]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/time/posix-timers.c
Merge tag 'arc-4.15-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[mirror_ubuntu-bionic-kernel.git] / kernel / time / posix-timers.c
1 /*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 #include <linux/sched/task.h>
39
40 #include <linux/uaccess.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/hash.h>
45 #include <linux/posix-clock.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/export.h>
51 #include <linux/hashtable.h>
52 #include <linux/compat.h>
53
54 #include "timekeeping.h"
55 #include "posix-timers.h"
56
57 /*
58 * Management arrays for POSIX timers. Timers are now kept in static hash table
59 * with 512 entries.
60 * Timer ids are allocated by local routine, which selects proper hash head by
61 * key, constructed from current->signal address and per signal struct counter.
62 * This keeps timer ids unique per process, but now they can intersect between
63 * processes.
64 */
65
66 /*
67 * Lets keep our timers in a slab cache :-)
68 */
69 static struct kmem_cache *posix_timers_cache;
70
71 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
72 static DEFINE_SPINLOCK(hash_lock);
73
74 static const struct k_clock * const posix_clocks[];
75 static const struct k_clock *clockid_to_kclock(const clockid_t id);
76 static const struct k_clock clock_realtime, clock_monotonic;
77
78 /*
79 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
80 * SIGEV values. Here we put out an error if this assumption fails.
81 */
82 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
83 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
84 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
85 #endif
86
87 /*
88 * parisc wants ENOTSUP instead of EOPNOTSUPP
89 */
90 #ifndef ENOTSUP
91 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
92 #else
93 # define ENANOSLEEP_NOTSUP ENOTSUP
94 #endif
95
96 /*
97 * The timer ID is turned into a timer address by idr_find().
98 * Verifying a valid ID consists of:
99 *
100 * a) checking that idr_find() returns other than -1.
101 * b) checking that the timer id matches the one in the timer itself.
102 * c) that the timer owner is in the callers thread group.
103 */
104
105 /*
106 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
107 * to implement others. This structure defines the various
108 * clocks.
109 *
110 * RESOLUTION: Clock resolution is used to round up timer and interval
111 * times, NOT to report clock times, which are reported with as
112 * much resolution as the system can muster. In some cases this
113 * resolution may depend on the underlying clock hardware and
114 * may not be quantifiable until run time, and only then is the
115 * necessary code is written. The standard says we should say
116 * something about this issue in the documentation...
117 *
118 * FUNCTIONS: The CLOCKs structure defines possible functions to
119 * handle various clock functions.
120 *
121 * The standard POSIX timer management code assumes the
122 * following: 1.) The k_itimer struct (sched.h) is used for
123 * the timer. 2.) The list, it_lock, it_clock, it_id and
124 * it_pid fields are not modified by timer code.
125 *
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
132 */
133 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
134
135 #define lock_timer(tid, flags) \
136 ({ struct k_itimer *__timr; \
137 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
138 __timr; \
139 })
140
141 static int hash(struct signal_struct *sig, unsigned int nr)
142 {
143 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
144 }
145
146 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
147 struct signal_struct *sig,
148 timer_t id)
149 {
150 struct k_itimer *timer;
151
152 hlist_for_each_entry_rcu(timer, head, t_hash) {
153 if ((timer->it_signal == sig) && (timer->it_id == id))
154 return timer;
155 }
156 return NULL;
157 }
158
159 static struct k_itimer *posix_timer_by_id(timer_t id)
160 {
161 struct signal_struct *sig = current->signal;
162 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
163
164 return __posix_timers_find(head, sig, id);
165 }
166
167 static int posix_timer_add(struct k_itimer *timer)
168 {
169 struct signal_struct *sig = current->signal;
170 int first_free_id = sig->posix_timer_id;
171 struct hlist_head *head;
172 int ret = -ENOENT;
173
174 do {
175 spin_lock(&hash_lock);
176 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
177 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
178 hlist_add_head_rcu(&timer->t_hash, head);
179 ret = sig->posix_timer_id;
180 }
181 if (++sig->posix_timer_id < 0)
182 sig->posix_timer_id = 0;
183 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
184 /* Loop over all possible ids completed */
185 ret = -EAGAIN;
186 spin_unlock(&hash_lock);
187 } while (ret == -ENOENT);
188 return ret;
189 }
190
191 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
192 {
193 spin_unlock_irqrestore(&timr->it_lock, flags);
194 }
195
196 /* Get clock_realtime */
197 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
198 {
199 ktime_get_real_ts64(tp);
200 return 0;
201 }
202
203 /* Set clock_realtime */
204 static int posix_clock_realtime_set(const clockid_t which_clock,
