]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/time/tick-broadcast.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/cooloney...
[mirror_ubuntu-bionic-kernel.git] / kernel / time / tick-broadcast.c
1 /*
2 * linux/kernel/time/tick-broadcast.c
3 *
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23
24 #include "tick-internal.h"
25
26 /*
27 * Broadcast support for broken x86 hardware, where the local apic
28 * timer stops in C3 state.
29 */
30
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask;
33 static cpumask_var_t tick_broadcast_on;
34 static cpumask_var_t tmpmask;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36 static int tick_broadcast_force;
37
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu);
40 #else
41 static inline void tick_broadcast_clear_oneshot(int cpu) { }
42 #endif
43
44 /*
45 * Debugging: see timer_list.c
46 */
47 struct tick_device *tick_get_broadcast_device(void)
48 {
49 return &tick_broadcast_device;
50 }
51
52 struct cpumask *tick_get_broadcast_mask(void)
53 {
54 return tick_broadcast_mask;
55 }
56
57 /*
58 * Start the device in periodic mode
59 */
60 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
61 {
62 if (bc)
63 tick_setup_periodic(bc, 1);
64 }
65
66 /*
67 * Check, if the device can be utilized as broadcast device:
68 */
69 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
70 struct clock_event_device *newdev)
71 {
72 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
73 (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
74 (newdev->features & CLOCK_EVT_FEAT_C3STOP))
75 return false;
76
77 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
78 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
79 return false;
80
81 return !curdev || newdev->rating > curdev->rating;
82 }
83
84 /*
85 * Conditionally install/replace broadcast device
86 */
87 void tick_install_broadcast_device(struct clock_event_device *dev)
88 {
89 struct clock_event_device *cur = tick_broadcast_device.evtdev;
90
91 if (!tick_check_broadcast_device(cur, dev))
92 return;
93
94 if (!try_module_get(dev->owner))
95 return;
96
97 clockevents_exchange_device(cur, dev);
98 if (cur)
99 cur->event_handler = clockevents_handle_noop;
100 tick_broadcast_device.evtdev = dev;
101 if (!cpumask_empty(tick_broadcast_mask))
102 tick_broadcast_start_periodic(dev);
103 /*
104 * Inform all cpus about this. We might be in a situation
105 * where we did not switch to oneshot mode because the per cpu
106 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
107 * of a oneshot capable broadcast device. Without that
108 * notification the systems stays stuck in periodic mode
109 * forever.
110 */
111 if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
112 tick_clock_notify();
113 }
114
115 /*
116 * Check, if the device is the broadcast device
117 */
118 int tick_is_broadcast_device(struct clock_event_device *dev)
119 {
120 return (dev && tick_broadcast_device.evtdev == dev);
121 }
122
123 static void err_broadcast(const struct cpumask *mask)
124 {
125 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
126 }
127
128 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
129 {
130 if (!dev->broadcast)
131 dev->broadcast = tick_broadcast;
132 if (!dev->broadcast) {
133 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
134 dev->name);
135 dev->broadcast = err_broadcast;
136 }
137 }
138
139 /*
140 * Check, if the device is disfunctional and a place holder, which
141 * needs to be handled by the broadcast device.
142 */
143 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
144 {
145 struct clock_event_device *bc = tick_broadcast_device.evtdev;
146 unsigned long flags;
147 int ret;
148
149 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
150
151 /*
152 * Devices might be registered with both periodic and oneshot
153 * mode disabled. This signals, that the device needs to be
154 * operated from the broadcast device and is a placeholder for
155 * the cpu local device.
156 */
157 if (!tick_device_is_functional(dev)) {
158 dev->event_handler = tick_handle_periodic;
159 tick_device_setup_broadcast_func(dev);
160 cpumask_set_cpu(cpu, tick_broadcast_mask);
161 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
162 tick_broadcast_start_periodic(bc);
163 else
164 tick_broadcast_setup_oneshot(bc);
165 ret = 1;
166 } else {
167 /*
168 * Clear the broadcast bit for this cpu if the
169 * device is not power state affected.
170 */
171 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
172 cpumask_clear_cpu(cpu, tick_broadcast_mask);
173 else
174 tick_device_setup_broadcast_func(dev);
175
176 /*
177 * Clear the broadcast bit if the CPU is not in
178 * periodic broadcast on state.
179 */
180 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
181 cpumask_clear_cpu(cpu, tick_broadcast_mask);
182
183 switch (tick_broadcast_device.mode) {
184 case TICKDEV_MODE_ONESHOT:
185 /*
186 * If the system is in oneshot mode we can
187 * unconditionally clear the oneshot mask bit,
188 * because the CPU is running and therefore
189 * not in an idle state which causes the power
190 * state affected device to stop. Let the
191 * caller initialize the device.
