]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/tick-sched.c
0581c11fe6c6765121a84f531475e0e3c78809b3
[mirror_ubuntu-artful-kernel.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 #include <linux/module.h>
24
25 #include <asm/irq_regs.h>
26
27 #include "tick-internal.h"
28
29 /*
30 * Per cpu nohz control structure
31 */
32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33
34 /*
35 * The time, when the last jiffy update happened. Protected by xtime_lock.
36 */
37 static ktime_t last_jiffies_update;
38
39 struct tick_sched *tick_get_tick_sched(int cpu)
40 {
41 return &per_cpu(tick_cpu_sched, cpu);
42 }
43
44 /*
45 * Must be called with interrupts disabled !
46 */
47 static void tick_do_update_jiffies64(ktime_t now)
48 {
49 unsigned long ticks = 0;
50 ktime_t delta;
51
52 /*
53 * Do a quick check without holding xtime_lock:
54 */
55 delta = ktime_sub(now, last_jiffies_update);
56 if (delta.tv64 < tick_period.tv64)
57 return;
58
59 /* Reevalute with xtime_lock held */
60 write_seqlock(&xtime_lock);
61
62 delta = ktime_sub(now, last_jiffies_update);
63 if (delta.tv64 >= tick_period.tv64) {
64
65 delta = ktime_sub(delta, tick_period);
66 last_jiffies_update = ktime_add(last_jiffies_update,
67 tick_period);
68
69 /* Slow path for long timeouts */
70 if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 s64 incr = ktime_to_ns(tick_period);
72
73 ticks = ktime_divns(delta, incr);
74
75 last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 incr * ticks);
77 }
78 do_timer(++ticks);
79
80 /* Keep the tick_next_period variable up to date */
81 tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 }
83 write_sequnlock(&xtime_lock);
84 }
85
86 /*
87 * Initialize and return retrieve the jiffies update.
88 */
89 static ktime_t tick_init_jiffy_update(void)
90 {
91 ktime_t period;
92
93 write_seqlock(&xtime_lock);
94 /* Did we start the jiffies update yet ? */
95 if (last_jiffies_update.tv64 == 0)
96 last_jiffies_update = tick_next_period;
97 period = last_jiffies_update;
98 write_sequnlock(&xtime_lock);
99 return period;
100 }
101
102 /*
103 * NOHZ - aka dynamic tick functionality
104 */
105 #ifdef CONFIG_NO_HZ
106 /*
107 * NO HZ enabled ?
108 */
109 static int tick_nohz_enabled __read_mostly = 1;
110
111 /*
112 * Enable / Disable tickless mode
113 */
114 static int __init setup_tick_nohz(char *str)
115 {
116 if (!strcmp(str, "off"))
117 tick_nohz_enabled = 0;
118 else if (!strcmp(str, "on"))
119 tick_nohz_enabled = 1;
120 else
121 return 0;
122 return 1;
123 }
124
125 __setup("nohz=", setup_tick_nohz);
126
127 /**
128 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
129 *
130 * Called from interrupt entry when the CPU was idle
131 *
132 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
133 * must be updated. Otherwise an interrupt handler could use a stale jiffy
134 * value. We do this unconditionally on any cpu, as we don't know whether the
135 * cpu, which has the update task assigned is in a long sleep.
136 */
137 void tick_nohz_update_jiffies(void)
138 {
139 int cpu = smp_processor_id();
140 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
141 unsigned long flags;
142 ktime_t now;
143
144 if (!ts->tick_stopped)
145 return;
146
147 cpu_clear(cpu, nohz_cpu_mask);
148 now = ktime_get();
149 ts->idle_waketime = now;
150
151 local_irq_save(flags);
152 tick_do_update_jiffies64(now);
153 local_irq_restore(flags);
154
155 touch_softlockup_watchdog();
156 }
157
158 static void tick_nohz_stop_idle(int cpu)
159 {
160 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
161
162 if (ts->idle_active) {
163 ktime_t now, delta;
164 now = ktime_get();
165 delta = ktime_sub(now, ts->idle_entrytime);
166 ts->idle_lastupdate = now;
167 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
168 ts->idle_active = 0;
169
170 sched_clock_idle_wakeup_event(0);
171 }
172 }
173
174 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
175 {
176 ktime_t now, delta;
177
178 now = ktime_get();
179 if (ts->idle_active) {
180 delta = ktime_sub(now, ts->idle_entrytime);
181 ts->idle_lastupdate = now;
182 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
183 }
184 ts->idle_entrytime = now;
185 ts->idle_active = 1;
186 sched_clock_idle_sleep_event();
187 return now;
188 }
189
190 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
191 {
192 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
193
194 if (!tick_nohz_enabled)
195 return -1;
196
197 if (ts->idle_active)
198 *last_update_time = ktime_to_us(ts->idle_lastupdate);
199 else
200 *last_update_time = ktime_to_us(ktime_get());
201
202 return ktime_to_us(ts->idle_sleeptime);
203 }
204 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
205
206 /**
207 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
208 *
209 * When the next event is more than a tick into the future, stop the idle tick
210 * Called either from the idle loop or from irq_exit() when an idle period was
211 * just interrupted by an interrupt which did not cause a reschedule.
