]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/time/tick-broadcast.c
UBUNTU: [Config] Disble stack protector for powerpc-smp
[mirror_ubuntu-zesty-kernel.git] / kernel / time / tick-broadcast.c
1 /*
2 * linux/kernel/time/tick-broadcast.c
3 *
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23
24 #include "tick-internal.h"
25
26 /*
27 * Broadcast support for broken x86 hardware, where the local apic
28 * timer stops in C3 state.
29 */
30
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask;
33 static cpumask_var_t tick_broadcast_on;
34 static cpumask_var_t tmpmask;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36 static int tick_broadcast_forced;
37
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu);
40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41 #else
42 static inline void tick_broadcast_clear_oneshot(int cpu) { }
43 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
44 #endif
45
46 /*
47 * Debugging: see timer_list.c
48 */
49 struct tick_device *tick_get_broadcast_device(void)
50 {
51 return &tick_broadcast_device;
52 }
53
54 struct cpumask *tick_get_broadcast_mask(void)
55 {
56 return tick_broadcast_mask;
57 }
58
59 /*
60 * Start the device in periodic mode
61 */
62 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
63 {
64 if (bc)
65 tick_setup_periodic(bc, 1);
66 }
67
68 /*
69 * Check, if the device can be utilized as broadcast device:
70 */
71 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
72 struct clock_event_device *newdev)
73 {
74 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
75 (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
76 (newdev->features & CLOCK_EVT_FEAT_C3STOP))
77 return false;
78
79 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
80 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
81 return false;
82
83 return !curdev || newdev->rating > curdev->rating;
84 }
85
86 /*
87 * Conditionally install/replace broadcast device
88 */
89 void tick_install_broadcast_device(struct clock_event_device *dev)
90 {
91 struct clock_event_device *cur = tick_broadcast_device.evtdev;
92
93 if (!tick_check_broadcast_device(cur, dev))
94 return;
95
96 if (!try_module_get(dev->owner))
97 return;
98
99 clockevents_exchange_device(cur, dev);
100 if (cur)
101 cur->event_handler = clockevents_handle_noop;
102 tick_broadcast_device.evtdev = dev;
103 if (!cpumask_empty(tick_broadcast_mask))
104 tick_broadcast_start_periodic(dev);
105 /*
106 * Inform all cpus about this. We might be in a situation
107 * where we did not switch to oneshot mode because the per cpu
108 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
109 * of a oneshot capable broadcast device. Without that
110 * notification the systems stays stuck in periodic mode
111 * forever.
112 */
113 if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
114 tick_clock_notify();
115 }
116
117 /*
118 * Check, if the device is the broadcast device
119 */
120 int tick_is_broadcast_device(struct clock_event_device *dev)
121 {
122 return (dev && tick_broadcast_device.evtdev == dev);
123 }
124
125 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
126 {
127 int ret = -ENODEV;
128
129 if (tick_is_broadcast_device(dev)) {
130 raw_spin_lock(&tick_broadcast_lock);
131 ret = __clockevents_update_freq(dev, freq);
132 raw_spin_unlock(&tick_broadcast_lock);
133 }
134 return ret;
135 }
136
137
138 static void err_broadcast(const struct cpumask *mask)
139 {
140 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
141 }
142
143 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
144 {
145 if (!dev->broadcast)
146 dev->broadcast = tick_broadcast;
147 if (!dev->broadcast) {
148 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
149 dev->name);
150 dev->broadcast = err_broadcast;
151 }
152 }
153
154 /*
155 * Check, if the device is disfunctional and a place holder, which
156 * needs to be handled by the broadcast device.
157 */
158 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
159 {
160 struct clock_event_device *bc = tick_broadcast_device.evtdev;
161 unsigned long flags;
162 int ret = 0;
163
164 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
165
166 /*
167 * Devices might be registered with both periodic and oneshot
168 * mode disabled. This signals, that the device needs to be
169 * operated from the broadcast device and is a placeholder for
170 * the cpu local device.
171 */
172 if (!tick_device_is_functional(dev)) {
173 dev->event_handler = tick_handle_periodic;
174 tick_device_setup_broadcast_func(dev);
175 cpumask_set_cpu(cpu, tick_broadcast_mask);
176 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
177 tick_broadcast_start_periodic(bc);
178 else
179 tick_broadcast_setup_oneshot(bc);
180 ret = 1;
181 } else {
182 /*
183 * Clear the broadcast bit for this cpu if the
184 * device is not power state affected.
