31 #include <linux/compat.h>
32 #include <linux/nospec.h>
33 #include <linux/time_namespace.h>
34
35 #include "timekeeping.h"
36 #include "posix-timers.h"
37
38 /*
39 * Management arrays for POSIX timers. Timers are now kept in static hash table
40 * with 512 entries.
41 * Timer ids are allocated by local routine, which selects proper hash head by
42 * key, constructed from current->signal address and per signal struct counter.
43 * This keeps timer ids unique per process, but now they can intersect between
44 * processes.
45 */
46
47 /*
48 * Lets keep our timers in a slab cache :-)
49 */
50 static struct kmem_cache *posix_timers_cache;
51
52 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
53 static DEFINE_SPINLOCK(hash_lock);
54
55 static const struct k_clock * const posix_clocks[];
56 static const struct k_clock *clockid_to_kclock(const clockid_t id);
57 static const struct k_clock clock_realtime, clock_monotonic;
58
59 /*
60 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
61 * SIGEV values. Here we put out an error if this assumption fails.
62 */
63 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
64 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
65 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
66 #endif
67
68 /*
69 * The timer ID is turned into a timer address by idr_find().
70 * Verifying a valid ID consists of:
71 *
72 * a) checking that idr_find() returns other than -1.
73 * b) checking that the timer id matches the one in the timer itself.
74 * c) that the timer owner is in the callers thread group.
75 */
76
77 /*
78 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
79 * to implement others. This structure defines the various
80 * clocks.
81 *
82 * RESOLUTION: Clock resolution is used to round up timer and interval
83 * times, NOT to report clock times, which are reported with as
84 * much resolution as the system can muster. In some cases this
85 * resolution may depend on the underlying clock hardware and
86 * may not be quantifiable until run time, and only then is the
87 * necessary code is written. The standard says we should say
88 * something about this issue in the documentation...
89 *
90 * FUNCTIONS: The CLOCKs structure defines possible functions to
91 * handle various clock functions.
92 *
93 * The standard POSIX timer management code assumes the
94 * following: 1.) The k_itimer struct (sched.h) is used for
95 * the timer. 2.) The list, it_lock, it_clock, it_id and
96 * it_pid fields are not modified by timer code.
97 *
98 * Permissions: It is assumed that the clock_settime() function defined
99 * for each clock will take care of permission checks. Some
100 * clocks may be set able by any user (i.e. local process
101 * clocks) others not. Currently the only set able clock we
102 * have is CLOCK_REALTIME and its high res counter part, both of
103 * which we beg off on and pass to do_sys_settimeofday().
104 */
105 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
106
107 #define lock_timer(tid, flags) \
108 ({ struct k_itimer *__timr; \
109 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
110 __timr; \
111 })
112
113 static int hash(struct signal_struct *sig, unsigned int nr)
114 {
115 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
116 }
117
118 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
119 struct signal_struct *sig,
120 timer_t id)
121 {
122 struct k_itimer *timer;
123
124 hlist_for_each_entry_rcu(timer, head, t_hash,
125 lockdep_is_held(&hash_lock)) {
126 if ((timer->it_signal == sig) && (timer->it_id == id))
127 return timer;
128 }
129 return NULL;
130 }
131
132 static struct k_itimer *posix_timer_by_id(timer_t id)
133 {
134 struct signal_struct *sig = current->signal;
135 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
136
137 return __posix_timers_find(head, sig, id);
138 }
139
140 static int posix_timer_add(struct k_itimer *timer)
141 {
142 struct signal_struct *sig = current->signal;
143 int first_free_id = sig->posix_timer_id;
144 struct hlist_head *head;
145 int ret = -ENOENT;
146
147 do {
148 spin_lock(&hash_lock);
149 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
150 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
151 hlist_add_head_rcu(&timer->t_hash, head);
152 ret = sig->posix_timer_id;
153 }
154 if (++sig->posix_timer_id < 0)
155 sig->posix_timer_id = 0;
156 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
157 /* Loop over all possible ids completed */
158 ret = -EAGAIN;
159 spin_unlock(&hash_lock);
160 } while (ret == -ENOENT);
161 return ret;
162 }
163
164 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
165 {
166 spin_unlock_irqrestore(&timr->it_lock, flags);
167 }
168
169 /* Get clock_realtime */
170 static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
171 {
172 ktime_get_real_ts64(tp);
173 return 0;
174 }
175
176 static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
177 {
178 return ktime_get_real();
179 }
180
181 /* Set clock_realtime */
182 static int posix_clock_realtime_set(const clockid_t which_clock,
183 const struct timespec64 *tp)
184 {
185 return do_sys_settimeofday64(tp, NULL);
186 }
187
188 static int posix_clock_realtime_adj(const clockid_t which_clock,
189 struct __kernel_timex *t)
190 {
191 return do_adjtimex(t);
192 }
193
194 /*
195 * Get monotonic time for posix timers
196 */
197 static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
198 {
199 ktime_get_ts64(tp);