212 */
213 void tick_nohz_stop_sched_tick(int inidle)
214 {
215 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
216 struct tick_sched *ts;
217 ktime_t last_update, expires, now;
218 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
219 int cpu;
220
221 local_irq_save(flags);
222
223 cpu = smp_processor_id();
224 ts = &per_cpu(tick_cpu_sched, cpu);
225 now = tick_nohz_start_idle(ts);
226
227 /*
228 * If this cpu is offline and it is the one which updates
229 * jiffies, then give up the assignment and let it be taken by
230 * the cpu which runs the tick timer next. If we don't drop
231 * this here the jiffies might be stale and do_timer() never
232 * invoked.
233 */
234 if (unlikely(!cpu_online(cpu))) {
235 if (cpu == tick_do_timer_cpu)
236 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
237 }
238
239 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
240 goto end;
241
242 if (!inidle && !ts->inidle)
243 goto end;
244
245 ts->inidle = 1;
246
247 if (need_resched())
248 goto end;
249
250 if (unlikely(local_softirq_pending())) {
251 static int ratelimit;
252
253 if (ratelimit < 10) {
254 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
255 local_softirq_pending());
256 ratelimit++;
257 }
258 goto end;
259 }
260
261 ts->idle_calls++;
262 /* Read jiffies and the time when jiffies were updated last */
263 do {
264 seq = read_seqbegin(&xtime_lock);
265 last_update = last_jiffies_update;
266 last_jiffies = jiffies;
267 } while (read_seqretry(&xtime_lock, seq));
268
269 /* Get the next timer wheel timer */
270 next_jiffies = get_next_timer_interrupt(last_jiffies);
271 delta_jiffies = next_jiffies - last_jiffies;
272
273 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu))
274 delta_jiffies = 1;
275 /*
276 * Do not stop the tick, if we are only one off
277 * or if the cpu is required for rcu
278 */
279 if (!ts->tick_stopped && delta_jiffies == 1)
280 goto out;
281
282 /* Schedule the tick, if we are at least one jiffie off */
283 if ((long)delta_jiffies >= 1) {
284
285 if (delta_jiffies > 1)
286 cpu_set(cpu, nohz_cpu_mask);
287 /*
288 * nohz_stop_sched_tick can be called several times before
289 * the nohz_restart_sched_tick is called. This happens when
290 * interrupts arrive which do not cause a reschedule. In the
291 * first call we save the current tick time, so we can restart
292 * the scheduler tick in nohz_restart_sched_tick.
293 */
294 if (!ts->tick_stopped) {
295 if (select_nohz_load_balancer(1)) {
296 /*
297 * sched tick not stopped!
298 */
299 cpu_clear(cpu, nohz_cpu_mask);
300 goto out;
301 }
302
303 ts->idle_tick = ts->sched_timer.expires;
304 ts->tick_stopped = 1;
305 ts->idle_jiffies = last_jiffies;
306 rcu_enter_nohz();
307 }
308
309 /*
310 * If this cpu is the one which updates jiffies, then
311 * give up the assignment and let it be taken by the
312 * cpu which runs the tick timer next, which might be
313 * this cpu as well. If we don't drop this here the
314 * jiffies might be stale and do_timer() never
315 * invoked.
