]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/tick-broadcast.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-artful-kernel.git] / kernel / time / tick-broadcast.c
1 /*
2 * linux/kernel/time/tick-broadcast.c
3 *
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23
24 #include "tick-internal.h"
25
26 /*
27 * Broadcast support for broken x86 hardware, where the local apic
28 * timer stops in C3 state.
29 */
30
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
33 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
34 static cpumask_var_t tmpmask __cpumask_var_read_mostly;
35 static int tick_broadcast_forced;
36
37 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
38
39 #ifdef CONFIG_TICK_ONESHOT
40 static void tick_broadcast_clear_oneshot(int cpu);
41 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
42 #else
43 static inline void tick_broadcast_clear_oneshot(int cpu) { }
44 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
45 #endif
46
47 /*
48 * Debugging: see timer_list.c
49 */
50 struct tick_device *tick_get_broadcast_device(void)
51 {
52 return &tick_broadcast_device;
53 }
54
55 struct cpumask *tick_get_broadcast_mask(void)
56 {
57 return tick_broadcast_mask;
58 }
59
60 /*
61 * Start the device in periodic mode
62 */
63 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
64 {
65 if (bc)
66 tick_setup_periodic(bc, 1);
67 }
68
69 /*
70 * Check, if the device can be utilized as broadcast device:
71 */
72 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
73 struct clock_event_device *newdev)
74 {
75 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
76 (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
77 (newdev->features & CLOCK_EVT_FEAT_C3STOP))
78 return false;
79
80 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
81 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
82 return false;
83
84 return !curdev || newdev->rating > curdev->rating;
85 }
86
87 /*
88 * Conditionally install/replace broadcast device
89 */
90 void tick_install_broadcast_device(struct clock_event_device *dev)
91 {
92 struct clock_event_device *cur = tick_broadcast_device.evtdev;
93
94 if (!tick_check_broadcast_device(cur, dev))
95 return;
96
97 if (!try_module_get(dev->owner))
98 return;
99
100 clockevents_exchange_device(cur, dev);
101 if (cur)
102 cur->event_handler = clockevents_handle_noop;
103 tick_broadcast_device.evtdev = dev;
104 if (!cpumask_empty(tick_broadcast_mask))
105 tick_broadcast_start_periodic(dev);
106 /*
107 * Inform all cpus about this. We might be in a situation
108 * where we did not switch to oneshot mode because the per cpu
109 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
110 * of a oneshot capable broadcast device. Without that
111 * notification the systems stays stuck in periodic mode
112 * forever.
113 */
114 if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
115 tick_clock_notify();
116 }
117
118 /*
119 * Check, if the device is the broadcast device
120 */
121 int tick_is_broadcast_device(struct clock_event_device *dev)
122 {
123 return (dev && tick_broadcast_device.evtdev == dev);
124 }
125
126 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
127 {
128 int ret = -ENODEV;
129
130 if (tick_is_broadcast_device(dev)) {
131 raw_spin_lock(&tick_broadcast_lock);
132 ret = __clockevents_update_freq(dev, freq);
133 raw_spin_unlock(&tick_broadcast_lock);
134 }
135 return ret;
136 }
137
138
139 static void err_broadcast(const struct cpumask *mask)
140 {
141 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
142 }
143
144 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
145 {
146 if (!dev->broadcast)
147 dev->broadcast = tick_broadcast;
148 if (!dev->broadcast) {
149 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
150 dev->name);
151 dev->broadcast = err_broadcast;
152 }
153 }
154
155 /*
156 * Check, if the device is disfunctional and a place holder, which
157 * needs to be handled by the broadcast device.
158 */
159 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
160 {
161 struct clock_event_device *bc = tick_broadcast_device.evtdev;
162 unsigned long flags;
163 int ret = 0;
164
165 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
166
167 /*
168 * Devices might be registered with both periodic and oneshot
169 * mode disabled. This signals, that the device needs to be
170 * operated from the broadcast device and is a placeholder for
171 * the cpu local device.
172 */
173 if (!tick_device_is_functional(dev)) {
174 dev->event_handler = tick_handle_periodic;
175 tick_device_setup_broadcast_func(dev);
176 cpumask_set_cpu(cpu, tick_broadcast_mask);
177 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
178 tick_broadcast_start_periodic(bc);
179 else
180 tick_broadcast_setup_oneshot(bc);
181 ret = 1;
182 } else {
183 /*
184 * Clear the broadcast bit for this cpu if the
185 * device is not power state affected.