200 timens_add_monotonic(tp);
201 return 0;
202 }
203
204 static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
205 {
206 return ktime_get();
207 }
208
209 /*
210 * Get monotonic-raw time for posix timers
211 */
212 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
213 {
214 ktime_get_raw_ts64(tp);
215 timens_add_monotonic(tp);
216 return 0;
217 }
218
219
220 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
221 {
222 ktime_get_coarse_real_ts64(tp);
223 return 0;
224 }
225
226 static int posix_get_monotonic_coarse(clockid_t which_clock,
227 struct timespec64 *tp)
228 {
229 ktime_get_coarse_ts64(tp);
230 timens_add_monotonic(tp);
231 return 0;
232 }
233
234 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
235 {
236 *tp = ktime_to_timespec64(KTIME_LOW_RES);
237 return 0;
238 }
239
240 static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
241 {
242 ktime_get_boottime_ts64(tp);
243 timens_add_boottime(tp);
244 return 0;
245 }
246
247 static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
248 {
249 return ktime_get_boottime();
250 }
251
252 static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
253 {
254 ktime_get_clocktai_ts64(tp);
255 return 0;
256 }
257
258 static ktime_t posix_get_tai_ktime(clockid_t which_clock)
259 {
260 return ktime_get_clocktai();
261 }
262
263 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
264 {
265 tp->tv_sec = 0;
266 tp->tv_nsec = hrtimer_resolution;
267 return 0;
268 }
269
270 /*
271 * Initialize everything, well, just everything in Posix clocks/timers ;)
272 */
273 static __init int init_posix_timers(void)
274 {
275 posix_timers_cache = kmem_cache_create("posix_timers_cache",
276 sizeof (struct k_itimer), 0, SLAB_PANIC,
277 NULL);
278 return 0;
279 }
280 __initcall(init_posix_timers);
281
282 /*
283 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
284 * are of type int. Clamp the overrun value to INT_MAX
285 */
286 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
287 {
288 s64 sum = timr->it_overrun_last + (s64)baseval;
289
290 return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
291 }
292
293 static void common_hrtimer_rearm(struct k_itimer *timr)
294 {
295 struct hrtimer *timer = &timr->it.real.timer;
296
297 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
298 timr->it_interval);
299 hrtimer_restart(timer);
300 }
301
302 /*
303 * This function is exported for use by the signal deliver code. It is
304 * called just prior to the info block being released and passes that
305 * block to us. It's function is to update the overrun entry AND to
306 * restart the timer. It should only be called if the timer is to be
307 * restarted (i.e. we have flagged this in the sys_private entry of the
308 * info block).
309 *
310 * To protect against the timer going away while the interrupt is queued,
311 * we require that the it_requeue_pending flag be set.
312 */
313 void posixtimer_rearm(struct kernel_siginfo *info)
314 {
315 struct k_itimer *timr;
316 unsigned long flags;
317
318 timr = lock_timer(info->si_tid, &flags);
319 if (!timr)
320 return;
321
322 if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
323 timr->kclock->timer_rearm(timr);
324
325 timr->it_active = 1;
326 timr->it_overrun_last = timr->it_overrun;
327 timr->it_overrun = -1LL;
328 ++timr->it_requeue_pending;
329
330 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
331 }
332
333 unlock_timer(timr, flags);
334 }
335
336 int posix_timer_event(struct k_itimer *timr, int si_private)
337 {
338 enum pid_type type;
339 int ret = -1;
340 /*
341 * FIXME: if ->sigq is queued we can race with
342 * dequeue_signal()->posixtimer_rearm().
343 *
344 * If dequeue_signal() sees the "right" value of
345 * si_sys_private it calls posixtimer_rearm().
346 * We re-queue ->sigq and drop ->it_lock().
347 * posixtimer_rearm() locks the timer
348 * and re-schedules it while ->sigq is pending.
349 * Not really bad, but not that we want.
350 */
351 timr->sigq->info.si_sys_private = si_private;
352
353 type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
354 ret = send_sigqueue(timr->sigq, timr->it_pid, type);
355 /* If we failed to send the signal the timer stops. */
356 return ret > 0;
357 }
358
359 /*
360 * This function gets called when a POSIX.1b interval timer expires. It
361 * is used as a callback from the kernel internal timer. The
362 * run_timer_list code ALWAYS calls with interrupts on.
363
364 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
365 */
366 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
367 {
368 struct k_itimer *timr;
369 unsigned long flags;
370 int si_private = 0;
371 enum hrtimer_restart ret = HRTIMER_NORESTART;
372
373 timr = container_of(timer, struct k_itimer, it.real.timer);
374 spin_lock_irqsave(&timr->it_lock, flags);
375
376 timr->it_active = 0;
377 if (timr->it_interval != 0)
378 si_private = ++timr->it_requeue_pending;
379
380 if (posix_timer_event(timr, si_private)) {
381 /*
382 * signal was not sent because of sig_ignor
383 * we will not get a call back to restart it AND
384 * it should be restarted.
385 */
386 if (timr->it_interval != 0) {
387 ktime_t now = hrtimer_cb_get_time(timer);
388
389 /*
390 * FIXME: What we really want, is to stop this
391 * timer completely and restart it in case the
392 * SIG_IGN is removed. This is a non trivial
393 * change which involves sighand locking
394 * (sigh !), which we don't want to do late in
395 * the release cycle.
