]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/time/tick-sched.c
Merge tag 'gpio-v3.14-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-bionic-kernel.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
27
28 #include <asm/irq_regs.h>
29
30 #include "tick-internal.h"
31
32 #include <trace/events/timer.h>
33
34 /*
35 * Per cpu nohz control structure
36 */
37 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38
39 /*
40 * The time, when the last jiffy update happened. Protected by jiffies_lock.
41 */
42 static ktime_t last_jiffies_update;
43
44 struct tick_sched *tick_get_tick_sched(int cpu)
45 {
46 return &per_cpu(tick_cpu_sched, cpu);
47 }
48
49 /*
50 * Must be called with interrupts disabled !
51 */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 unsigned long ticks = 0;
55 ktime_t delta;
56
57 /*
58 * Do a quick check without holding jiffies_lock:
59 */
60 delta = ktime_sub(now, last_jiffies_update);
61 if (delta.tv64 < tick_period.tv64)
62 return;
63
64 /* Reevalute with jiffies_lock held */
65 write_seqlock(&jiffies_lock);
66
67 delta = ktime_sub(now, last_jiffies_update);
68 if (delta.tv64 >= tick_period.tv64) {
69
70 delta = ktime_sub(delta, tick_period);
71 last_jiffies_update = ktime_add(last_jiffies_update,
72 tick_period);
73
74 /* Slow path for long timeouts */
75 if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 s64 incr = ktime_to_ns(tick_period);
77
78 ticks = ktime_divns(delta, incr);
79
80 last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 incr * ticks);
82 }
83 do_timer(++ticks);
84
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 }
88 write_sequnlock(&jiffies_lock);
89 update_wall_time();
90 }
91
92 /*
93 * Initialize and return retrieve the jiffies update.
94 */
95 static ktime_t tick_init_jiffy_update(void)
96 {
97 ktime_t period;
98
99 write_seqlock(&jiffies_lock);
100 /* Did we start the jiffies update yet ? */
101 if (last_jiffies_update.tv64 == 0)
102 last_jiffies_update = tick_next_period;
103 period = last_jiffies_update;
104 write_sequnlock(&jiffies_lock);
105 return period;
106 }
107
108
109 static void tick_sched_do_timer(ktime_t now)
110 {
111 int cpu = smp_processor_id();
112
113 #ifdef CONFIG_NO_HZ_COMMON
114 /*
115 * Check if the do_timer duty was dropped. We don't care about
116 * concurrency: This happens only when the cpu in charge went
117 * into a long sleep. If two cpus happen to assign themself to
118 * this duty, then the jiffies update is still serialized by
119 * jiffies_lock.
120 */
121 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
122 && !tick_nohz_full_cpu(cpu))
123 tick_do_timer_cpu = cpu;
124 #endif
125
126 /* Check, if the jiffies need an update */
127 if (tick_do_timer_cpu == cpu)
128 tick_do_update_jiffies64(now);
129 }
130
131 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
132 {
133 #ifdef CONFIG_NO_HZ_COMMON
134 /*
135 * When we are idle and the tick is stopped, we have to touch
136 * the watchdog as we might not schedule for a really long
137 * time. This happens on complete idle SMP systems while
138 * waiting on the login prompt. We also increment the "start of
139 * idle" jiffy stamp so the idle accounting adjustment we do
140 * when we go busy again does not account too much ticks.
141 */
142 if (ts->tick_stopped) {
143 touch_softlockup_watchdog();
144 if (is_idle_task(current))
145 ts->idle_jiffies++;
146 }
147 #endif
148 update_process_times(user_mode(regs));
149 profile_tick(CPU_PROFILING);
150 }
151
152 #ifdef CONFIG_NO_HZ_FULL
153 cpumask_var_t tick_nohz_full_mask;
154 bool tick_nohz_full_running;
155
156 static bool can_stop_full_tick(void)
157 {
158 WARN_ON_ONCE(!irqs_disabled());
159
160 if (!sched_can_stop_tick()) {
161 trace_tick_stop(0, "more than 1 task in runqueue\n");
162 return false;
163 }
164
165 if (!posix_cpu_timers_can_stop_tick(current)) {
166 trace_tick_stop(0, "posix timers running\n");
167 return false;
168 }
169
170 if (!perf_event_can_stop_tick()) {
171 trace_tick_stop(0, "perf events running\n");
172 return false;
173 }
174
175 /* sched_clock_tick() needs us? */
176 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
177 /*
178 * TODO: kick full dynticks CPUs when
179 * sched_clock_stable is set.