186 */
187 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
188 cpumask_clear_cpu(cpu, tick_broadcast_mask);
189 else
190 tick_device_setup_broadcast_func(dev);
191
192 /*
193 * Clear the broadcast bit if the CPU is not in
194 * periodic broadcast on state.
195 */
196 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
197 cpumask_clear_cpu(cpu, tick_broadcast_mask);
198
199 switch (tick_broadcast_device.mode) {
200 case TICKDEV_MODE_ONESHOT:
201 /*
202 * If the system is in oneshot mode we can
203 * unconditionally clear the oneshot mask bit,
204 * because the CPU is running and therefore
205 * not in an idle state which causes the power
206 * state affected device to stop. Let the
207 * caller initialize the device.
208 */
209 tick_broadcast_clear_oneshot(cpu);
210 ret = 0;
211 break;
212
213 case TICKDEV_MODE_PERIODIC:
214 /*
215 * If the system is in periodic mode, check
216 * whether the broadcast device can be
217 * switched off now.
218 */
219 if (cpumask_empty(tick_broadcast_mask) && bc)
220 clockevents_shutdown(bc);
221 /*
222 * If we kept the cpu in the broadcast mask,
223 * tell the caller to leave the per cpu device
224 * in shutdown state. The periodic interrupt
225 * is delivered by the broadcast device, if
226 * the broadcast device exists and is not
227 * hrtimer based.
228 */
229 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
230 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
231 break;
232 default:
233 break;
234 }
235 }
236 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
237 return ret;
238 }
239
240 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
241 int tick_receive_broadcast(void)
242 {
243 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
244 struct clock_event_device *evt = td->evtdev;
245
246 if (!evt)
247 return -ENODEV;
248
249 if (!evt->event_handler)
250 return -EINVAL;
251
252 evt->event_handler(evt);
253 return 0;
254 }
255 #endif
256
257 /*
258 * Broadcast the event to the cpus, which are set in the mask (mangled).
259 */
260 static bool tick_do_broadcast(struct cpumask *mask)
261 {
262 int cpu = smp_processor_id();
263 struct tick_device *td;
264 bool local = false;
265
266 /*
267 * Check, if the current cpu is in the mask
268 */
269 if (cpumask_test_cpu(cpu, mask)) {
270 struct clock_event_device *bc = tick_broadcast_device.evtdev;
271
272 cpumask_clear_cpu(cpu, mask);
273 /*
274 * We only run the local handler, if the broadcast
275 * device is not hrtimer based. Otherwise we run into
276 * a hrtimer recursion.
277 *
278 * local timer_interrupt()
279 * local_handler()
280 * expire_hrtimers()
281 * bc_handler()
282 * local_handler()
283 * expire_hrtimers()
284 */
285 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
286 }
287
288 if (!cpumask_empty(mask)) {
289 /*
290 * It might be necessary to actually check whether the devices
291 * have different broadcast functions. For now, just use the
292 * one of the first device. This works as long as we have this
293 * misfeature only on x86 (lapic)
294 */
295 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
296 td->evtdev->broadcast(mask);
297 }
298 return local;
299 }
300
301 /*
302 * Periodic broadcast:
303 * - invoke the broadcast handlers
304 */
305 static bool tick_do_periodic_broadcast(void)
306 {
307 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
308 return tick_do_broadcast(tmpmask);
309 }
310
311 /*
312 * Event handler for periodic broadcast ticks
313 */
314 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
315 {
316 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
317 bool bc_local;
318
319 raw_spin_lock(&tick_broadcast_lock);
320
321 /* Handle spurious interrupts gracefully */
322 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
323 raw_spin_unlock(&tick_broadcast_lock);
324 return;
325 }
326
327 bc_local = tick_do_periodic_broadcast();
328
329 if (clockevent_state_oneshot(dev)) {
330 ktime_t next = ktime_add(dev->next_event, tick_period);
331
332 clockevents_program_event(dev, next, true);
333 }
334 raw_spin_unlock(&tick_broadcast_lock);
335
336 /*
337 * We run the handler of the local cpu after dropping
338 * tick_broadcast_lock because the handler might deadlock when
339 * trying to switch to oneshot mode.