316 */
317 if (cpu == tick_do_timer_cpu)
318 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
319
320 ts->idle_sleeps++;
321
322 /*
323 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
324 * there is no timer pending or at least extremly far
325 * into the future (12 days for HZ=1000). In this case
326 * we simply stop the tick timer:
327 */
328 if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
329 ts->idle_expires.tv64 = KTIME_MAX;
330 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
331 hrtimer_cancel(&ts->sched_timer);
332 goto out;
333 }
334
335 /*
336 * calculate the expiry time for the next timer wheel
337 * timer
338 */
339 expires = ktime_add_ns(last_update, tick_period.tv64 *
340 delta_jiffies);
341 ts->idle_expires = expires;
342
343 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
344 hrtimer_start(&ts->sched_timer, expires,
345 HRTIMER_MODE_ABS);
346 /* Check, if the timer was already in the past */
347 if (hrtimer_active(&ts->sched_timer))
348 goto out;
349 } else if (!tick_program_event(expires, 0))
350 goto out;
351 /*
352 * We are past the event already. So we crossed a
353 * jiffie boundary. Update jiffies and raise the
354 * softirq.
355 */
356 tick_do_update_jiffies64(ktime_get());
357 cpu_clear(cpu, nohz_cpu_mask);
358 }
359 raise_softirq_irqoff(TIMER_SOFTIRQ);
360 out:
361 ts->next_jiffies = next_jiffies;
362 ts->last_jiffies = last_jiffies;
363 ts->sleep_length = ktime_sub(dev->next_event, now);
364 end:
365 local_irq_restore(flags);
366 }
367
368 /**
369 * tick_nohz_get_sleep_length - return the length of the current sleep
370 *
371 * Called from power state control code with interrupts disabled
372 */
373 ktime_t tick_nohz_get_sleep_length(void)
374 {
375 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
376
377 return ts->sleep_length;
378 }
379
380 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
381 {
382 hrtimer_cancel(&ts->sched_timer);
383 ts->sched_timer.expires = ts->idle_tick;
384
385 while (1) {
386 /* Forward the time to expire in the future */
387 hrtimer_forward(&ts->sched_timer, now, tick_period);
388
389 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
390 hrtimer_start(&ts->sched_timer,
391 ts->sched_timer.expires,
392 HRTIMER_MODE_ABS);
393 /* Check, if the timer was already in the past */
394 if (hrtimer_active(&ts->sched_timer))
395 break;
396 } else {
397 if (!tick_program_event(ts->sched_timer.expires, 0))
398 break;
399 }
400 /* Update jiffies and reread time */
401 tick_do_update_jiffies64(now);
402 now = ktime_get();
403 }
404 }
405
406 /**
407 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
408 *
409 * Restart the idle tick when the CPU is woken up from idle
410 */
411 void tick_nohz_restart_sched_tick(void)
412 {
413 int cpu = smp_processor_id();
414 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
415 unsigned long ticks;
416 ktime_t now;
417
418 local_irq_disable();
419 tick_nohz_stop_idle(cpu);
420
421 if (!ts->inidle || !ts->tick_stopped) {
422 ts->inidle = 0;
423 local_irq_enable();
424 return;
425 }
426
427 ts->inidle = 0;
428
429 rcu_exit_nohz();
430
431 /* Update jiffies first */
432 select_nohz_load_balancer(0);
433 now = ktime_get();
434 tick_do_update_jiffies64(now);
435 cpu_clear(cpu, nohz_cpu_mask);
436
437 /*
438 * We stopped the tick in idle. Update process times would miss the
439 * time we slept as update_process_times does only a 1 tick
440 * accounting. Enforce that this is accounted to idle !
441 */
442 ticks = jiffies - ts->idle_jiffies;
443 /*
444 * We might be one off. Do not randomly account a huge number of ticks!