396 *
397 * For now we just let timers with an interval
398 * less than a jiffie expire every jiffie to
399 * avoid softirq starvation in case of SIG_IGN
400 * and a very small interval, which would put
401 * the timer right back on the softirq pending
402 * list. By moving now ahead of time we trick
403 * hrtimer_forward() to expire the timer
404 * later, while we still maintain the overrun
405 * accuracy, but have some inconsistency in
406 * the timer_gettime() case. This is at least
407 * better than a starved softirq. A more
408 * complex fix which solves also another related
409 * inconsistency is already in the pipeline.
410 */
411 #ifdef CONFIG_HIGH_RES_TIMERS
412 {
413 ktime_t kj = NSEC_PER_SEC / HZ;
414
415 if (timr->it_interval < kj)
416 now = ktime_add(now, kj);
417 }
418 #endif
419 timr->it_overrun += hrtimer_forward(timer, now,
420 timr->it_interval);
421 ret = HRTIMER_RESTART;
422 ++timr->it_requeue_pending;
423 timr->it_active = 1;
424 }
425 }
426
427 unlock_timer(timr, flags);
428 return ret;
429 }
430
431 static struct pid *good_sigevent(sigevent_t * event)
432 {
433 struct pid *pid = task_tgid(current);
434 struct task_struct *rtn;
435
436 switch (event->sigev_notify) {
437 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
438 pid = find_vpid(event->sigev_notify_thread_id);
439 rtn = pid_task(pid, PIDTYPE_PID);
440 if (!rtn || !same_thread_group(rtn, current))
441 return NULL;
442 fallthrough;
443 case SIGEV_SIGNAL:
444 case SIGEV_THREAD:
445 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
446 return NULL;
447 fallthrough;
448 case SIGEV_NONE:
449 return pid;
450 default:
451 return NULL;
452 }
453 }
454
455 static struct k_itimer * alloc_posix_timer(void)
456 {
457 struct k_itimer *tmr;
458 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
459 if (!tmr)
460 return tmr;
461 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
462 kmem_cache_free(posix_timers_cache, tmr);
463 return NULL;
464 }
465 clear_siginfo(&tmr->sigq->info);
466 return tmr;
467 }
468
469 static void k_itimer_rcu_free(struct rcu_head *head)
470 {
471 struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
472
473 kmem_cache_free(posix_timers_cache, tmr);
474 }
475
476 #define IT_ID_SET 1
477 #define IT_ID_NOT_SET 0
478 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
479 {
480 if (it_id_set) {
481 unsigned long flags;
482 spin_lock_irqsave(&hash_lock, flags);
483 hlist_del_rcu(&tmr->t_hash);
484 spin_unlock_irqrestore(&hash_lock, flags);
485 }
486 put_pid(tmr->it_pid);
487 sigqueue_free(tmr->sigq);
488 call_rcu(&tmr->rcu, k_itimer_rcu_free);
489 }
490
491 static int common_timer_create(struct k_itimer *new_timer)
492 {
493 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
494 return 0;
495 }
496
497 /* Create a POSIX.1b interval timer. */
498 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
499 timer_t __user *created_timer_id)
500 {
501 const struct k_clock *kc = clockid_to_kclock(which_clock);
502 struct k_itimer *new_timer;
503 int error, new_timer_id;
504 int it_id_set = IT_ID_NOT_SET;
505
506 if (!kc)
507 return -EINVAL;
508 if (!kc->timer_create)
509 return -EOPNOTSUPP;
510
511 new_timer = alloc_posix_timer();
512 if (unlikely(!new_timer))
513 return -EAGAIN;
514
515 spin_lock_init(&new_timer->it_lock);
516 new_timer_id = posix_timer_add(new_timer);
517 if (new_timer_id < 0) {
518 error = new_timer_id;
519 goto out;
520 }
521
522 it_id_set = IT_ID_SET;
523 new_timer->it_id = (timer_t) new_timer_id;
524 new_timer->it_clock = which_clock;
525 new_timer->kclock = kc;
526 new_timer->it_overrun = -1LL;
527
528 if (event) {
529 rcu_read_lock();
530 new_timer->it_pid = get_pid(good_sigevent(event));
531 rcu_read_unlock();
532 if (!new_timer->it_pid) {
533 error = -EINVAL;
534 goto out;
535 }
536 new_timer->it_sigev_notify = event->sigev_notify;
537 new_timer->sigq->info.si_signo = event->sigev_signo;
538 new_timer->sigq->info.si_value = event->sigev_value;
539 } else {
540 new_timer->it_sigev_notify = SIGEV_SIGNAL;
541 new_timer->sigq->info.si_signo = SIGALRM;
542 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
543 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
544 new_timer->it_pid = get_pid(task_tgid(current));
545 }
546
547 new_timer->sigq->info.si_tid = new_timer->it_id;
548 new_timer->sigq->info.si_code = SI_TIMER;
549
550 if (copy_to_user(created_timer_id,
551 &new_timer_id, sizeof (new_timer_id))) {
552 error = -EFAULT;
553 goto out;
554 }
555
556 error = kc->timer_create(new_timer);
557 if (error)
558 goto out;
559
560 spin_lock_irq(&current->sighand->siglock);
561 new_timer->it_signal = current->signal;
562 list_add(&new_timer->list, &current->signal->posix_timers);
563 spin_unlock_irq(&current->sighand->siglock);
564
565 return 0;
566 /*
567 * In the case of the timer belonging to another task, after
568 * the task is unlocked, the timer is owned by the other task
569 * and may cease to exist at any time. Don't use or modify
570 * new_timer after the unlock call.