180 */
181 if (!sched_clock_stable()) {
182 trace_tick_stop(0, "unstable sched clock\n");
183 /*
184 * Don't allow the user to think they can get
185 * full NO_HZ with this machine.
186 */
187 WARN_ONCE(tick_nohz_full_running,
188 "NO_HZ FULL will not work with unstable sched clock");
189 return false;
190 }
191 #endif
192
193 return true;
194 }
195
196 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
197
198 /*
199 * Re-evaluate the need for the tick on the current CPU
200 * and restart it if necessary.
201 */
202 void __tick_nohz_full_check(void)
203 {
204 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
205
206 if (tick_nohz_full_cpu(smp_processor_id())) {
207 if (ts->tick_stopped && !is_idle_task(current)) {
208 if (!can_stop_full_tick())
209 tick_nohz_restart_sched_tick(ts, ktime_get());
210 }
211 }
212 }
213
214 static void nohz_full_kick_work_func(struct irq_work *work)
215 {
216 __tick_nohz_full_check();
217 }
218
219 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
220 .func = nohz_full_kick_work_func,
221 };
222
223 /*
224 * Kick the current CPU if it's full dynticks in order to force it to
225 * re-evaluate its dependency on the tick and restart it if necessary.
226 */
227 void tick_nohz_full_kick(void)
228 {
229 if (tick_nohz_full_cpu(smp_processor_id()))
230 irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
231 }
232
233 static void nohz_full_kick_ipi(void *info)
234 {
235 __tick_nohz_full_check();
236 }
237
238 /*
239 * Kick all full dynticks CPUs in order to force these to re-evaluate
240 * their dependency on the tick and restart it if necessary.
241 */
242 void tick_nohz_full_kick_all(void)
243 {
244 if (!tick_nohz_full_running)
245 return;
246
247 preempt_disable();
248 smp_call_function_many(tick_nohz_full_mask,
249 nohz_full_kick_ipi, NULL, false);
250 tick_nohz_full_kick();
251 preempt_enable();
252 }
253
254 /*
255 * Re-evaluate the need for the tick as we switch the current task.
256 * It might need the tick due to per task/process properties:
257 * perf events, posix cpu timers, ...
258 */
259 void __tick_nohz_task_switch(struct task_struct *tsk)
260 {
261 unsigned long flags;
262
263 local_irq_save(flags);
264
265 if (!tick_nohz_full_cpu(smp_processor_id()))
266 goto out;
267
268 if (tick_nohz_tick_stopped() && !can_stop_full_tick())
269 tick_nohz_full_kick();
270
271 out:
272 local_irq_restore(flags);
273 }
274
275 /* Parse the boot-time nohz CPU list from the kernel parameters. */
276 static int __init tick_nohz_full_setup(char *str)
277 {
278 int cpu;
279
280 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
281 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
282 pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
283 return 1;
284 }
285
286 cpu = smp_processor_id();
287 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
288 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
289 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
290 }
291 tick_nohz_full_running = true;
292
293 return 1;
294 }
295 __setup("nohz_full=", tick_nohz_full_setup);
296
297 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
298 unsigned long action,
299 void *hcpu)
300 {
301 unsigned int cpu = (unsigned long)hcpu;
302
303 switch (action & ~CPU_TASKS_FROZEN) {
304 case CPU_DOWN_PREPARE:
305 /*
306 * If we handle the timekeeping duty for full dynticks CPUs,
307 * we can't safely shutdown that CPU.
308 */
309 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
310 return NOTIFY_BAD;
311 break;
312 }
313 return NOTIFY_OK;
314 }
315
316 /*
317 * Worst case string length in chunks of CPU range seems 2 steps
318 * separations: 0,2,4,6,...