205 const struct timespec64 *tp)
206 {
207 return do_sys_settimeofday64(tp, NULL);
208 }
209
210 static int posix_clock_realtime_adj(const clockid_t which_clock,
211 struct timex *t)
212 {
213 return do_adjtimex(t);
214 }
215
216 /*
217 * Get monotonic time for posix timers
218 */
219 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
220 {
221 ktime_get_ts64(tp);
222 return 0;
223 }
224
225 /*
226 * Get monotonic-raw time for posix timers
227 */
228 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
229 {
230 getrawmonotonic64(tp);
231 return 0;
232 }
233
234
235 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
236 {
237 *tp = current_kernel_time64();
238 return 0;
239 }
240
241 static int posix_get_monotonic_coarse(clockid_t which_clock,
242 struct timespec64 *tp)
243 {
244 *tp = get_monotonic_coarse64();
245 return 0;
246 }
247
248 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
249 {
250 *tp = ktime_to_timespec64(KTIME_LOW_RES);
251 return 0;
252 }
253
254 static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
255 {
256 get_monotonic_boottime64(tp);
257 return 0;
258 }
259
260 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
261 {
262 timekeeping_clocktai64(tp);
263 return 0;
264 }
265
266 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
267 {
268 tp->tv_sec = 0;
269 tp->tv_nsec = hrtimer_resolution;
270 return 0;
271 }
272
273 /*
274 * Initialize everything, well, just everything in Posix clocks/timers ;)
275 */
276 static __init int init_posix_timers(void)
277 {
278 posix_timers_cache = kmem_cache_create("posix_timers_cache",
279 sizeof (struct k_itimer), 0, SLAB_PANIC,
280 NULL);
281 return 0;
282 }
283 __initcall(init_posix_timers);
284
285 static void common_hrtimer_rearm(struct k_itimer *timr)
286 {
287 struct hrtimer *timer = &timr->it.real.timer;
288
289 if (!timr->it_interval)
290 return;
291
292 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
293 timer->base->get_time(),
294 timr->it_interval);
295 hrtimer_restart(timer);
296 }
297
298 /*
299 * This function is exported for use by the signal deliver code. It is
300 * called just prior to the info block being released and passes that
301 * block to us. It's function is to update the overrun entry AND to
302 * restart the timer. It should only be called if the timer is to be
303 * restarted (i.e. we have flagged this in the sys_private entry of the
304 * info block).
305 *
306 * To protect against the timer going away while the interrupt is queued,
307 * we require that the it_requeue_pending flag be set.
308 */
309 void posixtimer_rearm(struct siginfo *info)
310 {
311 struct k_itimer *timr;
312 unsigned long flags;
313
314 timr = lock_timer(info->si_tid, &flags);
315 if (!timr)
316 return;
317
318 if (timr->it_requeue_pending == info->si_sys_private) {
319 timr->kclock->timer_rearm(timr);
320
321 timr->it_active = 1;
322 timr->it_overrun_last = timr->it_overrun;
323 timr->it_overrun = -1;
324 ++timr->it_requeue_pending;
325
326 info->si_overrun += timr->it_overrun_last;
327 }
328
329 unlock_timer(timr, flags);
330 }
331
332 int posix_timer_event(struct k_itimer *timr, int si_private)
333 {
334 struct task_struct *task;
335 int shared, ret = -1;
336 /*
337 * FIXME: if ->sigq is queued we can race with
338 * dequeue_signal()->posixtimer_rearm().
339 *
340 * If dequeue_signal() sees the "right" value of
341 * si_sys_private it calls posixtimer_rearm().
342 * We re-queue ->sigq and drop ->it_lock().
343 * posixtimer_rearm() locks the timer
344 * and re-schedules it while ->sigq is pending.
345 * Not really bad, but not that we want.
346 */
347 timr->sigq->info.si_sys_private = si_private;
348
349 rcu_read_lock();
350 task = pid_task(timr->it_pid, PIDTYPE_PID);
351 if (task) {
352 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
353 ret = send_sigqueue(timr->sigq, task, shared);
354 }
355 rcu_read_unlock();
356 /* If we failed to send the signal the timer stops. */
357 return ret > 0;
358 }
359
360 /*
361 * This function gets called when a POSIX.1b interval timer expires. It
362 * is used as a callback from the kernel internal timer. The
363 * run_timer_list code ALWAYS calls with interrupts on.
364
365 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
366 */
367 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
368 {
369 struct k_itimer *timr;
370 unsigned long flags;
371 int si_private = 0;
372 enum hrtimer_restart ret = HRTIMER_NORESTART;
373
374 timr = container_of(timer, struct k_itimer, it.real.timer);
375 spin_lock_irqsave(&timr->it_lock, flags);
376
377 timr->it_active = 0;
378 if (timr->it_interval != 0)
379 si_private = ++timr->it_requeue_pending;
380
381 if (posix_timer_event(timr, si_private)) {
382 /*
383 * signal was not sent because of sig_ignor
384 * we will not get a call back to restart it AND
385 * it should be restarted.
386 */
387 if (timr->it_interval != 0) {
388 ktime_t now = hrtimer_cb_get_time(timer);
389
390 /*
391 * FIXME: What we really want, is to stop this
392 * timer completely and restart it in case the
393 * SIG_IGN is removed. This is a non trivial
394 * change which involves sighand locking
395 * (sigh !), which we don't want to do late in
396 * the release cycle.