192 */
193 tick_broadcast_clear_oneshot(cpu);
194 ret = 0;
195 break;
196
197 case TICKDEV_MODE_PERIODIC:
198 /*
199 * If the system is in periodic mode, check
200 * whether the broadcast device can be
201 * switched off now.
202 */
203 if (cpumask_empty(tick_broadcast_mask) && bc)
204 clockevents_shutdown(bc);
205 /*
206 * If we kept the cpu in the broadcast mask,
207 * tell the caller to leave the per cpu device
208 * in shutdown state. The periodic interrupt
209 * is delivered by the broadcast device.
210 */
211 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
212 break;
213 default:
214 /* Nothing to do */
215 ret = 0;
216 break;
217 }
218 }
219 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
220 return ret;
221 }
222
223 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
224 int tick_receive_broadcast(void)
225 {
226 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
227 struct clock_event_device *evt = td->evtdev;
228
229 if (!evt)
230 return -ENODEV;
231
232 if (!evt->event_handler)
233 return -EINVAL;
234
235 evt->event_handler(evt);
236 return 0;
237 }
238 #endif
239
240 /*
241 * Broadcast the event to the cpus, which are set in the mask (mangled).
242 */
243 static void tick_do_broadcast(struct cpumask *mask)
244 {
245 int cpu = smp_processor_id();
246 struct tick_device *td;
247
248 /*
249 * Check, if the current cpu is in the mask
250 */
251 if (cpumask_test_cpu(cpu, mask)) {
252 cpumask_clear_cpu(cpu, mask);
253 td = &per_cpu(tick_cpu_device, cpu);
254 td->evtdev->event_handler(td->evtdev);
255 }
256
257 if (!cpumask_empty(mask)) {
258 /*
259 * It might be necessary to actually check whether the devices
260 * have different broadcast functions. For now, just use the
261 * one of the first device. This works as long as we have this
262 * misfeature only on x86 (lapic)
263 */
264 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
265 td->evtdev->broadcast(mask);
266 }
267 }
268
269 /*
270 * Periodic broadcast:
271 * - invoke the broadcast handlers
272 */
273 static void tick_do_periodic_broadcast(void)
274 {
275 raw_spin_lock(&tick_broadcast_lock);
276
277 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
278 tick_do_broadcast(tmpmask);
279
280 raw_spin_unlock(&tick_broadcast_lock);
281 }
282
283 /*
284 * Event handler for periodic broadcast ticks
285 */
286 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
287 {
288 ktime_t next;
289
290 tick_do_periodic_broadcast();
291
292 /*
293 * The device is in periodic mode. No reprogramming necessary:
294 */
295 if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
296 return;
297
298 /*
299 * Setup the next period for devices, which do not have
300 * periodic mode. We read dev->next_event first and add to it
301 * when the event already expired. clockevents_program_event()
302 * sets dev->next_event only when the event is really
303 * programmed to the device.
304 */
305 for (next = dev->next_event; ;) {
306 next = ktime_add(next, tick_period);
307
308 if (!clockevents_program_event(dev, next, false))
309 return;
310 tick_do_periodic_broadcast();
311 }
312 }
313
314 /*
315 * Powerstate information: The system enters/leaves a state, where
316 * affected devices might stop
317 */
318 static void tick_do_broadcast_on_off(unsigned long *reason)
319 {
320 struct clock_event_device *bc, *dev;
321 struct tick_device *td;
322 unsigned long flags;
323 int cpu, bc_stopped;
324
325 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
326
327 cpu = smp_processor_id();
328 td = &per_cpu(tick_cpu_device, cpu);
329 dev = td->evtdev;
330 bc = tick_broadcast_device.evtdev;
331
332 /*
333 * Is the device not affected by the powerstate ?
334 */
335 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
336 goto out;
337
338 if (!tick_device_is_functional(dev))
339 goto out;
340
341 bc_stopped = cpumask_empty(tick_broadcast_mask);
342
343 switch (*reason) {
344 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
345 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
346 cpumask_set_cpu(cpu, tick_broadcast_on);
347 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
348 if (tick_broadcast_device.mode ==
349 TICKDEV_MODE_PERIODIC)
350 clockevents_shutdown(dev);
351 }
352 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
353 tick_broadcast_force = 1;
354 break;
355 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
356 if (tick_broadcast_force)
357 break;
358 cpumask_clear_cpu(cpu, tick_broadcast_on);
359 if (!tick_device_is_functional(dev))
360 break;
361 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
362 if (tick_broadcast_device.mode ==
363 TICKDEV_MODE_PERIODIC)
364 tick_setup_periodic(dev, 0);
365 }
366 break;
367 }
368
369 if (cpumask_empty(tick_broadcast_mask)) {
370 if (!bc_stopped)
371 clockevents_shutdown(bc);
372 } else if (bc_stopped) {
373 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
374 tick_broadcast_start_periodic(bc);
375 else
376 tick_broadcast_setup_oneshot(bc);
377 }
378 out:
379 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
380 }
381
382 /*
383 * Powerstate information: The system enters/leaves a state, where
384 * affected devices might stop.