319 * This is NR_CPUS + sizeof('\0')
320 */
321 static char __initdata nohz_full_buf[NR_CPUS + 1];
322
323 static int tick_nohz_init_all(void)
324 {
325 int err = -1;
326
327 #ifdef CONFIG_NO_HZ_FULL_ALL
328 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
329 pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
330 return err;
331 }
332 err = 0;
333 cpumask_setall(tick_nohz_full_mask);
334 cpumask_clear_cpu(smp_processor_id(), tick_nohz_full_mask);
335 tick_nohz_full_running = true;
336 #endif
337 return err;
338 }
339
340 void __init tick_nohz_init(void)
341 {
342 int cpu;
343
344 if (!tick_nohz_full_running) {
345 if (tick_nohz_init_all() < 0)
346 return;
347 }
348
349 for_each_cpu(cpu, tick_nohz_full_mask)
350 context_tracking_cpu_set(cpu);
351
352 cpu_notifier(tick_nohz_cpu_down_callback, 0);
353 cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
354 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
355 }
356 #endif
357
358 /*
359 * NOHZ - aka dynamic tick functionality
360 */
361 #ifdef CONFIG_NO_HZ_COMMON
362 /*
363 * NO HZ enabled ?
364 */
365 static int tick_nohz_enabled __read_mostly = 1;
366 int tick_nohz_active __read_mostly;
367 /*
368 * Enable / Disable tickless mode
369 */
370 static int __init setup_tick_nohz(char *str)
371 {
372 if (!strcmp(str, "off"))
373 tick_nohz_enabled = 0;
374 else if (!strcmp(str, "on"))
375 tick_nohz_enabled = 1;
376 else
377 return 0;
378 return 1;
379 }
380
381 __setup("nohz=", setup_tick_nohz);
382
383 /**
384 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
385 *
386 * Called from interrupt entry when the CPU was idle
387 *
388 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
389 * must be updated. Otherwise an interrupt handler could use a stale jiffy
390 * value. We do this unconditionally on any cpu, as we don't know whether the
391 * cpu, which has the update task assigned is in a long sleep.
392 */
393 static void tick_nohz_update_jiffies(ktime_t now)
394 {
395 unsigned long flags;
396
397 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
398
399 local_irq_save(flags);
400 tick_do_update_jiffies64(now);
401 local_irq_restore(flags);
402
403 touch_softlockup_watchdog();
404 }
405
406 /*
407 * Updates the per cpu time idle statistics counters
408 */
409 static void
410 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
411 {
412 ktime_t delta;
413
414 if (ts->idle_active) {
415 delta = ktime_sub(now, ts->idle_entrytime);
416 if (nr_iowait_cpu(cpu) > 0)
417 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
418 else
419 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
420 ts->idle_entrytime = now;
421 }
422
423 if (last_update_time)
424 *last_update_time = ktime_to_us(now);
425
426 }
427
428 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
429 {
430 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
431 ts->idle_active = 0;
432
433 sched_clock_idle_wakeup_event(0);
434 }
435
436 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
437 {
438 ktime_t now = ktime_get();
439
440 ts->idle_entrytime = now;
441 ts->idle_active = 1;
442 sched_clock_idle_sleep_event();
443 return now;
444 }
445
446 /**
447 * get_cpu_idle_time_us - get the total idle time of a cpu
448 * @cpu: CPU number to query
449 * @last_update_time: variable to store update time in. Do not update
450 * counters if NULL.
451 *
452 * Return the cummulative idle time (since boot) for a given
453 * CPU, in microseconds.
454 *
455 * This time is measured via accounting rather than sampling,
456 * and is as accurate as ktime_get() is.
457 *
458 * This function returns -1 if NOHZ is not enabled.
459 */
460 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
461 {
462 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
463 ktime_t now, idle;
464
465 if (!tick_nohz_active)
466 return -1;
467
468 now = ktime_get();
469 if (last_update_time) {
470 update_ts_time_stats(cpu, ts, now, last_update_time);
471 idle = ts->idle_sleeptime;
472 } else {
473 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
474 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
475
476 idle = ktime_add(ts->idle_sleeptime, delta);
477 } else {
478 idle = ts->idle_sleeptime;
479 }
480 }
481
482 return ktime_to_us(idle);
483
484 }
485 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
486
487 /**
488 * get_cpu_iowait_time_us - get the total iowait time of a cpu
489 * @cpu: CPU number to query
490 * @last_update_time: variable to store update time in. Do not update
491 * counters if NULL.