571 */
572 out:
573 release_posix_timer(new_timer, it_id_set);
574 return error;
575 }
576
577 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
578 struct sigevent __user *, timer_event_spec,
579 timer_t __user *, created_timer_id)
580 {
581 if (timer_event_spec) {
582 sigevent_t event;
583
584 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
585 return -EFAULT;
586 return do_timer_create(which_clock, &event, created_timer_id);
587 }
588 return do_timer_create(which_clock, NULL, created_timer_id);
589 }
590
591 #ifdef CONFIG_COMPAT
592 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
593 struct compat_sigevent __user *, timer_event_spec,
594 timer_t __user *, created_timer_id)
595 {
596 if (timer_event_spec) {
597 sigevent_t event;
598
599 if (get_compat_sigevent(&event, timer_event_spec))
600 return -EFAULT;
601 return do_timer_create(which_clock, &event, created_timer_id);
602 }
603 return do_timer_create(which_clock, NULL, created_timer_id);
604 }
605 #endif
606
607 /*
608 * Locking issues: We need to protect the result of the id look up until
609 * we get the timer locked down so it is not deleted under us. The
610 * removal is done under the idr spinlock so we use that here to bridge
611 * the find to the timer lock. To avoid a dead lock, the timer id MUST
612 * be release with out holding the timer lock.
613 */
614 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
615 {
616 struct k_itimer *timr;
617
618 /*
619 * timer_t could be any type >= int and we want to make sure any
620 * @timer_id outside positive int range fails lookup.
621 */
622 if ((unsigned long long)timer_id > INT_MAX)
623 return NULL;
624
625 rcu_read_lock();
626 timr = posix_timer_by_id(timer_id);
627 if (timr) {
628 spin_lock_irqsave(&timr->it_lock, *flags);
629 if (timr->it_signal == current->signal) {
630 rcu_read_unlock();
631 return timr;
632 }
633 spin_unlock_irqrestore(&timr->it_lock, *flags);
634 }
635 rcu_read_unlock();
636
637 return NULL;
638 }
639
640 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
641 {
642 struct hrtimer *timer = &timr->it.real.timer;
643
644 return __hrtimer_expires_remaining_adjusted(timer, now);
645 }
646
647 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
648 {
649 struct hrtimer *timer = &timr->it.real.timer;
650
651 return hrtimer_forward(timer, now, timr->it_interval);
652 }
653
654 /*
655 * Get the time remaining on a POSIX.1b interval timer. This function
656 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
657 * mess with irq.
658 *
659 * We have a couple of messes to clean up here. First there is the case
660 * of a timer that has a requeue pending. These timers should appear to
661 * be in the timer list with an expiry as if we were to requeue them
662 * now.
663 *
664 * The second issue is the SIGEV_NONE timer which may be active but is
665 * not really ever put in the timer list (to save system resources).
666 * This timer may be expired, and if so, we will do it here. Otherwise
667 * it is the same as a requeue pending timer WRT to what we should
668 * report.
669 */
670 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
671 {
672 const struct k_clock *kc = timr->kclock;
673 ktime_t now, remaining, iv;
674 bool sig_none;
675
676 sig_none = timr->it_sigev_notify == SIGEV_NONE;
677 iv = timr->it_interval;
678
679 /* interval timer ? */
680 if (iv) {
681 cur_setting->it_interval = ktime_to_timespec64(iv);
682 } else if (!timr->it_active) {
683 /*
684 * SIGEV_NONE oneshot timers are never queued. Check them
685 * below.
686 */
687 if (!sig_none)
688 return;
689 }
690
691 now = kc->clock_get_ktime(timr->it_clock);
692
693 /*
694 * When a requeue is pending or this is a SIGEV_NONE timer move the
695 * expiry time forward by intervals, so expiry is > now.
696 */
697 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
698 timr->it_overrun += kc->timer_forward(timr, now);
699
700 remaining = kc->timer_remaining(timr, now);
701 /* Return 0 only, when the timer is expired and not pending */
702 if (remaining <= 0) {
703 /*
704 * A single shot SIGEV_NONE timer must return 0, when
705 * it is expired !
706 */
707 if (!sig_none)
708 cur_setting->it_value.tv_nsec = 1;
709 } else {
710 cur_setting->it_value = ktime_to_timespec64(remaining);
711 }
712 }
713
714 /* Get the time remaining on a POSIX.1b interval timer. */
715 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
716 {
717 struct k_itimer *timr;
718 const struct k_clock *kc;
719 unsigned long flags;
720 int ret = 0;
721
722 timr = lock_timer(timer_id, &flags);
723 if (!timr)
724 return -EINVAL;
725
726 memset(setting, 0, sizeof(*setting));
727 kc = timr->kclock;
728 if (WARN_ON_ONCE(!kc || !kc->timer_get))
729 ret = -EINVAL;
730 else
731 kc->timer_get(timr, setting);
732
733 unlock_timer(timr, flags);
734 return ret;
735 }
736
737 /* Get the time remaining on a POSIX.1b interval timer. */
738 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
739 struct __kernel_itimerspec __user *, setting)
740 {
741 struct itimerspec64 cur_setting;
742
743 int ret = do_timer_gettime(timer_id, &cur_setting);
744 if (!ret) {
745 if (put_itimerspec64(&cur_setting, setting))
746 ret = -EFAULT;
747 }
748 return ret;
749 }
750
751 #ifdef CONFIG_COMPAT_32BIT_TIME
752
753 SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
754 struct old_itimerspec32 __user *, setting)
755 {
756 struct itimerspec64 cur_setting;
757
758 int ret = do_timer_gettime(timer_id, &cur_setting);
759 if (!ret) {
760 if (put_old_itimerspec32(&cur_setting, setting))
761 ret = -EFAULT;
762 }
763 return ret;
764 }
765
766 #endif
767
768 /*
769 * Get the number of overruns of a POSIX.1b interval timer. This is to
770 * be the overrun of the timer last delivered. At the same time we are
771 * accumulating overruns on the next timer. The overrun is frozen when
772 * the signal is delivered, either at the notify time (if the info block
773 * is not queued) or at the actual delivery time (as we are informed by
774 * the call back to posixtimer_rearm(). So all we need to do is
775 * to pick up the frozen overrun.