185 */
186 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
187 cpumask_clear_cpu(cpu, tick_broadcast_mask);
188 else
189 tick_device_setup_broadcast_func(dev);
190
191 /*
192 * Clear the broadcast bit if the CPU is not in
193 * periodic broadcast on state.
194 */
195 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
196 cpumask_clear_cpu(cpu, tick_broadcast_mask);
197
198 switch (tick_broadcast_device.mode) {
199 case TICKDEV_MODE_ONESHOT:
200 /*
201 * If the system is in oneshot mode we can
202 * unconditionally clear the oneshot mask bit,
203 * because the CPU is running and therefore
204 * not in an idle state which causes the power
205 * state affected device to stop. Let the
206 * caller initialize the device.
207 */
208 tick_broadcast_clear_oneshot(cpu);
209 ret = 0;
210 break;
211
212 case TICKDEV_MODE_PERIODIC:
213 /*
214 * If the system is in periodic mode, check
215 * whether the broadcast device can be
216 * switched off now.
217 */
218 if (cpumask_empty(tick_broadcast_mask) && bc)
219 clockevents_shutdown(bc);
220 /*
221 * If we kept the cpu in the broadcast mask,
222 * tell the caller to leave the per cpu device
223 * in shutdown state. The periodic interrupt
224 * is delivered by the broadcast device, if
225 * the broadcast device exists and is not
226 * hrtimer based.
227 */
228 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
229 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
230 break;
231 default:
232 break;
233 }
234 }
235 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
236 return ret;
237 }
238
239 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
240 int tick_receive_broadcast(void)
241 {
242 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
243 struct clock_event_device *evt = td->evtdev;
244
245 if (!evt)
246 return -ENODEV;
247
248 if (!evt->event_handler)
249 return -EINVAL;
250
251 evt->event_handler(evt);
252 return 0;
253 }
254 #endif
255
256 /*
257 * Broadcast the event to the cpus, which are set in the mask (mangled).
258 */
259 static bool tick_do_broadcast(struct cpumask *mask)
260 {
261 int cpu = smp_processor_id();
262 struct tick_device *td;
263 bool local = false;
264
265 /*
266 * Check, if the current cpu is in the mask
267 */
268 if (cpumask_test_cpu(cpu, mask)) {
269 struct clock_event_device *bc = tick_broadcast_device.evtdev;
270
271 cpumask_clear_cpu(cpu, mask);
272 /*
273 * We only run the local handler, if the broadcast
274 * device is not hrtimer based. Otherwise we run into
275 * a hrtimer recursion.
276 *
277 * local timer_interrupt()
278 * local_handler()
279 * expire_hrtimers()
280 * bc_handler()
281 * local_handler()
282 * expire_hrtimers()
283 */
284 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
285 }
286
287 if (!cpumask_empty(mask)) {
288 /*
289 * It might be necessary to actually check whether the devices
290 * have different broadcast functions. For now, just use the
291 * one of the first device. This works as long as we have this
292 * misfeature only on x86 (lapic)
293 */
294 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
295 td->evtdev->broadcast(mask);
296 }
297 return local;
298 }
299
300 /*
301 * Periodic broadcast:
302 * - invoke the broadcast handlers
303 */
304 static bool tick_do_periodic_broadcast(void)
305 {
306 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
307 return tick_do_broadcast(tmpmask);
308 }
309
310 /*
311 * Event handler for periodic broadcast ticks
312 */
313 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
314 {
315 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
316 bool bc_local;
317
318 raw_spin_lock(&tick_broadcast_lock);
319
320 /* Handle spurious interrupts gracefully */
321 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
322 raw_spin_unlock(&tick_broadcast_lock);
323 return;
324 }
325
326 bc_local = tick_do_periodic_broadcast();
327
328 if (clockevent_state_oneshot(dev)) {
329 ktime_t next = ktime_add(dev->next_event, tick_period);
330
331 clockevents_program_event(dev, next, true);
332 }
333 raw_spin_unlock(&tick_broadcast_lock);
334
335 /*
336 * We run the handler of the local cpu after dropping
337 * tick_broadcast_lock because the handler might deadlock when
338 * trying to switch to oneshot mode.