340 */
341 if (bc_local)
342 td->evtdev->event_handler(td->evtdev);
343 }
344
345 /**
346 * tick_broadcast_control - Enable/disable or force broadcast mode
347 * @mode: The selected broadcast mode
348 *
349 * Called when the system enters a state where affected tick devices
350 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
351 */
352 void tick_broadcast_control(enum tick_broadcast_mode mode)
353 {
354 struct clock_event_device *bc, *dev;
355 struct tick_device *td;
356 int cpu, bc_stopped;
357 unsigned long flags;
358
359 /* Protects also the local clockevent device. */
360 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
361 td = this_cpu_ptr(&tick_cpu_device);
362 dev = td->evtdev;
363
364 /*
365 * Is the device not affected by the powerstate ?
366 */
367 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
368 goto out;
369
370 if (!tick_device_is_functional(dev))
371 goto out;
372
373 cpu = smp_processor_id();
374 bc = tick_broadcast_device.evtdev;
375 bc_stopped = cpumask_empty(tick_broadcast_mask);
376
377 switch (mode) {
378 case TICK_BROADCAST_FORCE:
379 tick_broadcast_forced = 1;
380 case TICK_BROADCAST_ON:
381 cpumask_set_cpu(cpu, tick_broadcast_on);
382 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
383 /*
384 * Only shutdown the cpu local device, if:
385 *
386 * - the broadcast device exists
387 * - the broadcast device is not a hrtimer based one
388 * - the broadcast device is in periodic mode to
389 * avoid a hickup during switch to oneshot mode
390 */
391 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
392 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
393 clockevents_shutdown(dev);
394 }
395 break;
396
397 case TICK_BROADCAST_OFF:
398 if (tick_broadcast_forced)
399 break;
400 cpumask_clear_cpu(cpu, tick_broadcast_on);
401 if (!tick_device_is_functional(dev))
402 break;
403 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
404 if (tick_broadcast_device.mode ==
405 TICKDEV_MODE_PERIODIC)
406 tick_setup_periodic(dev, 0);
407 }
408 break;
409 }
410
411 if (bc) {
412 if (cpumask_empty(tick_broadcast_mask)) {
413 if (!bc_stopped)
414 clockevents_shutdown(bc);
415 } else if (bc_stopped) {
416 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
417 tick_broadcast_start_periodic(bc);
418 else
419 tick_broadcast_setup_oneshot(bc);
420 }
421 }
422 out:
423 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
424 }
425 EXPORT_SYMBOL_GPL(tick_broadcast_control);
426
427 /*
428 * Set the periodic handler depending on broadcast on/off
429 */
430 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
431 {
432 if (!broadcast)
433 dev->event_handler = tick_handle_periodic;
434 else
435 dev->event_handler = tick_handle_periodic_broadcast;
436 }
437
438 #ifdef CONFIG_HOTPLUG_CPU
439 /*
440 * Remove a CPU from broadcasting
441 */
442 void tick_shutdown_broadcast(unsigned int cpu)
443 {
444 struct clock_event_device *bc;
445 unsigned long flags;
446
447 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
448
449 bc = tick_broadcast_device.evtdev;
450 cpumask_clear_cpu(cpu, tick_broadcast_mask);
451 cpumask_clear_cpu(cpu, tick_broadcast_on);
452
453 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
454 if (bc && cpumask_empty(tick_broadcast_mask))
455 clockevents_shutdown(bc);
456 }
457
458 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
459 }
460 #endif
461
462 void tick_suspend_broadcast(void)
463 {
464 struct clock_event_device *bc;
465 unsigned long flags;
466
467 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
468
469 bc = tick_broadcast_device.evtdev;
470 if (bc)
471 clockevents_shutdown(bc);
472
473 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
474 }
475
476 /*
477 * This is called from tick_resume_local() on a resuming CPU. That's
478 * called from the core resume function, tick_unfreeze() and the magic XEN
479 * resume hackery.
480 *
481 * In none of these cases the broadcast device mode can change and the
482 * bit of the resuming CPU in the broadcast mask is safe as well.