492 *
493 * Return the cummulative iowait time (since boot) for a given
494 * CPU, in microseconds.
495 *
496 * This time is measured via accounting rather than sampling,
497 * and is as accurate as ktime_get() is.
498 *
499 * This function returns -1 if NOHZ is not enabled.
500 */
501 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
502 {
503 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
504 ktime_t now, iowait;
505
506 if (!tick_nohz_active)
507 return -1;
508
509 now = ktime_get();
510 if (last_update_time) {
511 update_ts_time_stats(cpu, ts, now, last_update_time);
512 iowait = ts->iowait_sleeptime;
513 } else {
514 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
515 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
516
517 iowait = ktime_add(ts->iowait_sleeptime, delta);
518 } else {
519 iowait = ts->iowait_sleeptime;
520 }
521 }
522
523 return ktime_to_us(iowait);
524 }
525 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
526
527 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
528 ktime_t now, int cpu)
529 {
530 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
531 ktime_t last_update, expires, ret = { .tv64 = 0 };
532 unsigned long rcu_delta_jiffies;
533 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
534 u64 time_delta;
535
536 /* Read jiffies and the time when jiffies were updated last */
537 do {
538 seq = read_seqbegin(&jiffies_lock);
539 last_update = last_jiffies_update;
540 last_jiffies = jiffies;
541 time_delta = timekeeping_max_deferment();
542 } while (read_seqretry(&jiffies_lock, seq));
543
544 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
545 arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
546 next_jiffies = last_jiffies + 1;
547 delta_jiffies = 1;
548 } else {
549 /* Get the next timer wheel timer */
550 next_jiffies = get_next_timer_interrupt(last_jiffies);
551 delta_jiffies = next_jiffies - last_jiffies;
552 if (rcu_delta_jiffies < delta_jiffies) {
553 next_jiffies = last_jiffies + rcu_delta_jiffies;
554 delta_jiffies = rcu_delta_jiffies;
555 }
556 }
557
558 /*
559 * Do not stop the tick, if we are only one off (or less)
560 * or if the cpu is required for RCU:
561 */
562 if (!ts->tick_stopped && delta_jiffies <= 1)
563 goto out;
564
565 /* Schedule the tick, if we are at least one jiffie off */
566 if ((long)delta_jiffies >= 1) {
567
568 /*
569 * If this cpu is the one which updates jiffies, then
570 * give up the assignment and let it be taken by the
571 * cpu which runs the tick timer next, which might be
572 * this cpu as well. If we don't drop this here the
573 * jiffies might be stale and do_timer() never
574 * invoked. Keep track of the fact that it was the one
575 * which had the do_timer() duty last. If this cpu is
576 * the one which had the do_timer() duty last, we
577 * limit the sleep time to the timekeeping
578 * max_deferement value which we retrieved
579 * above. Otherwise we can sleep as long as we want.
580 */
581 if (cpu == tick_do_timer_cpu) {
582 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
583 ts->do_timer_last = 1;
584 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
585 time_delta = KTIME_MAX;
586 ts->do_timer_last = 0;
587 } else if (!ts->do_timer_last) {
588 time_delta = KTIME_MAX;
589 }
590
591 #ifdef CONFIG_NO_HZ_FULL
592 if (!ts->inidle) {
593 time_delta = min(time_delta,
594 scheduler_tick_max_deferment());
595 }
596 #endif
597
598 /*
599 * calculate the expiry time for the next timer wheel
600 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
601 * that there is no timer pending or at least extremely
602 * far into the future (12 days for HZ=1000). In this
603 * case we set the expiry to the end of time.
604 */
605 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
606 /*
607 * Calculate the time delta for the next timer event.
608 * If the time delta exceeds the maximum time delta
609 * permitted by the current clocksource then adjust
610 * the time delta accordingly to ensure the
611 * clocksource does not wrap.