776 */
777 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
778 {
779 struct k_itimer *timr;
780 int overrun;
781 unsigned long flags;
782
783 timr = lock_timer(timer_id, &flags);
784 if (!timr)
785 return -EINVAL;
786
787 overrun = timer_overrun_to_int(timr, 0);
788 unlock_timer(timr, flags);
789
790 return overrun;
791 }
792
793 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
794 bool absolute, bool sigev_none)
795 {
796 struct hrtimer *timer = &timr->it.real.timer;
797 enum hrtimer_mode mode;
798
799 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
800 /*
801 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
802 * clock modifications, so they become CLOCK_MONOTONIC based under the
803 * hood. See hrtimer_init(). Update timr->kclock, so the generic
804 * functions which use timr->kclock->clock_get_*() work.
805 *
806 * Note: it_clock stays unmodified, because the next timer_set() might
807 * use ABSTIME, so it needs to switch back.
808 */
809 if (timr->it_clock == CLOCK_REALTIME)
810 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
811
812 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
813 timr->it.real.timer.function = posix_timer_fn;
814
815 if (!absolute)
816 expires = ktime_add_safe(expires, timer->base->get_time());
817 hrtimer_set_expires(timer, expires);
818
819 if (!sigev_none)
820 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
821 }
822
823 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
824 {
825 return hrtimer_try_to_cancel(&timr->it.real.timer);
826 }
827
828 static void common_timer_wait_running(struct k_itimer *timer)
829 {
830 hrtimer_cancel_wait_running(&timer->it.real.timer);
831 }
832
833 /*
834 * On PREEMPT_RT this prevent priority inversion against softirq kthread in
835 * case it gets preempted while executing a timer callback. See comments in
836 * hrtimer_cancel_wait_running. For PREEMPT_RT=n this just results in a
837 * cpu_relax().
838 */
839 static struct k_itimer *timer_wait_running(struct k_itimer *timer,
840 unsigned long *flags)
841 {
842 const struct k_clock *kc = READ_ONCE(timer->kclock);
843 timer_t timer_id = READ_ONCE(timer->it_id);
844
845 /* Prevent kfree(timer) after dropping the lock */
846 rcu_read_lock();
847 unlock_timer(timer, *flags);
848
849 if (!WARN_ON_ONCE(!kc->timer_wait_running))
850 kc->timer_wait_running(timer);
851
852 rcu_read_unlock();
853 /* Relock the timer. It might be not longer hashed. */
854 return lock_timer(timer_id, flags);
855 }
856
857 /* Set a POSIX.1b interval timer. */
858 int common_timer_set(struct k_itimer *timr, int flags,
859 struct itimerspec64 *new_setting,
860 struct itimerspec64 *old_setting)
861 {
862 const struct k_clock *kc = timr->kclock;
863 bool sigev_none;
864 ktime_t expires;
865
866 if (old_setting)
867 common_timer_get(timr, old_setting);
868
869 /* Prevent rearming by clearing the interval */
870 timr->it_interval = 0;
871 /*
872 * Careful here. On SMP systems the timer expiry function could be
873 * active and spinning on timr->it_lock.
874 */
875 if (kc->timer_try_to_cancel(timr) < 0)
876 return TIMER_RETRY;
877
878 timr->it_active = 0;
879 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
880 ~REQUEUE_PENDING;
881 timr->it_overrun_last = 0;
882
883 /* Switch off the timer when it_value is zero */
884 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
885 return 0;
886
887 timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
888 expires = timespec64_to_ktime(new_setting->it_value);
889 if (flags & TIMER_ABSTIME)
890 expires = timens_ktime_to_host(timr->it_clock, expires);
891 sigev_none = timr->it_sigev_notify == SIGEV_NONE;
892
893 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
894 timr->it_active = !sigev_none;
895 return 0;
896 }
897
898 static int do_timer_settime(timer_t timer_id, int tmr_flags,
899 struct itimerspec64 *new_spec64,
900 struct itimerspec64 *old_spec64)
901 {
902 const struct k_clock *kc;
903 struct k_itimer *timr;
904 unsigned long flags;
905 int error = 0;
906
907 if (!timespec64_valid(&new_spec64->it_interval) ||
908 !timespec64_valid(&new_spec64->it_value))
909 return -EINVAL;
910
911 if (old_spec64)
912 memset(old_spec64, 0, sizeof(*old_spec64));
913
914 timr = lock_timer(timer_id, &flags);
915 retry:
916 if (!timr)
917 return -EINVAL;
918
919 kc = timr->kclock;
920 if (WARN_ON_ONCE(!kc || !kc->timer_set))
921 error = -EINVAL;
922 else
923 error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
924
925 if (error == TIMER_RETRY) {
926 // We already got the old time...