339 */
340 if (bc_local)
341 td->evtdev->event_handler(td->evtdev);
342 }
343
344 /**
345 * tick_broadcast_control - Enable/disable or force broadcast mode
346 * @mode: The selected broadcast mode
347 *
348 * Called when the system enters a state where affected tick devices
349 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
350 */
351 void tick_broadcast_control(enum tick_broadcast_mode mode)
352 {
353 struct clock_event_device *bc, *dev;
354 struct tick_device *td;
355 int cpu, bc_stopped;
356 unsigned long flags;
357
358 /* Protects also the local clockevent device. */
359 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
360 td = this_cpu_ptr(&tick_cpu_device);
361 dev = td->evtdev;
362
363 /*
364 * Is the device not affected by the powerstate ?
365 */
366 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
367 goto out;
368
369 if (!tick_device_is_functional(dev))
370 goto out;
371
372 cpu = smp_processor_id();
373 bc = tick_broadcast_device.evtdev;
374 bc_stopped = cpumask_empty(tick_broadcast_mask);
375
376 switch (mode) {
377 case TICK_BROADCAST_FORCE:
378 tick_broadcast_forced = 1;
379 case TICK_BROADCAST_ON:
380 cpumask_set_cpu(cpu, tick_broadcast_on);
381 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
382 /*
383 * Only shutdown the cpu local device, if:
384 *
385 * - the broadcast device exists
386 * - the broadcast device is not a hrtimer based one
387 * - the broadcast device is in periodic mode to
388 * avoid a hickup during switch to oneshot mode
389 */
390 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
391 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
392 clockevents_shutdown(dev);
393 }
394 break;
395
396 case TICK_BROADCAST_OFF:
397 if (tick_broadcast_forced)
398 break;
399 cpumask_clear_cpu(cpu, tick_broadcast_on);
400 if (!tick_device_is_functional(dev))
401 break;
402 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
403 if (tick_broadcast_device.mode ==
404 TICKDEV_MODE_PERIODIC)
405 tick_setup_periodic(dev, 0);
406 }
407 break;
408 }
409
410 if (bc) {
411 if (cpumask_empty(tick_broadcast_mask)) {
412 if (!bc_stopped)
413 clockevents_shutdown(bc);
414 } else if (bc_stopped) {
415 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
416 tick_broadcast_start_periodic(bc);
417 else
418 tick_broadcast_setup_oneshot(bc);
419 }
420 }
421 out:
422 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
423 }
424 EXPORT_SYMBOL_GPL(tick_broadcast_control);
425
426 /*
427 * Set the periodic handler depending on broadcast on/off
428 */
429 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
430 {
431 if (!broadcast)
432 dev->event_handler = tick_handle_periodic;
433 else
434 dev->event_handler = tick_handle_periodic_broadcast;
435 }
436
437 #ifdef CONFIG_HOTPLUG_CPU
438 /*
439 * Remove a CPU from broadcasting
440 */
441 void tick_shutdown_broadcast(unsigned int cpu)
442 {
443 struct clock_event_device *bc;
444 unsigned long flags;
445
446 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
447
448 bc = tick_broadcast_device.evtdev;
449 cpumask_clear_cpu(cpu, tick_broadcast_mask);
450 cpumask_clear_cpu(cpu, tick_broadcast_on);
451
452 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
453 if (bc && cpumask_empty(tick_broadcast_mask))
454 clockevents_shutdown(bc);
455 }
456
457 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
458 }
459 #endif
460
461 void tick_suspend_broadcast(void)
462 {
463 struct clock_event_device *bc;
464 unsigned long flags;
465
466 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
467
468 bc = tick_broadcast_device.evtdev;
469 if (bc)
470 clockevents_shutdown(bc);
471
472 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
473 }
474
475 /*
476 * This is called from tick_resume_local() on a resuming CPU. That's
477 * called from the core resume function, tick_unfreeze() and the magic XEN
478 * resume hackery.
479 *
480 * In none of these cases the broadcast device mode can change and the
481 * bit of the resuming CPU in the broadcast mask is safe as well.