483 */
484 bool tick_resume_check_broadcast(void)
485 {
486 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
487 return false;
488 else
489 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
490 }
491
492 void tick_resume_broadcast(void)
493 {
494 struct clock_event_device *bc;
495 unsigned long flags;
496
497 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
498
499 bc = tick_broadcast_device.evtdev;
500
501 if (bc) {
502 clockevents_tick_resume(bc);
503
504 switch (tick_broadcast_device.mode) {
505 case TICKDEV_MODE_PERIODIC:
506 if (!cpumask_empty(tick_broadcast_mask))
507 tick_broadcast_start_periodic(bc);
508 break;
509 case TICKDEV_MODE_ONESHOT:
510 if (!cpumask_empty(tick_broadcast_mask))
511 tick_resume_broadcast_oneshot(bc);
512 break;
513 }
514 }
515 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
516 }
517
518 #ifdef CONFIG_TICK_ONESHOT
519
520 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
521 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
522 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
523
524 /*
525 * Exposed for debugging: see timer_list.c
526 */
527 struct cpumask *tick_get_broadcast_oneshot_mask(void)
528 {
529 return tick_broadcast_oneshot_mask;
530 }
531
532 /*
533 * Called before going idle with interrupts disabled. Checks whether a
534 * broadcast event from the other core is about to happen. We detected
535 * that in tick_broadcast_oneshot_control(). The callsite can use this
536 * to avoid a deep idle transition as we are about to get the
537 * broadcast IPI right away.
538 */
539 int tick_check_broadcast_expired(void)
540 {
541 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
542 }
543
544 /*
545 * Set broadcast interrupt affinity
546 */
547 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
548 const struct cpumask *cpumask)
549 {
550 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
551 return;
552
553 if (cpumask_equal(bc->cpumask, cpumask))
554 return;
555
556 bc->cpumask = cpumask;
557 irq_set_affinity(bc->irq, bc->cpumask);
558 }
559
560 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
561 ktime_t expires)
562 {
563 if (!clockevent_state_oneshot(bc))
564 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
565
566 clockevents_program_event(bc, expires, 1);
567 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
568 }
569
570 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
571 {
572 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
573 }
574
575 /*
576 * Called from irq_enter() when idle was interrupted to reenable the
577 * per cpu device.
578 */
579 void tick_check_oneshot_broadcast_this_cpu(void)
580 {
581 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
582 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
583
584 /*
585 * We might be in the middle of switching over from
586 * periodic to oneshot. If the CPU has not yet
587 * switched over, leave the device alone.
588 */
589 if (td->mode == TICKDEV_MODE_ONESHOT) {
590 clockevents_switch_state(td->evtdev,
591 CLOCK_EVT_STATE_ONESHOT);
592 }
593 }
594 }
595
596 /*
597 * Handle oneshot mode broadcasting
598 */
599 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
600 {
601 struct tick_device *td;
602 ktime_t now, next_event;
603 int cpu, next_cpu = 0;
604 bool bc_local;
605
606 raw_spin_lock(&tick_broadcast_lock);
607 dev->next_event = KTIME_MAX;
608 next_event = KTIME_MAX;
609 cpumask_clear(tmpmask);
610 now = ktime_get();
611 /* Find all expired events */
612 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
613 td = &per_cpu(tick_cpu_device, cpu);
614 if (td->evtdev->next_event <= now) {
615 cpumask_set_cpu(cpu, tmpmask);
616 /*
617 * Mark the remote cpu in the pending mask, so
618 * it can avoid reprogramming the cpu local
619 * timer in tick_broadcast_oneshot_control().
620 */
621 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
622 } else if (td->evtdev->next_event < next_event) {
623 next_event = td->evtdev->next_event;
624 next_cpu = cpu;
625 }
626 }
627
628 /*
629 * Remove the current cpu from the pending mask. The event is
630 * delivered immediately in tick_do_broadcast() !
631 */
632 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
633
634 /* Take care of enforced broadcast requests */
635 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
636 cpumask_clear(tick_broadcast_force_mask);
637
638 /*
639 * Sanity check. Catch the case where we try to broadcast to
640 * offline cpus.
641 */
642 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
643 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
644
645 /*
646 * Wakeup the cpus which have an expired event.
647 */
648 bc_local = tick_do_broadcast(tmpmask);
649
650 /*
651 * Two reasons for reprogram:
652 *
653 * - The global event did not expire any CPU local
654 * events. This happens in dyntick mode, as the maximum PIT
655 * delta is quite small.
656 *
657 * - There are pending events on sleeping CPUs which were not
658 * in the event mask
659 */
660 if (next_event != KTIME_MAX)
661 tick_broadcast_set_event(dev, next_cpu, next_event);
662
663 raw_spin_unlock(&tick_broadcast_lock);
664
665 if (bc_local) {
666 td = this_cpu_ptr(&tick_cpu_device);
667 td->evtdev->event_handler(td->evtdev);
668 }
669 }
670
671 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
672 {
673 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
674 return 0;
675 if (bc->next_event == KTIME_MAX)
676 return 0;
677 return bc->bound_on == cpu ? -EBUSY : 0;
678 }
679
680 static void broadcast_shutdown_local(struct clock_event_device *bc,
681 struct clock_event_device *dev)
682 {
683 /*
684 * For hrtimer based broadcasting we cannot shutdown the cpu
685 * local device if our own event is the first one to expire or
686 * if we own the broadcast timer.