612 */
613 time_delta = min_t(u64, time_delta,
614 tick_period.tv64 * delta_jiffies);
615 }
616
617 if (time_delta < KTIME_MAX)
618 expires = ktime_add_ns(last_update, time_delta);
619 else
620 expires.tv64 = KTIME_MAX;
621
622 /* Skip reprogram of event if its not changed */
623 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
624 goto out;
625
626 ret = expires;
627
628 /*
629 * nohz_stop_sched_tick can be called several times before
630 * the nohz_restart_sched_tick is called. This happens when
631 * interrupts arrive which do not cause a reschedule. In the
632 * first call we save the current tick time, so we can restart
633 * the scheduler tick in nohz_restart_sched_tick.
634 */
635 if (!ts->tick_stopped) {
636 nohz_balance_enter_idle(cpu);
637 calc_load_enter_idle();
638
639 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
640 ts->tick_stopped = 1;
641 trace_tick_stop(1, " ");
642 }
643
644 /*
645 * If the expiration time == KTIME_MAX, then
646 * in this case we simply stop the tick timer.
647 */
648 if (unlikely(expires.tv64 == KTIME_MAX)) {
649 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
650 hrtimer_cancel(&ts->sched_timer);
651 goto out;
652 }
653
654 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
655 hrtimer_start(&ts->sched_timer, expires,
656 HRTIMER_MODE_ABS_PINNED);
657 /* Check, if the timer was already in the past */
658 if (hrtimer_active(&ts->sched_timer))
659 goto out;
660 } else if (!tick_program_event(expires, 0))
661 goto out;
662 /*
663 * We are past the event already. So we crossed a
664 * jiffie boundary. Update jiffies and raise the
665 * softirq.
666 */
667 tick_do_update_jiffies64(ktime_get());
668 }
669 raise_softirq_irqoff(TIMER_SOFTIRQ);
670 out:
671 ts->next_jiffies = next_jiffies;
672 ts->last_jiffies = last_jiffies;
673 ts->sleep_length = ktime_sub(dev->next_event, now);
674
675 return ret;
676 }
677
678 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
679 {
680 #ifdef CONFIG_NO_HZ_FULL
681 int cpu = smp_processor_id();
682
683 if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
684 return;
685
686 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
687 return;
688
689 if (!can_stop_full_tick())
690 return;
691
692 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
693 #endif
694 }
695
696 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
697 {
698 /*
699 * If this cpu is offline and it is the one which updates
700 * jiffies, then give up the assignment and let it be taken by
701 * the cpu which runs the tick timer next. If we don't drop
702 * this here the jiffies might be stale and do_timer() never
703 * invoked.
704 */
705 if (unlikely(!cpu_online(cpu))) {
706 if (cpu == tick_do_timer_cpu)
707 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
708 return false;
709 }
710
711 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
712 ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
713 return false;
714 }
715
716 if (need_resched())
717 return false;
718
719 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
720 static int ratelimit;
721
722 if (ratelimit < 10 &&
723 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
724 pr_warn("NOHZ: local_softirq_pending %02x\n",
725 (unsigned int) local_softirq_pending());
726 ratelimit++;
727 }
728 return false;
729 }
730
731 if (tick_nohz_full_enabled()) {
732 /*
733 * Keep the tick alive to guarantee timekeeping progression
734 * if there are full dynticks CPUs around
735 */
736 if (tick_do_timer_cpu == cpu)
737 return false;
738 /*
739 * Boot safety: make sure the timekeeping duty has been
740 * assigned before entering dyntick-idle mode,
741 */
742 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
743 return false;
744 }
745
746 return true;
747 }
748
749 static void __tick_nohz_idle_enter(struct tick_sched *ts)
750 {
751 ktime_t now, expires;
752 int cpu = smp_processor_id();
753
754 now = tick_nohz_start_idle(ts);
755
756 if (can_stop_idle_tick(cpu, ts)) {
757 int was_stopped = ts->tick_stopped;
758
759 ts->idle_calls++;
760
761 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
762 if (expires.tv64 > 0LL) {
763 ts->idle_sleeps++;
764 ts->idle_expires = expires;
765 }
766
767 if (!was_stopped && ts->tick_stopped)
768 ts->idle_jiffies = ts->last_jiffies;
769 }
770 }
771
772 /**
773 * tick_nohz_idle_enter - stop the idle tick from the idle task
774 *
775 * When the next event is more than a tick into the future, stop the idle tick
776 * Called when we start the idle loop.