482 */
483 bool tick_resume_check_broadcast(void)
484 {
485 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
486 return false;
487 else
488 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
489 }
490
491 void tick_resume_broadcast(void)
492 {
493 struct clock_event_device *bc;
494 unsigned long flags;
495
496 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
497
498 bc = tick_broadcast_device.evtdev;
499
500 if (bc) {
501 clockevents_tick_resume(bc);
502
503 switch (tick_broadcast_device.mode) {
504 case TICKDEV_MODE_PERIODIC:
505 if (!cpumask_empty(tick_broadcast_mask))
506 tick_broadcast_start_periodic(bc);
507 break;
508 case TICKDEV_MODE_ONESHOT:
509 if (!cpumask_empty(tick_broadcast_mask))
510 tick_resume_broadcast_oneshot(bc);
511 break;
512 }
513 }
514 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
515 }
516
517 #ifdef CONFIG_TICK_ONESHOT
518
519 static cpumask_var_t tick_broadcast_oneshot_mask;
520 static cpumask_var_t tick_broadcast_pending_mask;
521 static cpumask_var_t tick_broadcast_force_mask;
522
523 /*
524 * Exposed for debugging: see timer_list.c
525 */
526 struct cpumask *tick_get_broadcast_oneshot_mask(void)
527 {
528 return tick_broadcast_oneshot_mask;
529 }
530
531 /*
532 * Called before going idle with interrupts disabled. Checks whether a
533 * broadcast event from the other core is about to happen. We detected
534 * that in tick_broadcast_oneshot_control(). The callsite can use this
535 * to avoid a deep idle transition as we are about to get the
536 * broadcast IPI right away.
537 */
538 int tick_check_broadcast_expired(void)
539 {
540 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
541 }
542
543 /*
544 * Set broadcast interrupt affinity
545 */
546 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
547 const struct cpumask *cpumask)
548 {
549 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
550 return;
551
552 if (cpumask_equal(bc->cpumask, cpumask))
553 return;
554
555 bc->cpumask = cpumask;
556 irq_set_affinity(bc->irq, bc->cpumask);
557 }
558
559 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
560 ktime_t expires)
561 {
562 if (!clockevent_state_oneshot(bc))
563 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
564
565 clockevents_program_event(bc, expires, 1);
566 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
567 }
568
569 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
570 {
571 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
572 }
573
574 /*
575 * Called from irq_enter() when idle was interrupted to reenable the
576 * per cpu device.
577 */
578 void tick_check_oneshot_broadcast_this_cpu(void)
579 {
580 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
581 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
582
583 /*
584 * We might be in the middle of switching over from
585 * periodic to oneshot. If the CPU has not yet
586 * switched over, leave the device alone.
587 */
588 if (td->mode == TICKDEV_MODE_ONESHOT) {
589 clockevents_switch_state(td->evtdev,
590 CLOCK_EVT_STATE_ONESHOT);
591 }
592 }
593 }
594
595 /*
596 * Handle oneshot mode broadcasting
597 */
598 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
599 {
600 struct tick_device *td;
601 ktime_t now, next_event;
602 int cpu, next_cpu = 0;
603 bool bc_local;
604
605 raw_spin_lock(&tick_broadcast_lock);
606 dev->next_event = KTIME_MAX;
607 next_event = KTIME_MAX;
608 cpumask_clear(tmpmask);
609 now = ktime_get();
610 /* Find all expired events */
611 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
612 td = &per_cpu(tick_cpu_device, cpu);
613 if (td->evtdev->next_event <= now) {
614 cpumask_set_cpu(cpu, tmpmask);
615 /*
616 * Mark the remote cpu in the pending mask, so
617 * it can avoid reprogramming the cpu local
618 * timer in tick_broadcast_oneshot_control().
619 */
620 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
621 } else if (td->evtdev->next_event < next_event) {
622 next_event = td->evtdev->next_event;
623 next_cpu = cpu;
624 }
625 }
626
627 /*
628 * Remove the current cpu from the pending mask. The event is
629 * delivered immediately in tick_do_broadcast() !
630 */
631 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
632
633 /* Take care of enforced broadcast requests */
634 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
635 cpumask_clear(tick_broadcast_force_mask);
636
637 /*
638 * Sanity check. Catch the case where we try to broadcast to
639 * offline cpus.
640 */
641 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
642 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
643
644 /*
645 * Wakeup the cpus which have an expired event.
646 */
647 bc_local = tick_do_broadcast(tmpmask);
648
649 /*
650 * Two reasons for reprogram:
651 *
652 * - The global event did not expire any CPU local
653 * events. This happens in dyntick mode, as the maximum PIT
654 * delta is quite small.
655 *
656 * - There are pending events on sleeping CPUs which were not
657 * in the event mask
658 */
659 if (next_event != KTIME_MAX)
660 tick_broadcast_set_event(dev, next_cpu, next_event);
661
662 raw_spin_unlock(&tick_broadcast_lock);
663
664 if (bc_local) {
665 td = this_cpu_ptr(&tick_cpu_device);
666 td->evtdev->event_handler(td->evtdev);
667 }
668 }
669
670 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
671 {
672 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
673 return 0;
674 if (bc->next_event == KTIME_MAX)
675 return 0;
676 return bc->bound_on == cpu ? -EBUSY : 0;
677 }
678
679 static void broadcast_shutdown_local(struct clock_event_device *bc,
680 struct clock_event_device *dev)
681 {
682 /*
683 * For hrtimer based broadcasting we cannot shutdown the cpu
684 * local device if our own event is the first one to expire or
685 * if we own the broadcast timer.