687 */
688 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
689 if (broadcast_needs_cpu(bc, smp_processor_id()))
690 return;
691 if (dev->next_event < bc->next_event)
692 return;
693 }
694 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
695 }
696
697 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
698 {
699 struct clock_event_device *bc, *dev;
700 int cpu, ret = 0;
701 ktime_t now;
702
703 /*
704 * If there is no broadcast device, tell the caller not to go
705 * into deep idle.
706 */
707 if (!tick_broadcast_device.evtdev)
708 return -EBUSY;
709
710 dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
711
712 raw_spin_lock(&tick_broadcast_lock);
713 bc = tick_broadcast_device.evtdev;
714 cpu = smp_processor_id();
715
716 if (state == TICK_BROADCAST_ENTER) {
717 /*
718 * If the current CPU owns the hrtimer broadcast
719 * mechanism, it cannot go deep idle and we do not add
720 * the CPU to the broadcast mask. We don't have to go
721 * through the EXIT path as the local timer is not
722 * shutdown.
723 */
724 ret = broadcast_needs_cpu(bc, cpu);
725 if (ret)
726 goto out;
727
728 /*
729 * If the broadcast device is in periodic mode, we
730 * return.
731 */
732 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
733 /* If it is a hrtimer based broadcast, return busy */
734 if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
735 ret = -EBUSY;
736 goto out;
737 }
738
739 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
740 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
741
742 /* Conditionally shut down the local timer. */
743 broadcast_shutdown_local(bc, dev);
744
745 /*
746 * We only reprogram the broadcast timer if we
747 * did not mark ourself in the force mask and
748 * if the cpu local event is earlier than the
749 * broadcast event. If the current CPU is in
750 * the force mask, then we are going to be
751 * woken by the IPI right away; we return
752 * busy, so the CPU does not try to go deep
753 * idle.
754 */
755 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
756 ret = -EBUSY;
757 } else if (dev->next_event < bc->next_event) {
758 tick_broadcast_set_event(bc, cpu, dev->next_event);
759 /*
760 * In case of hrtimer broadcasts the
761 * programming might have moved the
762 * timer to this cpu. If yes, remove
763 * us from the broadcast mask and
764 * return busy.
765 */
766 ret = broadcast_needs_cpu(bc, cpu);
767 if (ret) {
768 cpumask_clear_cpu(cpu,
769 tick_broadcast_oneshot_mask);
770 }
771 }
772 }
773 } else {
774 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
775 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
776 /*
777 * The cpu which was handling the broadcast
778 * timer marked this cpu in the broadcast
779 * pending mask and fired the broadcast
780 * IPI. So we are going to handle the expired
781 * event anyway via the broadcast IPI
782 * handler. No need to reprogram the timer
783 * with an already expired event.
784 */
785 if (cpumask_test_and_clear_cpu(cpu,
786 tick_broadcast_pending_mask))
787 goto out;
788
789 /*
790 * Bail out if there is no next event.
791 */
792 if (dev->next_event == KTIME_MAX)
793 goto out;
794 /*
795 * If the pending bit is not set, then we are
796 * either the CPU handling the broadcast
797 * interrupt or we got woken by something else.
798 *
799 * We are not longer in the broadcast mask, so
800 * if the cpu local expiry time is already
801 * reached, we would reprogram the cpu local
802 * timer with an already expired event.
803 *
804 * This can lead to a ping-pong when we return
805 * to idle and therefor rearm the broadcast
806 * timer before the cpu local timer was able
807 * to fire. This happens because the forced
808 * reprogramming makes sure that the event
809 * will happen in the future and depending on
810 * the min_delta setting this might be far
811 * enough out that the ping-pong starts.
812 *
813 * If the cpu local next_event has expired
814 * then we know that the broadcast timer
815 * next_event has expired as well and
816 * broadcast is about to be handled. So we
817 * avoid reprogramming and enforce that the
818 * broadcast handler, which did not run yet,
819 * will invoke the cpu local handler.
820 *
821 * We cannot call the handler directly from
822 * here, because we might be in a NOHZ phase
823 * and we did not go through the irq_enter()
824 * nohz fixups.