927 old_spec64 = NULL;
928 /* Unlocks and relocks the timer if it still exists */
929 timr = timer_wait_running(timr, &flags);
930 goto retry;
931 }
932 unlock_timer(timr, flags);
933
934 return error;
935 }
936
937 /* Set a POSIX.1b interval timer */
938 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
939 const struct __kernel_itimerspec __user *, new_setting,
940 struct __kernel_itimerspec __user *, old_setting)
941 {
942 struct itimerspec64 new_spec, old_spec;
943 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
944 int error = 0;
945
946 if (!new_setting)
947 return -EINVAL;
948
949 if (get_itimerspec64(&new_spec, new_setting))
950 return -EFAULT;
951
952 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
953 if (!error && old_setting) {
954 if (put_itimerspec64(&old_spec, old_setting))
955 error = -EFAULT;
956 }
957 return error;
958 }
959
960 #ifdef CONFIG_COMPAT_32BIT_TIME
961 SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
962 struct old_itimerspec32 __user *, new,
963 struct old_itimerspec32 __user *, old)
964 {
965 struct itimerspec64 new_spec, old_spec;
966 struct itimerspec64 *rtn = old ? &old_spec : NULL;
967 int error = 0;
968
969 if (!new)
970 return -EINVAL;
971 if (get_old_itimerspec32(&new_spec, new))
972 return -EFAULT;
973
974 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
975 if (!error && old) {
976 if (put_old_itimerspec32(&old_spec, old))
977 error = -EFAULT;
978 }
979 return error;
980 }
981 #endif
982
983 int common_timer_del(struct k_itimer *timer)
984 {
985 const struct k_clock *kc = timer->kclock;
986
987 timer->it_interval = 0;
988 if (kc->timer_try_to_cancel(timer) < 0)
989 return TIMER_RETRY;
990 timer->it_active = 0;
991 return 0;
992 }
993
994 static inline int timer_delete_hook(struct k_itimer *timer)
995 {
996 const struct k_clock *kc = timer->kclock;
997
998 if (WARN_ON_ONCE(!kc || !kc->timer_del))
999 return -EINVAL;
1000 return kc->timer_del(timer);
1001 }
1002
1003 /* Delete a POSIX.1b interval timer. */
1004 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1005 {
1006 struct k_itimer *timer;
1007 unsigned long flags;
1008
1009 timer = lock_timer(timer_id, &flags);
1010
1011 retry_delete:
1012 if (!timer)
1013 return -EINVAL;
1014
1015 if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
1016 /* Unlocks and relocks the timer if it still exists */
1017 timer = timer_wait_running(timer, &flags);
1018 goto retry_delete;
1019 }
1020
1021 spin_lock(&current->sighand->siglock);
1022 list_del(&timer->list);
1023 spin_unlock(&current->sighand->siglock);
1024 /*
1025 * This keeps any tasks waiting on the spin lock from thinking
1026 * they got something (see the lock code above).
1027 */
1028 timer->it_signal = NULL;
1029
1030 unlock_timer(timer, flags);
1031 release_posix_timer(timer, IT_ID_SET);
1032 return 0;
1033 }
1034
1035 /*
1036 * return timer owned by the process, used by exit_itimers
1037 */
1038 static void itimer_delete(struct k_itimer *timer)
1039 {
1040 retry_delete:
1041 spin_lock_irq(&timer->it_lock);
1042
1043 if (timer_delete_hook(timer) == TIMER_RETRY) {
1044 spin_unlock_irq(&timer->it_lock);
1045 goto retry_delete;
1046 }
1047 list_del(&timer->list);
1048
1049 spin_unlock_irq(&timer->it_lock);
1050 release_posix_timer(timer, IT_ID_SET);
1051 }
1052
1053 /*
1054 * This is called by do_exit or de_thread, only when there are no more
1055 * references to the shared signal_struct.