385 */
386 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
387 {
388 if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
389 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
390 "offline CPU #%d\n", *oncpu);
391 else
392 tick_do_broadcast_on_off(&reason);
393 }
394
395 /*
396 * Set the periodic handler depending on broadcast on/off
397 */
398 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
399 {
400 if (!broadcast)
401 dev->event_handler = tick_handle_periodic;
402 else
403 dev->event_handler = tick_handle_periodic_broadcast;
404 }
405
406 /*
407 * Remove a CPU from broadcasting
408 */
409 void tick_shutdown_broadcast(unsigned int *cpup)
410 {
411 struct clock_event_device *bc;
412 unsigned long flags;
413 unsigned int cpu = *cpup;
414
415 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
416
417 bc = tick_broadcast_device.evtdev;
418 cpumask_clear_cpu(cpu, tick_broadcast_mask);
419 cpumask_clear_cpu(cpu, tick_broadcast_on);
420
421 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
422 if (bc && cpumask_empty(tick_broadcast_mask))
423 clockevents_shutdown(bc);
424 }
425
426 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
427 }
428
429 void tick_suspend_broadcast(void)
430 {
431 struct clock_event_device *bc;
432 unsigned long flags;
433
434 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
435
436 bc = tick_broadcast_device.evtdev;
437 if (bc)
438 clockevents_shutdown(bc);
439
440 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
441 }
442
443 int tick_resume_broadcast(void)
444 {
445 struct clock_event_device *bc;
446 unsigned long flags;
447 int broadcast = 0;
448
449 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
450
451 bc = tick_broadcast_device.evtdev;
452
453 if (bc) {
454 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
455
456 switch (tick_broadcast_device.mode) {
457 case TICKDEV_MODE_PERIODIC:
458 if (!cpumask_empty(tick_broadcast_mask))
459 tick_broadcast_start_periodic(bc);
460 broadcast = cpumask_test_cpu(smp_processor_id(),
461 tick_broadcast_mask);
462 break;
463 case TICKDEV_MODE_ONESHOT:
464 if (!cpumask_empty(tick_broadcast_mask))
465 broadcast = tick_resume_broadcast_oneshot(bc);
466 break;
467 }
468 }
469 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
470
471 return broadcast;
472 }
473
474
475 #ifdef CONFIG_TICK_ONESHOT
476
477 static cpumask_var_t tick_broadcast_oneshot_mask;
478 static cpumask_var_t tick_broadcast_pending_mask;
479 static cpumask_var_t tick_broadcast_force_mask;
480
481 /*
482 * Exposed for debugging: see timer_list.c
483 */
484 struct cpumask *tick_get_broadcast_oneshot_mask(void)
485 {
486 return tick_broadcast_oneshot_mask;
487 }
488
489 /*
490 * Called before going idle with interrupts disabled. Checks whether a
491 * broadcast event from the other core is about to happen. We detected
492 * that in tick_broadcast_oneshot_control(). The callsite can use this
493 * to avoid a deep idle transition as we are about to get the
494 * broadcast IPI right away.
495 */
496 int tick_check_broadcast_expired(void)
497 {
498 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
499 }
500
501 /*
502 * Set broadcast interrupt affinity
503 */
504 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
505 const struct cpumask *cpumask)
506 {
507 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
508 return;
509
510 if (cpumask_equal(bc->cpumask, cpumask))
511 return;
512
513 bc->cpumask = cpumask;
514 irq_set_affinity(bc->irq, bc->cpumask);
515 }
516
517 static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
518 ktime_t expires, int force)
519 {
520 int ret;
521
522 if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
523 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
524
525 ret = clockevents_program_event(bc, expires, force);
526 if (!ret)
527 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
528 return ret;
529 }
530
531 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
532 {
533 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
534 return 0;
535 }
536
537 /*
538 * Called from irq_enter() when idle was interrupted to reenable the
539 * per cpu device.