397 *
398 * For now we just let timers with an interval
399 * less than a jiffie expire every jiffie to
400 * avoid softirq starvation in case of SIG_IGN
401 * and a very small interval, which would put
402 * the timer right back on the softirq pending
403 * list. By moving now ahead of time we trick
404 * hrtimer_forward() to expire the timer
405 * later, while we still maintain the overrun
406 * accuracy, but have some inconsistency in
407 * the timer_gettime() case. This is at least
408 * better than a starved softirq. A more
409 * complex fix which solves also another related
410 * inconsistency is already in the pipeline.
411 */
412 #ifdef CONFIG_HIGH_RES_TIMERS
413 {
414 ktime_t kj = NSEC_PER_SEC / HZ;
415
416 if (timr->it_interval < kj)
417 now = ktime_add(now, kj);
418 }
419 #endif
420 timr->it_overrun += (unsigned int)
421 hrtimer_forward(timer, now,
422 timr->it_interval);
423 ret = HRTIMER_RESTART;
424 ++timr->it_requeue_pending;
425 timr->it_active = 1;
426 }
427 }
428
429 unlock_timer(timr, flags);
430 return ret;
431 }
432
433 static struct pid *good_sigevent(sigevent_t * event)
434 {
435 struct task_struct *rtn = current->group_leader;
436
437 switch (event->sigev_notify) {
438 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
439 rtn = find_task_by_vpid(event->sigev_notify_thread_id);
440 if (!rtn || !same_thread_group(rtn, current))
441 return NULL;
442 /* FALLTHRU */
443 case SIGEV_SIGNAL:
444 case SIGEV_THREAD:
445 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
446 return NULL;
447 /* FALLTHRU */
448 case SIGEV_NONE:
449 return task_pid(rtn);
450 default:
451 return NULL;
452 }
453 }
454
455 static struct k_itimer * alloc_posix_timer(void)
456 {
457 struct k_itimer *tmr;
458 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
459 if (!tmr)
460 return tmr;
461 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
462 kmem_cache_free(posix_timers_cache, tmr);
463 return NULL;
464 }
465 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
466 return tmr;
467 }
468
469 static void k_itimer_rcu_free(struct rcu_head *head)
470 {
471 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
472
473 kmem_cache_free(posix_timers_cache, tmr);
474 }
475
476 #define IT_ID_SET 1
477 #define IT_ID_NOT_SET 0
478 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
479 {
480 if (it_id_set) {
481 unsigned long flags;
482 spin_lock_irqsave(&hash_lock, flags);
483 hlist_del_rcu(&tmr->t_hash);
484 spin_unlock_irqrestore(&hash_lock, flags);
485 }
486 put_pid(tmr->it_pid);
487 sigqueue_free(tmr->sigq);
488 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
489 }
490
491 static int common_timer_create(struct k_itimer *new_timer)
492 {
493 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
494 return 0;
495 }
496
497 /* Create a POSIX.1b interval timer. */
498 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
499 timer_t __user *created_timer_id)
500 {
501 const struct k_clock *kc = clockid_to_kclock(which_clock);
502 struct k_itimer *new_timer;
503 int error, new_timer_id;
504 int it_id_set = IT_ID_NOT_SET;
505
506 if (!kc)
507 return -EINVAL;
508 if (!kc->timer_create)
509 return -EOPNOTSUPP;
510
511 new_timer = alloc_posix_timer();
512 if (unlikely(!new_timer))
513 return -EAGAIN;
514
515 spin_lock_init(&new_timer->it_lock);
516 new_timer_id = posix_timer_add(new_timer);
517 if (new_timer_id < 0) {
518 error = new_timer_id;
519 goto out;
520 }
521
522 it_id_set = IT_ID_SET;
523 new_timer->it_id = (timer_t) new_timer_id;
524 new_timer->it_clock = which_clock;
525 new_timer->kclock = kc;
526 new_timer->it_overrun = -1;
527
528 if (event) {
529 rcu_read_lock();
530 new_timer->it_pid = get_pid(good_sigevent(event));
531 rcu_read_unlock();
532 if (!new_timer->it_pid) {
533 error = -EINVAL;
534 goto out;
535 }
536 new_timer->it_sigev_notify = event->sigev_notify;
537 new_timer->sigq->info.si_signo = event->sigev_signo;
538 new_timer->sigq->info.si_value = event->sigev_value;
539 } else {
540 new_timer->it_sigev_notify = SIGEV_SIGNAL;
541 new_timer->sigq->info.si_signo = SIGALRM;
542 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
543 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
544 new_timer->it_pid = get_pid(task_tgid(current));
545 }
546
547 new_timer->sigq->info.si_tid = new_timer->it_id;
548 new_timer->sigq->info.si_code = SI_TIMER;
549
550 if (copy_to_user(created_timer_id,
551 &new_timer_id, sizeof (new_timer_id))) {
552 error = -EFAULT;
553 goto out;
554 }
555
556 error = kc->timer_create(new_timer);
557 if (error)
558 goto out;
559
560 spin_lock_irq(&current->sighand->siglock);
561 new_timer->it_signal = current->signal;
562 list_add(&new_timer->list, &current->signal->posix_timers);
563 spin_unlock_irq(&current->sighand->siglock);
564
565 return 0;
566 /*
567 * In the case of the timer belonging to another task, after
568 * the task is unlocked, the timer is owned by the other task
569 * and may cease to exist at any time. Don't use or modify
570 * new_timer after the unlock call.