825 */
826 now = ktime_get();
827 if (dev->next_event <= now) {
828 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
829 goto out;
830 }
831 /*
832 * We got woken by something else. Reprogram
833 * the cpu local timer device.
834 */
835 tick_program_event(dev->next_event, 1);
836 }
837 }
838 out:
839 raw_spin_unlock(&tick_broadcast_lock);
840 return ret;
841 }
842
843 /*
844 * Reset the one shot broadcast for a cpu
845 *
846 * Called with tick_broadcast_lock held
847 */
848 static void tick_broadcast_clear_oneshot(int cpu)
849 {
850 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
851 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
852 }
853
854 static void tick_broadcast_init_next_event(struct cpumask *mask,
855 ktime_t expires)
856 {
857 struct tick_device *td;
858 int cpu;
859
860 for_each_cpu(cpu, mask) {
861 td = &per_cpu(tick_cpu_device, cpu);
862 if (td->evtdev)
863 td->evtdev->next_event = expires;
864 }
865 }
866
867 /**
868 * tick_broadcast_setup_oneshot - setup the broadcast device
869 */
870 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
871 {
872 int cpu = smp_processor_id();
873
874 if (!bc)
875 return;
876
877 /* Set it up only once ! */
878 if (bc->event_handler != tick_handle_oneshot_broadcast) {
879 int was_periodic = clockevent_state_periodic(bc);
880
881 bc->event_handler = tick_handle_oneshot_broadcast;
882
883 /*
884 * We must be careful here. There might be other CPUs
885 * waiting for periodic broadcast. We need to set the
886 * oneshot_mask bits for those and program the
887 * broadcast device to fire.
888 */
889 cpumask_copy(tmpmask, tick_broadcast_mask);
890 cpumask_clear_cpu(cpu, tmpmask);
891 cpumask_or(tick_broadcast_oneshot_mask,
892 tick_broadcast_oneshot_mask, tmpmask);
893
894 if (was_periodic && !cpumask_empty(tmpmask)) {
895 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
896 tick_broadcast_init_next_event(tmpmask,
897 tick_next_period);
898 tick_broadcast_set_event(bc, cpu, tick_next_period);
899 } else
900 bc->next_event = KTIME_MAX;
901 } else {
902 /*
903 * The first cpu which switches to oneshot mode sets
904 * the bit for all other cpus which are in the general
905 * (periodic) broadcast mask. So the bit is set and
906 * would prevent the first broadcast enter after this
907 * to program the bc device.
908 */
909 tick_broadcast_clear_oneshot(cpu);
910 }
911 }
912
913 /*
914 * Select oneshot operating mode for the broadcast device
915 */
916 void tick_broadcast_switch_to_oneshot(void)
917 {
918 struct clock_event_device *bc;
919 unsigned long flags;
920
921 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
922
923 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
924 bc = tick_broadcast_device.evtdev;
925 if (bc)
926 tick_broadcast_setup_oneshot(bc);
927
928 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
929 }
930
931 #ifdef CONFIG_HOTPLUG_CPU
932 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
933 {
934 struct clock_event_device *bc;
935 unsigned long flags;
936
937 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
938 bc = tick_broadcast_device.evtdev;
939
940 if (bc && broadcast_needs_cpu(bc, deadcpu)) {
941 /* This moves the broadcast assignment to this CPU: */
942 clockevents_program_event(bc, bc->next_event, 1);
943 }
944 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
945 }
946
947 /*
948 * Remove a dead CPU from broadcasting
949 */
950 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
951 {
952 unsigned long flags;
953
954 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
955
956 /*
957 * Clear the broadcast masks for the dead cpu, but do not stop
958 * the broadcast device!
959 */
960 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
961 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
962 cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
963
964 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
965 }
966 #endif
967
968 /*
969 * Check, whether the broadcast device is in one shot mode
970 */
971 int tick_broadcast_oneshot_active(void)
972 {
973 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
974 }
975
976 /*
977 * Check whether the broadcast device supports oneshot.
978 */
979 bool tick_broadcast_oneshot_available(void)
980 {
981 struct clock_event_device *bc = tick_broadcast_device.evtdev;
982
983 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
984 }
985
986 #else
987 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
988 {
989 struct clock_event_device *bc = tick_broadcast_device.evtdev;
990
991 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
992 return -EBUSY;
993
994 return 0;
995 }
996 #endif
997
998 void __init tick_broadcast_init(void)
999 {
1000 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1001 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1002 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1003 #ifdef CONFIG_TICK_ONESHOT
1004 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1005 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1006 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1007 #endif
1008 }