540 */
541 void tick_check_oneshot_broadcast_this_cpu(void)
542 {
543 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
544 struct tick_device *td = &__get_cpu_var(tick_cpu_device);
545
546 /*
547 * We might be in the middle of switching over from
548 * periodic to oneshot. If the CPU has not yet
549 * switched over, leave the device alone.
550 */
551 if (td->mode == TICKDEV_MODE_ONESHOT) {
552 clockevents_set_mode(td->evtdev,
553 CLOCK_EVT_MODE_ONESHOT);
554 }
555 }
556 }
557
558 /*
559 * Handle oneshot mode broadcasting
560 */
561 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
562 {
563 struct tick_device *td;
564 ktime_t now, next_event;
565 int cpu, next_cpu = 0;
566
567 raw_spin_lock(&tick_broadcast_lock);
568 again:
569 dev->next_event.tv64 = KTIME_MAX;
570 next_event.tv64 = KTIME_MAX;
571 cpumask_clear(tmpmask);
572 now = ktime_get();
573 /* Find all expired events */
574 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
575 td = &per_cpu(tick_cpu_device, cpu);
576 if (td->evtdev->next_event.tv64 <= now.tv64) {
577 cpumask_set_cpu(cpu, tmpmask);
578 /*
579 * Mark the remote cpu in the pending mask, so
580 * it can avoid reprogramming the cpu local
581 * timer in tick_broadcast_oneshot_control().
582 */
583 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
584 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
585 next_event.tv64 = td->evtdev->next_event.tv64;
586 next_cpu = cpu;
587 }
588 }
589
590 /*
591 * Remove the current cpu from the pending mask. The event is
592 * delivered immediately in tick_do_broadcast() !
593 */
594 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
595
596 /* Take care of enforced broadcast requests */
597 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
598 cpumask_clear(tick_broadcast_force_mask);
599
600 /*
601 * Sanity check. Catch the case where we try to broadcast to
602 * offline cpus.
603 */
604 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
605 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
606
607 /*
608 * Wakeup the cpus which have an expired event.
609 */
610 tick_do_broadcast(tmpmask);
611
612 /*
613 * Two reasons for reprogram:
614 *
615 * - The global event did not expire any CPU local
616 * events. This happens in dyntick mode, as the maximum PIT
617 * delta is quite small.
618 *
619 * - There are pending events on sleeping CPUs which were not
620 * in the event mask
621 */
622 if (next_event.tv64 != KTIME_MAX) {
623 /*
624 * Rearm the broadcast device. If event expired,
625 * repeat the above
626 */
627 if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
628 goto again;
629 }
630 raw_spin_unlock(&tick_broadcast_lock);
631 }
632
633 /*
634 * Powerstate information: The system enters/leaves a state, where
635 * affected devices might stop
636 */
637 void tick_broadcast_oneshot_control(unsigned long reason)
638 {
639 struct clock_event_device *bc, *dev;
640 struct tick_device *td;
641 unsigned long flags;
642 ktime_t now;
643 int cpu;
644
645 /*
646 * Periodic mode does not care about the enter/exit of power
647 * states
648 */
649 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
650 return;
651
652 /*
653 * We are called with preemtion disabled from the depth of the
654 * idle code, so we can't be moved away.
655 */
656 cpu = smp_processor_id();
657 td = &per_cpu(tick_cpu_device, cpu);
658 dev = td->evtdev;
659
660 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
661 return;
662
663 bc = tick_broadcast_device.evtdev;
664
665 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
666 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
667 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
668 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
669 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
670 /*
671 * We only reprogram the broadcast timer if we
672 * did not mark ourself in the force mask and
673 * if the cpu local event is earlier than the
674 * broadcast event. If the current CPU is in
675 * the force mask, then we are going to be
676 * woken by the IPI right away.
677 */
678 if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
679 dev->next_event.tv64 < bc->next_event.tv64)
680 tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
681 }
682 } else {
683 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
684 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
685 /*
686 * The cpu which was handling the broadcast
687 * timer marked this cpu in the broadcast
688 * pending mask and fired the broadcast
689 * IPI. So we are going to handle the expired
690 * event anyway via the broadcast IPI
691 * handler. No need to reprogram the timer
692 * with an already expired event.
693 */
694 if (cpumask_test_and_clear_cpu(cpu,
695 tick_broadcast_pending_mask))
696 goto out;
697
698 /*
699 * Bail out if there is no next event.
700 */
701 if (dev->next_event.tv64 == KTIME_MAX)
702 goto out;
703 /*
704 * If the pending bit is not set, then we are
705 * either the CPU handling the broadcast
706 * interrupt or we got woken by something else.
707 *
708 * We are not longer in the broadcast mask, so
709 * if the cpu local expiry time is already
710 * reached, we would reprogram the cpu local
711 * timer with an already expired event.