777 *
778 * The arch is responsible of calling:
779 *
780 * - rcu_idle_enter() after its last use of RCU before the CPU is put
781 * to sleep.
782 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
783 */
784 void tick_nohz_idle_enter(void)
785 {
786 struct tick_sched *ts;
787
788 WARN_ON_ONCE(irqs_disabled());
789
790 /*
791 * Update the idle state in the scheduler domain hierarchy
792 * when tick_nohz_stop_sched_tick() is called from the idle loop.
793 * State will be updated to busy during the first busy tick after
794 * exiting idle.
795 */
796 set_cpu_sd_state_idle();
797
798 local_irq_disable();
799
800 ts = &__get_cpu_var(tick_cpu_sched);
801 ts->inidle = 1;
802 __tick_nohz_idle_enter(ts);
803
804 local_irq_enable();
805 }
806 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
807
808 /**
809 * tick_nohz_irq_exit - update next tick event from interrupt exit
810 *
811 * When an interrupt fires while we are idle and it doesn't cause
812 * a reschedule, it may still add, modify or delete a timer, enqueue
813 * an RCU callback, etc...
814 * So we need to re-calculate and reprogram the next tick event.
815 */
816 void tick_nohz_irq_exit(void)
817 {
818 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
819
820 if (ts->inidle)
821 __tick_nohz_idle_enter(ts);
822 else
823 tick_nohz_full_stop_tick(ts);
824 }
825
826 /**
827 * tick_nohz_get_sleep_length - return the length of the current sleep
828 *
829 * Called from power state control code with interrupts disabled
830 */
831 ktime_t tick_nohz_get_sleep_length(void)
832 {
833 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
834
835 return ts->sleep_length;
836 }
837
838 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
839 {
840 hrtimer_cancel(&ts->sched_timer);
841 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
842
843 while (1) {
844 /* Forward the time to expire in the future */
845 hrtimer_forward(&ts->sched_timer, now, tick_period);
846
847 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
848 hrtimer_start_expires(&ts->sched_timer,
849 HRTIMER_MODE_ABS_PINNED);
850 /* Check, if the timer was already in the past */
851 if (hrtimer_active(&ts->sched_timer))
852 break;
853 } else {
854 if (!tick_program_event(
855 hrtimer_get_expires(&ts->sched_timer), 0))
856 break;
857 }
858 /* Reread time and update jiffies */
859 now = ktime_get();
860 tick_do_update_jiffies64(now);
861 }
862 }
863
864 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
865 {
866 /* Update jiffies first */
867 tick_do_update_jiffies64(now);
868 update_cpu_load_nohz();
869
870 calc_load_exit_idle();
871 touch_softlockup_watchdog();
872 /*
873 * Cancel the scheduled timer and restore the tick
874 */
875 ts->tick_stopped = 0;
876 ts->idle_exittime = now;
877
878 tick_nohz_restart(ts, now);
879 }
880
881 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
882 {
883 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
884 unsigned long ticks;
885
886 if (vtime_accounting_enabled())
887 return;
888 /*
889 * We stopped the tick in idle. Update process times would miss the
890 * time we slept as update_process_times does only a 1 tick
891 * accounting. Enforce that this is accounted to idle !
892 */
893 ticks = jiffies - ts->idle_jiffies;
894 /*
895 * We might be one off. Do not randomly account a huge number of ticks!
896 */
897 if (ticks && ticks < LONG_MAX)
898 account_idle_ticks(ticks);
899 #endif
900 }
901
902 /**
903 * tick_nohz_idle_exit - restart the idle tick from the idle task
904 *
905 * Restart the idle tick when the CPU is woken up from idle
906 * This also exit the RCU extended quiescent state. The CPU
907 * can use RCU again after this function is called.