571 */
572 out:
573 release_posix_timer(new_timer, it_id_set);
574 return error;
575 }
576
577 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
578 struct sigevent __user *, timer_event_spec,
579 timer_t __user *, created_timer_id)
580 {
581 if (timer_event_spec) {
582 sigevent_t event;
583
584 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
585 return -EFAULT;
586 return do_timer_create(which_clock, &event, created_timer_id);
587 }
588 return do_timer_create(which_clock, NULL, created_timer_id);
589 }
590
591 #ifdef CONFIG_COMPAT
592 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
593 struct compat_sigevent __user *, timer_event_spec,
594 timer_t __user *, created_timer_id)
595 {
596 if (timer_event_spec) {
597 sigevent_t event;
598
599 if (get_compat_sigevent(&event, timer_event_spec))
600 return -EFAULT;
601 return do_timer_create(which_clock, &event, created_timer_id);
602 }
603 return do_timer_create(which_clock, NULL, created_timer_id);
604 }
605 #endif
606
607 /*
608 * Locking issues: We need to protect the result of the id look up until
609 * we get the timer locked down so it is not deleted under us. The
610 * removal is done under the idr spinlock so we use that here to bridge
611 * the find to the timer lock. To avoid a dead lock, the timer id MUST
612 * be release with out holding the timer lock.
613 */
614 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
615 {
616 struct k_itimer *timr;
617
618 /*
619 * timer_t could be any type >= int and we want to make sure any
620 * @timer_id outside positive int range fails lookup.
621 */
622 if ((unsigned long long)timer_id > INT_MAX)
623 return NULL;
624
625 rcu_read_lock();
626 timr = posix_timer_by_id(timer_id);
627 if (timr) {
628 spin_lock_irqsave(&timr->it_lock, *flags);
629 if (timr->it_signal == current->signal) {
630 rcu_read_unlock();
631 return timr;
632 }
633 spin_unlock_irqrestore(&timr->it_lock, *flags);
634 }
635 rcu_read_unlock();
636
637 return NULL;
638 }
639
640 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
641 {
642 struct hrtimer *timer = &timr->it.real.timer;
643
644 return __hrtimer_expires_remaining_adjusted(timer, now);
645 }
646
647 static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
648 {
649 struct hrtimer *timer = &timr->it.real.timer;
650
651 return (int)hrtimer_forward(timer, now, timr->it_interval);
652 }
653
654 /*
655 * Get the time remaining on a POSIX.1b interval timer. This function
656 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
657 * mess with irq.
658 *
659 * We have a couple of messes to clean up here. First there is the case
660 * of a timer that has a requeue pending. These timers should appear to
661 * be in the timer list with an expiry as if we were to requeue them
662 * now.
663 *
664 * The second issue is the SIGEV_NONE timer which may be active but is
665 * not really ever put in the timer list (to save system resources).
666 * This timer may be expired, and if so, we will do it here. Otherwise
667 * it is the same as a requeue pending timer WRT to what we should
668 * report.
669 */
670 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
671 {
672 const struct k_clock *kc = timr->kclock;
673 ktime_t now, remaining, iv;
674 struct timespec64 ts64;
675 bool sig_none;
676
677 sig_none = timr->it_sigev_notify == SIGEV_NONE;
678 iv = timr->it_interval;
679
680 /* interval timer ? */
681 if (iv) {
682 cur_setting->it_interval = ktime_to_timespec64(iv);
683 } else if (!timr->it_active) {
684 /*
685 * SIGEV_NONE oneshot timers are never queued. Check them
686 * below.
687 */
688 if (!sig_none)
689 return;
690 }
691
692 /*
693 * The timespec64 based conversion is suboptimal, but it's not
694 * worth to implement yet another callback.
695 */
696 kc->clock_get(timr->it_clock, &ts64);
697 now = timespec64_to_ktime(ts64);
698
699 /*
700 * When a requeue is pending or this is a SIGEV_NONE timer move the
701 * expiry time forward by intervals, so expiry is > now.
702 */
703 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
704 timr->it_overrun += kc->timer_forward(timr, now);
705
706 remaining = kc->timer_remaining(timr, now);
707 /* Return 0 only, when the timer is expired and not pending */
708 if (remaining <= 0) {
709 /*
710 * A single shot SIGEV_NONE timer must return 0, when
711 * it is expired !