1056 */
1057 void exit_itimers(struct signal_struct *sig)
1058 {
1059 struct k_itimer *tmr;
1060
1061 while (!list_empty(&sig->posix_timers)) {
1062 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1063 itimer_delete(tmr);
1064 }
1065 }
1066
1067 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1068 const struct __kernel_timespec __user *, tp)
1069 {
1070 const struct k_clock *kc = clockid_to_kclock(which_clock);
1071 struct timespec64 new_tp;
1072
1073 if (!kc || !kc->clock_set)
1074 return -EINVAL;
1075
1076 if (get_timespec64(&new_tp, tp))
1077 return -EFAULT;
1078
1079 return kc->clock_set(which_clock, &new_tp);
1080 }
1081
1082 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1083 struct __kernel_timespec __user *, tp)
1084 {
1085 const struct k_clock *kc = clockid_to_kclock(which_clock);
1086 struct timespec64 kernel_tp;
1087 int error;
1088
1089 if (!kc)
1090 return -EINVAL;
1091
1092 error = kc->clock_get_timespec(which_clock, &kernel_tp);
1093
1094 if (!error && put_timespec64(&kernel_tp, tp))
1095 error = -EFAULT;
1096
1097 return error;
1098 }
1099
1100 int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
1101 {
1102 const struct k_clock *kc = clockid_to_kclock(which_clock);
1103
1104 if (!kc)
1105 return -EINVAL;
1106 if (!kc->clock_adj)
1107 return -EOPNOTSUPP;
1108
1109 return kc->clock_adj(which_clock, ktx);
1110 }
1111
1112 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1113 struct __kernel_timex __user *, utx)
1114 {
1115 struct __kernel_timex ktx;
1116 int err;
1117
1118 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1119 return -EFAULT;
1120
1121 err = do_clock_adjtime(which_clock, &ktx);
1122
1123 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1124 return -EFAULT;
1125
1126 return err;
1127 }
1128
1129 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1130 struct __kernel_timespec __user *, tp)
1131 {
1132 const struct k_clock *kc = clockid_to_kclock(which_clock);
1133 struct timespec64 rtn_tp;
1134 int error;
1135
1136 if (!kc)
1137 return -EINVAL;
1138
1139 error = kc->clock_getres(which_clock, &rtn_tp);
1140
1141 if (!error && tp && put_timespec64(&rtn_tp, tp))
1142 error = -EFAULT;
1143
1144 return error;
1145 }
1146
1147 #ifdef CONFIG_COMPAT_32BIT_TIME
1148
1149 SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
1150 struct old_timespec32 __user *, tp)
1151 {
1152 const struct k_clock *kc = clockid_to_kclock(which_clock);
1153 struct timespec64 ts;
1154
1155 if (!kc || !kc->clock_set)
1156 return -EINVAL;
1157
1158 if (get_old_timespec32(&ts, tp))
1159 return -EFAULT;
1160
1161 return kc->clock_set(which_clock, &ts);
1162 }
1163
1164 SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
1165 struct old_timespec32 __user *, tp)
1166 {
1167 const struct k_clock *kc = clockid_to_kclock(which_clock);
1168 struct timespec64 ts;
1169 int err;
1170
1171 if (!kc)
1172 return -EINVAL;
1173
1174 err = kc->clock_get_timespec(which_clock, &ts);
1175
1176 if (!err && put_old_timespec32(&ts, tp))
1177 err = -EFAULT;
1178
1179 return err;
1180 }
1181
1182 SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
1183 struct old_timex32 __user *, utp)
1184 {
1185 struct __kernel_timex ktx;
1186 int err;
1187
1188 err = get_old_timex32(&ktx, utp);
1189 if (err)
1190 return err;
1191
1192 err = do_clock_adjtime(which_clock, &ktx);
1193
1194 if (err >= 0 && put_old_timex32(utp, &ktx))
1195 return -EFAULT;
1196
1197 return err;
1198 }
1199
1200 SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
1201 struct old_timespec32 __user *, tp)
1202 {
1203 const struct k_clock *kc = clockid_to_kclock(which_clock);
1204 struct timespec64 ts;
1205 int err;
1206
1207 if (!kc)
1208 return -EINVAL;
1209
1210 err = kc->clock_getres(which_clock, &ts);
1211 if (!err && tp && put_old_timespec32(&ts, tp))
1212 return -EFAULT;
1213
1214 return err;
1215 }
1216
1217 #endif
1218
1219 /*
1220 * nanosleep for monotonic and realtime clocks
1221 */
1222 static int common_nsleep(const clockid_t which_clock, int flags,
1223 const struct timespec64 *rqtp)
1224 {
1225 ktime_t texp = timespec64_to_ktime(*rqtp);
1226
1227 return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1228 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1229 which_clock);
1230 }
1231
1232 static int common_nsleep_timens(const clockid_t which_clock, int flags,
1233 const struct timespec64 *rqtp)
1234 {
1235 ktime_t texp = timespec64_to_ktime(*rqtp);
1236
1237 if (flags & TIMER_ABSTIME)
1238 texp = timens_ktime_to_host(which_clock, texp);
1239
1240 return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1241 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1242 which_clock);
1243 }
1244
1245 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1246 const struct __kernel_timespec __user *, rqtp,
1247 struct __kernel_timespec __user *, rmtp)
1248 {
1249 const struct k_clock *kc = clockid_to_kclock(which_clock);
1250 struct timespec64 t;
1251
1252 if (!kc)
1253 return -EINVAL;
1254 if (!kc->nsleep)
1255 return -EOPNOTSUPP;
1256
1257 if (get_timespec64(&t, rqtp))
1258 return -EFAULT;
1259
1260 if (!timespec64_valid(&t))
1261 return -EINVAL;
1262 if (flags & TIMER_ABSTIME)
1263 rmtp = NULL;