908 */
909 void tick_nohz_idle_exit(void)
910 {
911 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
912 ktime_t now;
913
914 local_irq_disable();
915
916 WARN_ON_ONCE(!ts->inidle);
917
918 ts->inidle = 0;
919
920 if (ts->idle_active || ts->tick_stopped)
921 now = ktime_get();
922
923 if (ts->idle_active)
924 tick_nohz_stop_idle(ts, now);
925
926 if (ts->tick_stopped) {
927 tick_nohz_restart_sched_tick(ts, now);
928 tick_nohz_account_idle_ticks(ts);
929 }
930
931 local_irq_enable();
932 }
933 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
934
935 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
936 {
937 hrtimer_forward(&ts->sched_timer, now, tick_period);
938 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
939 }
940
941 /*
942 * The nohz low res interrupt handler
943 */
944 static void tick_nohz_handler(struct clock_event_device *dev)
945 {
946 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
947 struct pt_regs *regs = get_irq_regs();
948 ktime_t now = ktime_get();
949
950 dev->next_event.tv64 = KTIME_MAX;
951
952 tick_sched_do_timer(now);
953 tick_sched_handle(ts, regs);
954
955 while (tick_nohz_reprogram(ts, now)) {
956 now = ktime_get();
957 tick_do_update_jiffies64(now);
958 }
959 }
960
961 /**
962 * tick_nohz_switch_to_nohz - switch to nohz mode
963 */
964 static void tick_nohz_switch_to_nohz(void)
965 {
966 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
967 ktime_t next;
968
969 if (!tick_nohz_active)
970 return;
971
972 local_irq_disable();
973 if (tick_switch_to_oneshot(tick_nohz_handler)) {
974 local_irq_enable();
975 return;
976 }
977 tick_nohz_active = 1;
978 ts->nohz_mode = NOHZ_MODE_LOWRES;
979
980 /*
981 * Recycle the hrtimer in ts, so we can share the
982 * hrtimer_forward with the highres code.
983 */
984 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
985 /* Get the next period */
986 next = tick_init_jiffy_update();
987
988 for (;;) {
989 hrtimer_set_expires(&ts->sched_timer, next);
990 if (!tick_program_event(next, 0))
991 break;
992 next = ktime_add(next, tick_period);
993 }
994 local_irq_enable();
995 }
996
997 /*
998 * When NOHZ is enabled and the tick is stopped, we need to kick the
999 * tick timer from irq_enter() so that the jiffies update is kept
1000 * alive during long running softirqs. That's ugly as hell, but
1001 * correctness is key even if we need to fix the offending softirq in
1002 * the first place.
1003 *
1004 * Note, this is different to tick_nohz_restart. We just kick the
1005 * timer and do not touch the other magic bits which need to be done
1006 * when idle is left.
1007 */
1008 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1009 {
1010 #if 0
1011 /* Switch back to 2.6.27 behaviour */
1012 ktime_t delta;
1013
1014 /*
1015 * Do not touch the tick device, when the next expiry is either
1016 * already reached or less/equal than the tick period.
1017 */
1018 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1019 if (delta.tv64 <= tick_period.tv64)
1020 return;
1021
1022 tick_nohz_restart(ts, now);
1023 #endif
1024 }
1025
1026 static inline void tick_check_nohz_this_cpu(void)
1027 {
1028 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1029 ktime_t now;
1030
1031 if (!ts->idle_active && !ts->tick_stopped)
1032 return;
1033 now = ktime_get();
1034 if (ts->idle_active)
1035 tick_nohz_stop_idle(ts, now);
1036 if (ts->tick_stopped) {
1037 tick_nohz_update_jiffies(now);
1038 tick_nohz_kick_tick(ts, now);
1039 }
1040 }
1041
1042 #else
1043
1044 static inline void tick_nohz_switch_to_nohz(void) { }
1045 static inline void tick_check_nohz_this_cpu(void) { }
1046
1047 #endif /* CONFIG_NO_HZ_COMMON */
1048
1049 /*
1050 * Called from irq_enter to notify about the possible interruption of idle()
1051 */
1052 void tick_check_idle(void)
1053 {
1054 tick_check_oneshot_broadcast_this_cpu();
1055 tick_check_nohz_this_cpu();
1056 }
1057
1058 /*
1059 * High resolution timer specific code
1060 */
1061 #ifdef CONFIG_HIGH_RES_TIMERS
1062 /*
1063 * We rearm the timer until we get disabled by the idle code.