712 */
713 if (!sig_none)
714 cur_setting->it_value.tv_nsec = 1;
715 } else {
716 cur_setting->it_value = ktime_to_timespec64(remaining);
717 }
718 }
719
720 /* Get the time remaining on a POSIX.1b interval timer. */
721 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
722 {
723 struct k_itimer *timr;
724 const struct k_clock *kc;
725 unsigned long flags;
726 int ret = 0;
727
728 timr = lock_timer(timer_id, &flags);
729 if (!timr)
730 return -EINVAL;
731
732 memset(setting, 0, sizeof(*setting));
733 kc = timr->kclock;
734 if (WARN_ON_ONCE(!kc || !kc->timer_get))
735 ret = -EINVAL;
736 else
737 kc->timer_get(timr, setting);
738
739 unlock_timer(timr, flags);
740 return ret;
741 }
742
743 /* Get the time remaining on a POSIX.1b interval timer. */
744 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
745 struct itimerspec __user *, setting)
746 {
747 struct itimerspec64 cur_setting;
748
749 int ret = do_timer_gettime(timer_id, &cur_setting);
750 if (!ret) {
751 if (put_itimerspec64(&cur_setting, setting))
752 ret = -EFAULT;
753 }
754 return ret;
755 }
756
757 #ifdef CONFIG_COMPAT
758 COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
759 struct compat_itimerspec __user *, setting)
760 {
761 struct itimerspec64 cur_setting;
762
763 int ret = do_timer_gettime(timer_id, &cur_setting);
764 if (!ret) {
765 if (put_compat_itimerspec64(&cur_setting, setting))
766 ret = -EFAULT;
767 }
768 return ret;
769 }
770 #endif
771
772 /*
773 * Get the number of overruns of a POSIX.1b interval timer. This is to
774 * be the overrun of the timer last delivered. At the same time we are
775 * accumulating overruns on the next timer. The overrun is frozen when
776 * the signal is delivered, either at the notify time (if the info block
777 * is not queued) or at the actual delivery time (as we are informed by
778 * the call back to posixtimer_rearm(). So all we need to do is
779 * to pick up the frozen overrun.
780 */
781 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
782 {
783 struct k_itimer *timr;
784 int overrun;
785 unsigned long flags;
786
787 timr = lock_timer(timer_id, &flags);
788 if (!timr)
789 return -EINVAL;
790
791 overrun = timr->it_overrun_last;
792 unlock_timer(timr, flags);
793
794 return overrun;
795 }
796
797 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
798 bool absolute, bool sigev_none)
799 {
800 struct hrtimer *timer = &timr->it.real.timer;
801 enum hrtimer_mode mode;
802
803 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
804 /*
805 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
806 * clock modifications, so they become CLOCK_MONOTONIC based under the
807 * hood. See hrtimer_init(). Update timr->kclock, so the generic
808 * functions which use timr->kclock->clock_get() work.
809 *
810 * Note: it_clock stays unmodified, because the next timer_set() might
811 * use ABSTIME, so it needs to switch back.
812 */
813 if (timr->it_clock == CLOCK_REALTIME)
814 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
815
816 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
817 timr->it.real.timer.function = posix_timer_fn;
818
819 if (!absolute)
820 expires = ktime_add_safe(expires, timer->base->get_time());
821 hrtimer_set_expires(timer, expires);
822
823 if (!sigev_none)
824 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
825 }
826
827 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
828 {
829 return hrtimer_try_to_cancel(&timr->it.real.timer);
830 }
831
832 /* Set a POSIX.1b interval timer. */
833 int common_timer_set(struct k_itimer *timr, int flags,
834 struct itimerspec64 *new_setting,
835 struct itimerspec64 *old_setting)
836 {
837 const struct k_clock *kc = timr->kclock;
838 bool sigev_none;
839 ktime_t expires;
840
841 if (old_setting)
842 common_timer_get(timr, old_setting);
843
844 /* Prevent rearming by clearing the interval */
845 timr->it_interval = 0;
846 /*
847 * Careful here. On SMP systems the timer expiry function could be
848 * active and spinning on timr->it_lock.
849 */
850 if (kc->timer_try_to_cancel(timr) < 0)
851 return TIMER_RETRY;
852
853 timr->it_active = 0;
854 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
855 ~REQUEUE_PENDING;
856 timr->it_overrun_last = 0;
857
858 /* Switch off the timer when it_value is zero */
859 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
860 return 0;
861
862 timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
863 expires = timespec64_to_ktime(new_setting->it_value);
864 sigev_none = timr->it_sigev_notify == SIGEV_NONE;
865
866 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
867 timr->it_active = !sigev_none;
868 return 0;
869 }
870
871 static int do_timer_settime(timer_t timer_id, int flags,
872 struct itimerspec64 *new_spec64,
873 struct itimerspec64 *old_spec64)
874 {
875 const struct k_clock *kc;
876 struct k_itimer *timr;
877 unsigned long flag;
878 int error = 0;
879
880 if (!timespec64_valid(&new_spec64->it_interval) ||
881 !timespec64_valid(&new_spec64->it_value))
882 return -EINVAL;
883
884 if (old_spec64)
885 memset(old_spec64, 0, sizeof(*old_spec64));
886 retry:
887 timr = lock_timer(timer_id, &flag);
888 if (!timr)
889 return -EINVAL;
890
891 kc = timr->kclock;
892 if (WARN_ON_ONCE(!kc || !kc->timer_set))
893 error = -EINVAL;
894 else
895 error = kc->timer_set(timr, flags, new_spec64, old_spec64);
896
897 unlock_timer(timr, flag);
898 if (error == TIMER_RETRY) {
899 old_spec64 = NULL; // We already got the old time...