445 */
446 if (ticks && ticks < LONG_MAX) {
447 add_preempt_count(HARDIRQ_OFFSET);
448 account_system_time(current, HARDIRQ_OFFSET,
449 jiffies_to_cputime(ticks));
450 sub_preempt_count(HARDIRQ_OFFSET);
451 }
452
453 touch_softlockup_watchdog();
454 /*
455 * Cancel the scheduled timer and restore the tick
456 */
457 ts->tick_stopped = 0;
458 ts->idle_exittime = now;
459 tick_nohz_restart(ts, now);
460 local_irq_enable();
461 }
462
463 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
464 {
465 hrtimer_forward(&ts->sched_timer, now, tick_period);
466 return tick_program_event(ts->sched_timer.expires, 0);
467 }
468
469 /*
470 * The nohz low res interrupt handler
471 */
472 static void tick_nohz_handler(struct clock_event_device *dev)
473 {
474 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
475 struct pt_regs *regs = get_irq_regs();
476 int cpu = smp_processor_id();
477 ktime_t now = ktime_get();
478
479 dev->next_event.tv64 = KTIME_MAX;
480
481 /*
482 * Check if the do_timer duty was dropped. We don't care about
483 * concurrency: This happens only when the cpu in charge went
484 * into a long sleep. If two cpus happen to assign themself to
485 * this duty, then the jiffies update is still serialized by
486 * xtime_lock.
487 */
488 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
489 tick_do_timer_cpu = cpu;
490
491 /* Check, if the jiffies need an update */
492 if (tick_do_timer_cpu == cpu)
493 tick_do_update_jiffies64(now);
494
495 /*
496 * When we are idle and the tick is stopped, we have to touch
497 * the watchdog as we might not schedule for a really long
498 * time. This happens on complete idle SMP systems while
499 * waiting on the login prompt. We also increment the "start
500 * of idle" jiffy stamp so the idle accounting adjustment we
501 * do when we go busy again does not account too much ticks.
502 */
503 if (ts->tick_stopped) {
504 touch_softlockup_watchdog();
505 ts->idle_jiffies++;
506 }
507
508 update_process_times(user_mode(regs));
509 profile_tick(CPU_PROFILING);
510
511 while (tick_nohz_reprogram(ts, now)) {
512 now = ktime_get();
513 tick_do_update_jiffies64(now);
514 }
515 }
516
517 /**
518 * tick_nohz_switch_to_nohz - switch to nohz mode
519 */
520 static void tick_nohz_switch_to_nohz(void)
521 {
522 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
523 ktime_t next;
524
525 if (!tick_nohz_enabled)
526 return;
527
528 local_irq_disable();
529 if (tick_switch_to_oneshot(tick_nohz_handler)) {
530 local_irq_enable();
531 return;
532 }
533
534 ts->nohz_mode = NOHZ_MODE_LOWRES;
535
536 /*
537 * Recycle the hrtimer in ts, so we can share the
538 * hrtimer_forward with the highres code.
539 */
540 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
541 /* Get the next period */
542 next = tick_init_jiffy_update();
543
544 for (;;) {
545 ts->sched_timer.expires = next;
546 if (!tick_program_event(next, 0))
547 break;
548 next = ktime_add(next, tick_period);
549 }
550 local_irq_enable();
551
552 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
553 smp_processor_id());
554 }
555
556 /*
557 * When NOHZ is enabled and the tick is stopped, we need to kick the
558 * tick timer from irq_enter() so that the jiffies update is kept
559 * alive during long running softirqs. That's ugly as hell, but
560 * correctness is key even if we need to fix the offending softirq in
561 * the first place.
562 *
563 * Note, this is different to tick_nohz_restart. We just kick the
564 * timer and do not touch the other magic bits which need to be done
565 * when idle is left.
566 */
567 static void tick_nohz_kick_tick(int cpu)
568 {
569 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
570
571 if (!ts->tick_stopped)
572 return;
573
574 tick_nohz_restart(ts, ktime_get());
575 }
576
577 #else
578
579 static inline void tick_nohz_switch_to_nohz(void) { }
580
581 #endif /* NO_HZ */
582
583 /*
584 * Called from irq_enter to notify about the possible interruption of idle()
585 */
586 void tick_check_idle(int cpu)
587 {
588 tick_check_oneshot_broadcast(cpu);
589 #ifdef CONFIG_NO_HZ
590 tick_nohz_stop_idle(cpu);
591 tick_nohz_update_jiffies();
592 tick_nohz_kick_tick(cpu);
593 #endif
594 }
595
596 /*
597 * High resolution timer specific code
598 */
599 #ifdef CONFIG_HIGH_RES_TIMERS
600 /*
601 * We rearm the timer until we get disabled by the idle code.
602 * Called with interrupts disabled and timer->base->cpu_base->lock held.