686 */
687 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
688 if (broadcast_needs_cpu(bc, smp_processor_id()))
689 return;
690 if (dev->next_event < bc->next_event)
691 return;
692 }
693 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
694 }
695
696 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
697 {
698 struct clock_event_device *bc, *dev;
699 int cpu, ret = 0;
700 ktime_t now;
701
702 /*
703 * If there is no broadcast device, tell the caller not to go
704 * into deep idle.
705 */
706 if (!tick_broadcast_device.evtdev)
707 return -EBUSY;
708
709 dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
710
711 raw_spin_lock(&tick_broadcast_lock);
712 bc = tick_broadcast_device.evtdev;
713 cpu = smp_processor_id();
714
715 if (state == TICK_BROADCAST_ENTER) {
716 /*
717 * If the current CPU owns the hrtimer broadcast
718 * mechanism, it cannot go deep idle and we do not add
719 * the CPU to the broadcast mask. We don't have to go
720 * through the EXIT path as the local timer is not
721 * shutdown.
722 */
723 ret = broadcast_needs_cpu(bc, cpu);
724 if (ret)
725 goto out;
726
727 /*
728 * If the broadcast device is in periodic mode, we
729 * return.
730 */
731 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
732 /* If it is a hrtimer based broadcast, return busy */
733 if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
734 ret = -EBUSY;
735 goto out;
736 }
737
738 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
739 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
740
741 /* Conditionally shut down the local timer. */
742 broadcast_shutdown_local(bc, dev);
743
744 /*
745 * We only reprogram the broadcast timer if we
746 * did not mark ourself in the force mask and
747 * if the cpu local event is earlier than the
748 * broadcast event. If the current CPU is in
749 * the force mask, then we are going to be
750 * woken by the IPI right away; we return
751 * busy, so the CPU does not try to go deep
752 * idle.
753 */
754 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
755 ret = -EBUSY;
756 } else if (dev->next_event < bc->next_event) {
757 tick_broadcast_set_event(bc, cpu, dev->next_event);
758 /*
759 * In case of hrtimer broadcasts the
760 * programming might have moved the
761 * timer to this cpu. If yes, remove
762 * us from the broadcast mask and
763 * return busy.
764 */
765 ret = broadcast_needs_cpu(bc, cpu);
766 if (ret) {
767 cpumask_clear_cpu(cpu,
768 tick_broadcast_oneshot_mask);
769 }
770 }
771 }
772 } else {
773 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
774 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
775 /*
776 * The cpu which was handling the broadcast
777 * timer marked this cpu in the broadcast
778 * pending mask and fired the broadcast
779 * IPI. So we are going to handle the expired
780 * event anyway via the broadcast IPI
781 * handler. No need to reprogram the timer
782 * with an already expired event.
783 */
784 if (cpumask_test_and_clear_cpu(cpu,
785 tick_broadcast_pending_mask))
786 goto out;
787
788 /*
789 * Bail out if there is no next event.
790 */
791 if (dev->next_event == KTIME_MAX)
792 goto out;
793 /*
794 * If the pending bit is not set, then we are
795 * either the CPU handling the broadcast
796 * interrupt or we got woken by something else.
797 *
798 * We are not longer in the broadcast mask, so
799 * if the cpu local expiry time is already
800 * reached, we would reprogram the cpu local
801 * timer with an already expired event.
802 *
803 * This can lead to a ping-pong when we return
804 * to idle and therefor rearm the broadcast
805 * timer before the cpu local timer was able
806 * to fire. This happens because the forced
807 * reprogramming makes sure that the event
808 * will happen in the future and depending on
809 * the min_delta setting this might be far
810 * enough out that the ping-pong starts.
811 *
812 * If the cpu local next_event has expired
813 * then we know that the broadcast timer
814 * next_event has expired as well and
815 * broadcast is about to be handled. So we
816 * avoid reprogramming and enforce that the
817 * broadcast handler, which did not run yet,
818 * will invoke the cpu local handler.
819 *
820 * We cannot call the handler directly from
821 * here, because we might be in a NOHZ phase
822 * and we did not go through the irq_enter()
823 * nohz fixups.