900 goto retry;
901 }
902
903 return error;
904 }
905
906 /* Set a POSIX.1b interval timer */
907 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
908 const struct itimerspec __user *, new_setting,
909 struct itimerspec __user *, old_setting)
910 {
911 struct itimerspec64 new_spec, old_spec;
912 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
913 int error = 0;
914
915 if (!new_setting)
916 return -EINVAL;
917
918 if (get_itimerspec64(&new_spec, new_setting))
919 return -EFAULT;
920
921 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
922 if (!error && old_setting) {
923 if (put_itimerspec64(&old_spec, old_setting))
924 error = -EFAULT;
925 }
926 return error;
927 }
928
929 #ifdef CONFIG_COMPAT
930 COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
931 struct compat_itimerspec __user *, new,
932 struct compat_itimerspec __user *, old)
933 {
934 struct itimerspec64 new_spec, old_spec;
935 struct itimerspec64 *rtn = old ? &old_spec : NULL;
936 int error = 0;
937
938 if (!new)
939 return -EINVAL;
940 if (get_compat_itimerspec64(&new_spec, new))
941 return -EFAULT;
942
943 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
944 if (!error && old) {
945 if (put_compat_itimerspec64(&old_spec, old))
946 error = -EFAULT;
947 }
948 return error;
949 }
950 #endif
951
952 int common_timer_del(struct k_itimer *timer)
953 {
954 const struct k_clock *kc = timer->kclock;
955
956 timer->it_interval = 0;
957 if (kc->timer_try_to_cancel(timer) < 0)
958 return TIMER_RETRY;
959 timer->it_active = 0;
960 return 0;
961 }
962
963 static inline int timer_delete_hook(struct k_itimer *timer)
964 {
965 const struct k_clock *kc = timer->kclock;
966
967 if (WARN_ON_ONCE(!kc || !kc->timer_del))
968 return -EINVAL;
969 return kc->timer_del(timer);
970 }
971
972 /* Delete a POSIX.1b interval timer. */
973 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
974 {
975 struct k_itimer *timer;
976 unsigned long flags;
977
978 retry_delete:
979 timer = lock_timer(timer_id, &flags);
980 if (!timer)
981 return -EINVAL;
982
983 if (timer_delete_hook(timer) == TIMER_RETRY) {
984 unlock_timer(timer, flags);
985 goto retry_delete;
986 }
987
988 spin_lock(&current->sighand->siglock);
989 list_del(&timer->list);
990 spin_unlock(&current->sighand->siglock);
991 /*
992 * This keeps any tasks waiting on the spin lock from thinking
993 * they got something (see the lock code above).
994 */
995 timer->it_signal = NULL;
996
997 unlock_timer(timer, flags);
998 release_posix_timer(timer, IT_ID_SET);
999 return 0;
1000 }
1001
1002 /*
1003 * return timer owned by the process, used by exit_itimers
1004 */
1005 static void itimer_delete(struct k_itimer *timer)
1006 {
1007 unsigned long flags;
1008
1009 retry_delete:
1010 spin_lock_irqsave(&timer->it_lock, flags);
1011
1012 if (timer_delete_hook(timer) == TIMER_RETRY) {
1013 unlock_timer(timer, flags);
1014 goto retry_delete;
1015 }
1016 list_del(&timer->list);
1017 /*
1018 * This keeps any tasks waiting on the spin lock from thinking
1019 * they got something (see the lock code above).
1020 */
1021 timer->it_signal = NULL;
1022
1023 unlock_timer(timer, flags);
1024 release_posix_timer(timer, IT_ID_SET);
1025 }
1026
1027 /*
1028 * This is called by do_exit or de_thread, only when there are no more
1029 * references to the shared signal_struct.