603 */
604 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
605 {
606 struct tick_sched *ts =
607 container_of(timer, struct tick_sched, sched_timer);
608 struct pt_regs *regs = get_irq_regs();
609 ktime_t now = ktime_get();
610 int cpu = smp_processor_id();
611
612 #ifdef CONFIG_NO_HZ
613 /*
614 * Check if the do_timer duty was dropped. We don't care about
615 * concurrency: This happens only when the cpu in charge went
616 * into a long sleep. If two cpus happen to assign themself to
617 * this duty, then the jiffies update is still serialized by
618 * xtime_lock.
619 */
620 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
621 tick_do_timer_cpu = cpu;
622 #endif
623
624 /* Check, if the jiffies need an update */
625 if (tick_do_timer_cpu == cpu)
626 tick_do_update_jiffies64(now);
627
628 /*
629 * Do not call, when we are not in irq context and have
630 * no valid regs pointer
631 */
632 if (regs) {
633 /*
634 * When we are idle and the tick is stopped, we have to touch
635 * the watchdog as we might not schedule for a really long
636 * time. This happens on complete idle SMP systems while
637 * waiting on the login prompt. We also increment the "start of
638 * idle" jiffy stamp so the idle accounting adjustment we do
639 * when we go busy again does not account too much ticks.
640 */
641 if (ts->tick_stopped) {
642 touch_softlockup_watchdog();
643 ts->idle_jiffies++;
644 }
645 update_process_times(user_mode(regs));
646 profile_tick(CPU_PROFILING);
647 }
648
649 hrtimer_forward(timer, now, tick_period);
650
651 return HRTIMER_RESTART;
652 }
653
654 /**
655 * tick_setup_sched_timer - setup the tick emulation timer
656 */
657 void tick_setup_sched_timer(void)
658 {
659 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
660 ktime_t now = ktime_get();
661 u64 offset;
662
663 /*
664 * Emulate tick processing via per-CPU hrtimers:
665 */
666 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
667 ts->sched_timer.function = tick_sched_timer;
668 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
669
670 /* Get the next period (per cpu) */
671 ts->sched_timer.expires = tick_init_jiffy_update();
672 offset = ktime_to_ns(tick_period) >> 1;
673 do_div(offset, num_possible_cpus());
674 offset *= smp_processor_id();
675 ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
676
677 for (;;) {
678 hrtimer_forward(&ts->sched_timer, now, tick_period);
679 hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
680 HRTIMER_MODE_ABS);
681 /* Check, if the timer was already in the past */
682 if (hrtimer_active(&ts->sched_timer))
683 break;
684 now = ktime_get();
685 }
686
687 #ifdef CONFIG_NO_HZ
688 if (tick_nohz_enabled)
689 ts->nohz_mode = NOHZ_MODE_HIGHRES;
690 #endif
691 }
692 #endif /* HIGH_RES_TIMERS */
693
694 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
695 void tick_cancel_sched_timer(int cpu)
696 {
697 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
698
699 # ifdef CONFIG_HIGH_RES_TIMERS
700 if (ts->sched_timer.base)
701 hrtimer_cancel(&ts->sched_timer);
702 # endif
703
704 ts->nohz_mode = NOHZ_MODE_INACTIVE;
705 }
706 #endif
707
708 /**
709 * Async notification about clocksource changes
710 */
711 void tick_clock_notify(void)
712 {
713 int cpu;
714
715 for_each_possible_cpu(cpu)
716 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
717 }
718
719 /*
720 * Async notification about clock event changes
721 */
722 void tick_oneshot_notify(void)
723 {
724 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
725
726 set_bit(0, &ts->check_clocks);
727 }
728
729 /**
730 * Check, if a change happened, which makes oneshot possible.
731 *
732 * Called cyclic from the hrtimer softirq (driven by the timer
733 * softirq) allow_nohz signals, that we can switch into low-res nohz
734 * mode, because high resolution timers are disabled (either compile
735 * or runtime).
736 */
737 int tick_check_oneshot_change(int allow_nohz)
738 {
739 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
740
741 if (!test_and_clear_bit(0, &ts->check_clocks))
742 return 0;
743
744 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
745 return 0;
746
747 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
748 return 0;
749
750 if (!allow_nohz)
751 return 1;
752
753 tick_nohz_switch_to_nohz();
754 return 0;
755 }