1064 * Called with interrupts disabled.
1065 */
1066 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1067 {
1068 struct tick_sched *ts =
1069 container_of(timer, struct tick_sched, sched_timer);
1070 struct pt_regs *regs = get_irq_regs();
1071 ktime_t now = ktime_get();
1072
1073 tick_sched_do_timer(now);
1074
1075 /*
1076 * Do not call, when we are not in irq context and have
1077 * no valid regs pointer
1078 */
1079 if (regs)
1080 tick_sched_handle(ts, regs);
1081
1082 hrtimer_forward(timer, now, tick_period);
1083
1084 return HRTIMER_RESTART;
1085 }
1086
1087 static int sched_skew_tick;
1088
1089 static int __init skew_tick(char *str)
1090 {
1091 get_option(&str, &sched_skew_tick);
1092
1093 return 0;
1094 }
1095 early_param("skew_tick", skew_tick);
1096
1097 /**
1098 * tick_setup_sched_timer - setup the tick emulation timer
1099 */
1100 void tick_setup_sched_timer(void)
1101 {
1102 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1103 ktime_t now = ktime_get();
1104
1105 /*
1106 * Emulate tick processing via per-CPU hrtimers:
1107 */
1108 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1109 ts->sched_timer.function = tick_sched_timer;
1110
1111 /* Get the next period (per cpu) */
1112 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1113
1114 /* Offset the tick to avert jiffies_lock contention. */
1115 if (sched_skew_tick) {
1116 u64 offset = ktime_to_ns(tick_period) >> 1;
1117 do_div(offset, num_possible_cpus());
1118 offset *= smp_processor_id();
1119 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1120 }
1121
1122 for (;;) {
1123 hrtimer_forward(&ts->sched_timer, now, tick_period);
1124 hrtimer_start_expires(&ts->sched_timer,
1125 HRTIMER_MODE_ABS_PINNED);
1126 /* Check, if the timer was already in the past */
1127 if (hrtimer_active(&ts->sched_timer))
1128 break;
1129 now = ktime_get();
1130 }
1131
1132 #ifdef CONFIG_NO_HZ_COMMON
1133 if (tick_nohz_enabled) {
1134 ts->nohz_mode = NOHZ_MODE_HIGHRES;
1135 tick_nohz_active = 1;
1136 }
1137 #endif
1138 }
1139 #endif /* HIGH_RES_TIMERS */
1140
1141 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1142 void tick_cancel_sched_timer(int cpu)
1143 {
1144 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1145
1146 # ifdef CONFIG_HIGH_RES_TIMERS
1147 if (ts->sched_timer.base)
1148 hrtimer_cancel(&ts->sched_timer);
1149 # endif
1150
1151 memset(ts, 0, sizeof(*ts));
1152 }
1153 #endif
1154
1155 /**
1156 * Async notification about clocksource changes
1157 */
1158 void tick_clock_notify(void)
1159 {
1160 int cpu;
1161
1162 for_each_possible_cpu(cpu)
1163 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1164 }
1165
1166 /*
1167 * Async notification about clock event changes
1168 */
1169 void tick_oneshot_notify(void)
1170 {
1171 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1172
1173 set_bit(0, &ts->check_clocks);
1174 }
1175
1176 /**
1177 * Check, if a change happened, which makes oneshot possible.
1178 *
1179 * Called cyclic from the hrtimer softirq (driven by the timer
1180 * softirq) allow_nohz signals, that we can switch into low-res nohz
1181 * mode, because high resolution timers are disabled (either compile
1182 * or runtime).
1183 */
1184 int tick_check_oneshot_change(int allow_nohz)
1185 {
1186 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1187
1188 if (!test_and_clear_bit(0, &ts->check_clocks))
1189 return 0;
1190
1191 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1192 return 0;
1193
1194 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1195 return 0;
1196
1197 if (!allow_nohz)
1198 return 1;
1199
1200 tick_nohz_switch_to_nohz();
1201 return 0;
1202 }