1030 */
1031 void exit_itimers(struct signal_struct *sig)
1032 {
1033 struct k_itimer *tmr;
1034
1035 while (!list_empty(&sig->posix_timers)) {
1036 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1037 itimer_delete(tmr);
1038 }
1039 }
1040
1041 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1042 const struct timespec __user *, tp)
1043 {
1044 const struct k_clock *kc = clockid_to_kclock(which_clock);
1045 struct timespec64 new_tp;
1046
1047 if (!kc || !kc->clock_set)
1048 return -EINVAL;
1049
1050 if (get_timespec64(&new_tp, tp))
1051 return -EFAULT;
1052
1053 return kc->clock_set(which_clock, &new_tp);
1054 }
1055
1056 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1057 struct timespec __user *,tp)
1058 {
1059 const struct k_clock *kc = clockid_to_kclock(which_clock);
1060 struct timespec64 kernel_tp;
1061 int error;
1062
1063 if (!kc)
1064 return -EINVAL;
1065
1066 error = kc->clock_get(which_clock, &kernel_tp);
1067
1068 if (!error && put_timespec64(&kernel_tp, tp))
1069 error = -EFAULT;
1070
1071 return error;
1072 }
1073
1074 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1075 struct timex __user *, utx)
1076 {
1077 const struct k_clock *kc = clockid_to_kclock(which_clock);
1078 struct timex ktx;
1079 int err;
1080
1081 if (!kc)
1082 return -EINVAL;
1083 if (!kc->clock_adj)
1084 return -EOPNOTSUPP;
1085
1086 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1087 return -EFAULT;
1088
1089 err = kc->clock_adj(which_clock, &ktx);
1090
1091 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1092 return -EFAULT;
1093
1094 return err;
1095 }
1096
1097 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1098 struct timespec __user *, tp)
1099 {
1100 const struct k_clock *kc = clockid_to_kclock(which_clock);
1101 struct timespec64 rtn_tp;
1102 int error;
1103
1104 if (!kc)
1105 return -EINVAL;
1106
1107 error = kc->clock_getres(which_clock, &rtn_tp);
1108
1109 if (!error && tp && put_timespec64(&rtn_tp, tp))
1110 error = -EFAULT;
1111
1112 return error;
1113 }
1114
1115 #ifdef CONFIG_COMPAT
1116
1117 COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1118 struct compat_timespec __user *, tp)
1119 {
1120 const struct k_clock *kc = clockid_to_kclock(which_clock);
1121 struct timespec64 ts;
1122
1123 if (!kc || !kc->clock_set)
1124 return -EINVAL;
1125
1126 if (compat_get_timespec64(&ts, tp))
1127 return -EFAULT;
1128
1129 return kc->clock_set(which_clock, &ts);
1130 }
1131
1132 COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1133 struct compat_timespec __user *, tp)
1134 {
1135 const struct k_clock *kc = clockid_to_kclock(which_clock);
1136 struct timespec64 ts;
1137 int err;
1138
1139 if (!kc)
1140 return -EINVAL;
1141
1142 err = kc->clock_get(which_clock, &ts);
1143
1144 if (!err && compat_put_timespec64(&ts, tp))
1145 err = -EFAULT;
1146
1147 return err;
1148 }
1149
1150 COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1151 struct compat_timex __user *, utp)
1152 {
1153 const struct k_clock *kc = clockid_to_kclock(which_clock);
1154 struct timex ktx;
1155 int err;
1156
1157 if (!kc)
1158 return -EINVAL;
1159 if (!kc->clock_adj)
1160 return -EOPNOTSUPP;
1161
1162 err = compat_get_timex(&ktx, utp);
1163 if (err)
1164 return err;
1165
1166 err = kc->clock_adj(which_clock, &ktx);
1167
1168 if (err >= 0)
1169 err = compat_put_timex(utp, &ktx);
1170
1171 return err;
1172 }
1173
1174 COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1175 struct compat_timespec __user *, tp)
1176 {
1177 const struct k_clock *kc = clockid_to_kclock(which_clock);
1178 struct timespec64 ts;
1179 int err;
1180
1181 if (!kc)
1182 return -EINVAL;
1183
1184 err = kc->clock_getres(which_clock, &ts);
1185 if (!err && tp && compat_put_timespec64(&ts, tp))
1186 return -EFAULT;
1187
1188 return err;
1189 }
1190
1191 #endif
1192
1193 /*
1194 * nanosleep for monotonic and realtime clocks
1195 */
1196 static int common_nsleep(const clockid_t which_clock, int flags,
1197 const struct timespec64 *rqtp)
1198 {
1199 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1200 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1201 which_clock);
1202 }
1203
1204 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1205 const struct timespec __user *, rqtp,
1206 struct timespec __user *, rmtp)
1207 {
1208 const struct k_clock *kc = clockid_to_kclock(which_clock);
1209 struct timespec64 t;
1210
1211 if (!kc)
1212 return -EINVAL;
1213 if (!kc->nsleep)
1214 return -ENANOSLEEP_NOTSUP;
1215
1216 if (get_timespec64(&t, rqtp))
1217 return -EFAULT;
1218
1219 if (!timespec64_valid(&t))
1220 return -EINVAL;
1221 if (flags & TIMER_ABSTIME)
1222 rmtp = NULL;