712 *
713 * This can lead to a ping-pong when we return
714 * to idle and therefor rearm the broadcast
715 * timer before the cpu local timer was able
716 * to fire. This happens because the forced
717 * reprogramming makes sure that the event
718 * will happen in the future and depending on
719 * the min_delta setting this might be far
720 * enough out that the ping-pong starts.
721 *
722 * If the cpu local next_event has expired
723 * then we know that the broadcast timer
724 * next_event has expired as well and
725 * broadcast is about to be handled. So we
726 * avoid reprogramming and enforce that the
727 * broadcast handler, which did not run yet,
728 * will invoke the cpu local handler.
729 *
730 * We cannot call the handler directly from
731 * here, because we might be in a NOHZ phase
732 * and we did not go through the irq_enter()
733 * nohz fixups.
734 */
735 now = ktime_get();
736 if (dev->next_event.tv64 <= now.tv64) {
737 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
738 goto out;
739 }
740 /*
741 * We got woken by something else. Reprogram
742 * the cpu local timer device.
743 */
744 tick_program_event(dev->next_event, 1);
745 }
746 }
747 out:
748 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
749 }
750
751 /*
752 * Reset the one shot broadcast for a cpu
753 *
754 * Called with tick_broadcast_lock held
755 */
756 static void tick_broadcast_clear_oneshot(int cpu)
757 {
758 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
759 }
760
761 static void tick_broadcast_init_next_event(struct cpumask *mask,
762 ktime_t expires)
763 {
764 struct tick_device *td;
765 int cpu;
766
767 for_each_cpu(cpu, mask) {
768 td = &per_cpu(tick_cpu_device, cpu);
769 if (td->evtdev)
770 td->evtdev->next_event = expires;
771 }
772 }
773
774 /**
775 * tick_broadcast_setup_oneshot - setup the broadcast device
776 */
777 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
778 {
779 int cpu = smp_processor_id();
780
781 /* Set it up only once ! */
782 if (bc->event_handler != tick_handle_oneshot_broadcast) {
783 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
784
785 bc->event_handler = tick_handle_oneshot_broadcast;
786
787 /*
788 * We must be careful here. There might be other CPUs
789 * waiting for periodic broadcast. We need to set the
790 * oneshot_mask bits for those and program the
791 * broadcast device to fire.
792 */
793 cpumask_copy(tmpmask, tick_broadcast_mask);
794 cpumask_clear_cpu(cpu, tmpmask);
795 cpumask_or(tick_broadcast_oneshot_mask,
796 tick_broadcast_oneshot_mask, tmpmask);
797
798 if (was_periodic && !cpumask_empty(tmpmask)) {
799 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
800 tick_broadcast_init_next_event(tmpmask,
801 tick_next_period);
802 tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
803 } else
804 bc->next_event.tv64 = KTIME_MAX;
805 } else {
806 /*
807 * The first cpu which switches to oneshot mode sets
808 * the bit for all other cpus which are in the general
809 * (periodic) broadcast mask. So the bit is set and
810 * would prevent the first broadcast enter after this
811 * to program the bc device.
812 */
813 tick_broadcast_clear_oneshot(cpu);
814 }
815 }
816
817 /*
818 * Select oneshot operating mode for the broadcast device
819 */
820 void tick_broadcast_switch_to_oneshot(void)
821 {
822 struct clock_event_device *bc;
823 unsigned long flags;
824
825 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
826
827 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
828 bc = tick_broadcast_device.evtdev;
829 if (bc)
830 tick_broadcast_setup_oneshot(bc);
831
832 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
833 }
834
835
836 /*
837 * Remove a dead CPU from broadcasting
838 */
839 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
840 {
841 unsigned long flags;
842 unsigned int cpu = *cpup;
843
844 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
845
846 /*
847 * Clear the broadcast masks for the dead cpu, but do not stop
848 * the broadcast device!
849 */
850 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
851 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
852 cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
853
854 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
855 }
856
857 /*
858 * Check, whether the broadcast device is in one shot mode
859 */
860 int tick_broadcast_oneshot_active(void)
861 {
862 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
863 }
864
865 /*
866 * Check whether the broadcast device supports oneshot.
867 */
868 bool tick_broadcast_oneshot_available(void)
869 {
870 struct clock_event_device *bc = tick_broadcast_device.evtdev;
871
872 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
873 }
874
875 #endif
876
877 void __init tick_broadcast_init(void)
878 {
879 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
880 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
881 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
882 #ifdef CONFIG_TICK_ONESHOT
883 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
884 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
885 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
886 #endif
887 }