824 */
825 now = ktime_get();
826 if (dev->next_event <= now) {
827 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
828 goto out;
829 }
830 /*
831 * We got woken by something else. Reprogram
832 * the cpu local timer device.
833 */
834 tick_program_event(dev->next_event, 1);
835 }
836 }
837 out:
838 raw_spin_unlock(&tick_broadcast_lock);
839 return ret;
840 }
841
842 /*
843 * Reset the one shot broadcast for a cpu
844 *
845 * Called with tick_broadcast_lock held
846 */
847 static void tick_broadcast_clear_oneshot(int cpu)
848 {
849 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
850 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
851 }
852
853 static void tick_broadcast_init_next_event(struct cpumask *mask,
854 ktime_t expires)
855 {
856 struct tick_device *td;
857 int cpu;
858
859 for_each_cpu(cpu, mask) {
860 td = &per_cpu(tick_cpu_device, cpu);
861 if (td->evtdev)
862 td->evtdev->next_event = expires;
863 }
864 }
865
866 /**
867 * tick_broadcast_setup_oneshot - setup the broadcast device
868 */
869 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
870 {
871 int cpu = smp_processor_id();
872
873 if (!bc)
874 return;
875
876 /* Set it up only once ! */
877 if (bc->event_handler != tick_handle_oneshot_broadcast) {
878 int was_periodic = clockevent_state_periodic(bc);
879
880 bc->event_handler = tick_handle_oneshot_broadcast;
881
882 /*
883 * We must be careful here. There might be other CPUs
884 * waiting for periodic broadcast. We need to set the
885 * oneshot_mask bits for those and program the
886 * broadcast device to fire.
887 */
888 cpumask_copy(tmpmask, tick_broadcast_mask);
889 cpumask_clear_cpu(cpu, tmpmask);
890 cpumask_or(tick_broadcast_oneshot_mask,
891 tick_broadcast_oneshot_mask, tmpmask);
892
893 if (was_periodic && !cpumask_empty(tmpmask)) {
894 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
895 tick_broadcast_init_next_event(tmpmask,
896 tick_next_period);
897 tick_broadcast_set_event(bc, cpu, tick_next_period);
898 } else
899 bc->next_event = KTIME_MAX;
900 } else {
901 /*
902 * The first cpu which switches to oneshot mode sets
903 * the bit for all other cpus which are in the general
904 * (periodic) broadcast mask. So the bit is set and
905 * would prevent the first broadcast enter after this
906 * to program the bc device.
907 */
908 tick_broadcast_clear_oneshot(cpu);
909 }
910 }
911
912 /*
913 * Select oneshot operating mode for the broadcast device
914 */
915 void tick_broadcast_switch_to_oneshot(void)
916 {
917 struct clock_event_device *bc;
918 unsigned long flags;
919
920 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
921
922 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
923 bc = tick_broadcast_device.evtdev;
924 if (bc)
925 tick_broadcast_setup_oneshot(bc);
926
927 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
928 }
929
930 #ifdef CONFIG_HOTPLUG_CPU
931 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
932 {
933 struct clock_event_device *bc;
934 unsigned long flags;
935
936 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
937 bc = tick_broadcast_device.evtdev;
938
939 if (bc && broadcast_needs_cpu(bc, deadcpu)) {
940 /* This moves the broadcast assignment to this CPU: */
941 clockevents_program_event(bc, bc->next_event, 1);
942 }
943 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
944 }
945
946 /*
947 * Remove a dead CPU from broadcasting
948 */
949 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
950 {
951 unsigned long flags;
952
953 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
954
955 /*
956 * Clear the broadcast masks for the dead cpu, but do not stop
957 * the broadcast device!
958 */
959 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
960 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
961 cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
962
963 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
964 }
965 #endif
966
967 /*
968 * Check, whether the broadcast device is in one shot mode
969 */
970 int tick_broadcast_oneshot_active(void)
971 {
972 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
973 }
974
975 /*
976 * Check whether the broadcast device supports oneshot.
977 */
978 bool tick_broadcast_oneshot_available(void)
979 {
980 struct clock_event_device *bc = tick_broadcast_device.evtdev;
981
982 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
983 }
984
985 #else
986 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
987 {
988 struct clock_event_device *bc = tick_broadcast_device.evtdev;
989
990 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
991 return -EBUSY;
992
993 return 0;
994 }
995 #endif
996
997 void __init tick_broadcast_init(void)
998 {
999 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1000 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1001 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1002 #ifdef CONFIG_TICK_ONESHOT
1003 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1004 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1005 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1006 #endif
1007 }