1223 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1224 current->restart_block.nanosleep.rmtp = rmtp;
1225
1226 return kc->nsleep(which_clock, flags, &t);
1227 }
1228
1229 #ifdef CONFIG_COMPAT
1230 COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1231 struct compat_timespec __user *, rqtp,
1232 struct compat_timespec __user *, rmtp)
1233 {
1234 const struct k_clock *kc = clockid_to_kclock(which_clock);
1235 struct timespec64 t;
1236
1237 if (!kc)
1238 return -EINVAL;
1239 if (!kc->nsleep)
1240 return -ENANOSLEEP_NOTSUP;
1241
1242 if (compat_get_timespec64(&t, rqtp))
1243 return -EFAULT;
1244
1245 if (!timespec64_valid(&t))
1246 return -EINVAL;
1247 if (flags & TIMER_ABSTIME)
1248 rmtp = NULL;
1249 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1250 current->restart_block.nanosleep.compat_rmtp = rmtp;
1251
1252 return kc->nsleep(which_clock, flags, &t);
1253 }
1254 #endif
1255
1256 static const struct k_clock clock_realtime = {
1257 .clock_getres = posix_get_hrtimer_res,
1258 .clock_get = posix_clock_realtime_get,
1259 .clock_set = posix_clock_realtime_set,
1260 .clock_adj = posix_clock_realtime_adj,
1261 .nsleep = common_nsleep,
1262 .timer_create = common_timer_create,
1263 .timer_set = common_timer_set,
1264 .timer_get = common_timer_get,
1265 .timer_del = common_timer_del,
1266 .timer_rearm = common_hrtimer_rearm,
1267 .timer_forward = common_hrtimer_forward,
1268 .timer_remaining = common_hrtimer_remaining,
1269 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1270 .timer_arm = common_hrtimer_arm,
1271 };
1272
1273 static const struct k_clock clock_monotonic = {
1274 .clock_getres = posix_get_hrtimer_res,
1275 .clock_get = posix_ktime_get_ts,
1276 .nsleep = common_nsleep,
1277 .timer_create = common_timer_create,
1278 .timer_set = common_timer_set,
1279 .timer_get = common_timer_get,
1280 .timer_del = common_timer_del,
1281 .timer_rearm = common_hrtimer_rearm,
1282 .timer_forward = common_hrtimer_forward,
1283 .timer_remaining = common_hrtimer_remaining,
1284 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1285 .timer_arm = common_hrtimer_arm,
1286 };
1287
1288 static const struct k_clock clock_monotonic_raw = {
1289 .clock_getres = posix_get_hrtimer_res,
1290 .clock_get = posix_get_monotonic_raw,
1291 };
1292
1293 static const struct k_clock clock_realtime_coarse = {
1294 .clock_getres = posix_get_coarse_res,
1295 .clock_get = posix_get_realtime_coarse,
1296 };
1297
1298 static const struct k_clock clock_monotonic_coarse = {
1299 .clock_getres = posix_get_coarse_res,
1300 .clock_get = posix_get_monotonic_coarse,
1301 };
1302
1303 static const struct k_clock clock_tai = {
1304 .clock_getres = posix_get_hrtimer_res,
1305 .clock_get = posix_get_tai,
1306 .nsleep = common_nsleep,
1307 .timer_create = common_timer_create,
1308 .timer_set = common_timer_set,
1309 .timer_get = common_timer_get,
1310 .timer_del = common_timer_del,
1311 .timer_rearm = common_hrtimer_rearm,
1312 .timer_forward = common_hrtimer_forward,
1313 .timer_remaining = common_hrtimer_remaining,
1314 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1315 .timer_arm = common_hrtimer_arm,
1316 };
1317
1318 static const struct k_clock clock_boottime = {
1319 .clock_getres = posix_get_hrtimer_res,
1320 .clock_get = posix_get_boottime,
1321 .nsleep = common_nsleep,
1322 .timer_create = common_timer_create,
1323 .timer_set = common_timer_set,
1324 .timer_get = common_timer_get,
1325 .timer_del = common_timer_del,
1326 .timer_rearm = common_hrtimer_rearm,
1327 .timer_forward = common_hrtimer_forward,
1328 .timer_remaining = common_hrtimer_remaining,
1329 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1330 .timer_arm = common_hrtimer_arm,
1331 };
1332
1333 static const struct k_clock * const posix_clocks[] = {
1334 [CLOCK_REALTIME] = &clock_realtime,
1335 [CLOCK_MONOTONIC] = &clock_monotonic,
1336 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1337 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1338 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1339 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1340 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
1341 [CLOCK_BOOTTIME] = &clock_boottime,
1342 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1343 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1344 [CLOCK_TAI] = &clock_tai,
1345 };
1346
1347 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1348 {
1349 if (id < 0)
1350 return (id & CLOCKFD_MASK) == CLOCKFD ?
1351 &clock_posix_dynamic : &clock_posix_cpu;
1352
1353 if (id >= ARRAY_SIZE(posix_clocks) || !posix_clocks[id])
1354 return NULL;
1355 return posix_clocks[id];
1356 }