1264 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1265 current->restart_block.nanosleep.rmtp = rmtp;
1266
1267 return kc->nsleep(which_clock, flags, &t);
1268 }
1269
1270 #ifdef CONFIG_COMPAT_32BIT_TIME
1271
1272 SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
1273 struct old_timespec32 __user *, rqtp,
1274 struct old_timespec32 __user *, rmtp)
1275 {
1276 const struct k_clock *kc = clockid_to_kclock(which_clock);
1277 struct timespec64 t;
1278
1279 if (!kc)
1280 return -EINVAL;
1281 if (!kc->nsleep)
1282 return -EOPNOTSUPP;
1283
1284 if (get_old_timespec32(&t, rqtp))
1285 return -EFAULT;
1286
1287 if (!timespec64_valid(&t))
1288 return -EINVAL;
1289 if (flags & TIMER_ABSTIME)
1290 rmtp = NULL;
1291 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1292 current->restart_block.nanosleep.compat_rmtp = rmtp;
1293
1294 return kc->nsleep(which_clock, flags, &t);
1295 }
1296
1297 #endif
1298
1299 static const struct k_clock clock_realtime = {
1300 .clock_getres = posix_get_hrtimer_res,
1301 .clock_get_timespec = posix_get_realtime_timespec,
1302 .clock_get_ktime = posix_get_realtime_ktime,
1303 .clock_set = posix_clock_realtime_set,
1304 .clock_adj = posix_clock_realtime_adj,
1305 .nsleep = common_nsleep,
1306 .timer_create = common_timer_create,
1307 .timer_set = common_timer_set,
1308 .timer_get = common_timer_get,
1309 .timer_del = common_timer_del,
1310 .timer_rearm = common_hrtimer_rearm,
1311 .timer_forward = common_hrtimer_forward,
1312 .timer_remaining = common_hrtimer_remaining,
1313 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1314 .timer_wait_running = common_timer_wait_running,
1315 .timer_arm = common_hrtimer_arm,
1316 };
1317
1318 static const struct k_clock clock_monotonic = {
1319 .clock_getres = posix_get_hrtimer_res,
1320 .clock_get_timespec = posix_get_monotonic_timespec,
1321 .clock_get_ktime = posix_get_monotonic_ktime,
1322 .nsleep = common_nsleep_timens,
1323 .timer_create = common_timer_create,
1324 .timer_set = common_timer_set,
1325 .timer_get = common_timer_get,
1326 .timer_del = common_timer_del,
1327 .timer_rearm = common_hrtimer_rearm,
1328 .timer_forward = common_hrtimer_forward,
1329 .timer_remaining = common_hrtimer_remaining,
1330 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1331 .timer_wait_running = common_timer_wait_running,
1332 .timer_arm = common_hrtimer_arm,
1333 };
1334
1335 static const struct k_clock clock_monotonic_raw = {
1336 .clock_getres = posix_get_hrtimer_res,
1337 .clock_get_timespec = posix_get_monotonic_raw,
1338 };
1339
1340 static const struct k_clock clock_realtime_coarse = {
1341 .clock_getres = posix_get_coarse_res,
1342 .clock_get_timespec = posix_get_realtime_coarse,
1343 };
1344
1345 static const struct k_clock clock_monotonic_coarse = {
1346 .clock_getres = posix_get_coarse_res,
1347 .clock_get_timespec = posix_get_monotonic_coarse,
1348 };
1349
1350 static const struct k_clock clock_tai = {
1351 .clock_getres = posix_get_hrtimer_res,
1352 .clock_get_ktime = posix_get_tai_ktime,
1353 .clock_get_timespec = posix_get_tai_timespec,
1354 .nsleep = common_nsleep,
1355 .timer_create = common_timer_create,
1356 .timer_set = common_timer_set,
1357 .timer_get = common_timer_get,
1358 .timer_del = common_timer_del,
1359 .timer_rearm = common_hrtimer_rearm,
1360 .timer_forward = common_hrtimer_forward,
1361 .timer_remaining = common_hrtimer_remaining,
1362 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1363 .timer_wait_running = common_timer_wait_running,
1364 .timer_arm = common_hrtimer_arm,
1365 };
1366
1367 static const struct k_clock clock_boottime = {
1368 .clock_getres = posix_get_hrtimer_res,
1369 .clock_get_ktime = posix_get_boottime_ktime,
1370 .clock_get_timespec = posix_get_boottime_timespec,
1371 .nsleep = common_nsleep_timens,
1372 .timer_create = common_timer_create,
1373 .timer_set = common_timer_set,
1374 .timer_get = common_timer_get,
1375 .timer_del = common_timer_del,
1376 .timer_rearm = common_hrtimer_rearm,
1377 .timer_forward = common_hrtimer_forward,
1378 .timer_remaining = common_hrtimer_remaining,
1379 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1380 .timer_wait_running = common_timer_wait_running,
1381 .timer_arm = common_hrtimer_arm,
1382 };
1383
1384 static const struct k_clock * const posix_clocks[] = {
1385 [CLOCK_REALTIME] = &clock_realtime,
1386 [CLOCK_MONOTONIC] = &clock_monotonic,
1387 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1388 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1389 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1390 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1391 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
1392 [CLOCK_BOOTTIME] = &clock_boottime,
1393 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1394 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1395 [CLOCK_TAI] = &clock_tai,
1396 };
1397
1398 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1399 {
1400 clockid_t idx = id;
1401
1402 if (id < 0) {
1403 return (id & CLOCKFD_MASK) == CLOCKFD ?
1404 &clock_posix_dynamic : &clock_posix_cpu;
1405 }
1406
1407 if (id >= ARRAY_SIZE(posix_clocks))
1408 return NULL;
1409
1410 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1411 }