]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/tick-sched.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[mirror_ubuntu-artful-kernel.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
27
28 #include <asm/irq_regs.h>
29
30 #include "tick-internal.h"
31
32 #include <trace/events/timer.h>
33
34 /*
35 * Per cpu nohz control structure
36 */
37 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38
39 /*
40 * The time, when the last jiffy update happened. Protected by jiffies_lock.
41 */
42 static ktime_t last_jiffies_update;
43
44 struct tick_sched *tick_get_tick_sched(int cpu)
45 {
46 return &per_cpu(tick_cpu_sched, cpu);
47 }
48
49 /*
50 * Must be called with interrupts disabled !
51 */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 unsigned long ticks = 0;
55 ktime_t delta;
56
57 /*
58 * Do a quick check without holding jiffies_lock:
59 */
60 delta = ktime_sub(now, last_jiffies_update);
61 if (delta.tv64 < tick_period.tv64)
62 return;
63
64 /* Reevalute with jiffies_lock held */
65 write_seqlock(&jiffies_lock);
66
67 delta = ktime_sub(now, last_jiffies_update);
68 if (delta.tv64 >= tick_period.tv64) {
69
70 delta = ktime_sub(delta, tick_period);
71 last_jiffies_update = ktime_add(last_jiffies_update,
72 tick_period);
73
74 /* Slow path for long timeouts */
75 if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 s64 incr = ktime_to_ns(tick_period);
77
78 ticks = ktime_divns(delta, incr);
79
80 last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 incr * ticks);
82 }
83 do_timer(++ticks);
84
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 } else {
88 write_sequnlock(&jiffies_lock);
89 return;
90 }
91 write_sequnlock(&jiffies_lock);
92 update_wall_time();
93 }
94
95 /*
96 * Initialize and return retrieve the jiffies update.
97 */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 ktime_t period;
101
102 write_seqlock(&jiffies_lock);
103 /* Did we start the jiffies update yet ? */
104 if (last_jiffies_update.tv64 == 0)
105 last_jiffies_update = tick_next_period;
106 period = last_jiffies_update;
107 write_sequnlock(&jiffies_lock);
108 return period;
109 }
110
111
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 int cpu = smp_processor_id();
115
116 #ifdef CONFIG_NO_HZ_COMMON
117 /*
118 * Check if the do_timer duty was dropped. We don't care about
119 * concurrency: This happens only when the cpu in charge went
120 * into a long sleep. If two cpus happen to assign themself to
121 * this duty, then the jiffies update is still serialized by
122 * jiffies_lock.
123 */
124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 && !tick_nohz_full_cpu(cpu))
126 tick_do_timer_cpu = cpu;
127 #endif
128
129 /* Check, if the jiffies need an update */
130 if (tick_do_timer_cpu == cpu)
131 tick_do_update_jiffies64(now);
132 }
133
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 /*
138 * When we are idle and the tick is stopped, we have to touch
139 * the watchdog as we might not schedule for a really long
140 * time. This happens on complete idle SMP systems while
141 * waiting on the login prompt. We also increment the "start of
142 * idle" jiffy stamp so the idle accounting adjustment we do
143 * when we go busy again does not account too much ticks.
144 */
145 if (ts->tick_stopped) {
146 touch_softlockup_watchdog();
147 if (is_idle_task(current))
148 ts->idle_jiffies++;
149 }
150 #endif
151 update_process_times(user_mode(regs));
152 profile_tick(CPU_PROFILING);
153 }
154
155 #ifdef CONFIG_NO_HZ_FULL
156 cpumask_var_t tick_nohz_full_mask;
157 cpumask_var_t housekeeping_mask;
158 bool tick_nohz_full_running;
159
160 static bool can_stop_full_tick(void)
161 {
162 WARN_ON_ONCE(!irqs_disabled());
163
164 if (!sched_can_stop_tick()) {
165 trace_tick_stop(0, "more than 1 task in runqueue\n");
166 return false;
167 }
168
169 if (!posix_cpu_timers_can_stop_tick(current)) {
170 trace_tick_stop(0, "posix timers running\n");
171 return false;
172 }
173
174 if (!perf_event_can_stop_tick()) {
175 trace_tick_stop(0, "perf events running\n");
176 return false;
177 }
178
179 /* sched_clock_tick() needs us? */
180 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
181 /*
182 * TODO: kick full dynticks CPUs when
183 * sched_clock_stable is set.
184 */
185 if (!sched_clock_stable()) {
186 trace_tick_stop(0, "unstable sched clock\n");
187 /*
188 * Don't allow the user to think they can get
189 * full NO_HZ with this machine.
190 */
191 WARN_ONCE(tick_nohz_full_running,
192 "NO_HZ FULL will not work with unstable sched clock");
193 return false;
194 }
195 #endif
196
197 return true;
198 }
199
200 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
201
202 /*
203 * Re-evaluate the need for the tick on the current CPU
204 * and restart it if necessary.
205 */
206 void __tick_nohz_full_check(void)
207 {
208 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
209
210 if (tick_nohz_full_cpu(smp_processor_id())) {
211 if (ts->tick_stopped && !is_idle_task(current)) {
212 if (!can_stop_full_tick())
213 tick_nohz_restart_sched_tick(ts, ktime_get());
214 }
215 }
216 }
217
218 static void nohz_full_kick_work_func(struct irq_work *work)
219 {
220 __tick_nohz_full_check();
221 }
222
223 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
224 .func = nohz_full_kick_work_func,
225 };
226
227 /*
228 * Kick this CPU if it's full dynticks in order to force it to
229 * re-evaluate its dependency on the tick and restart it if necessary.
230 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
231 * is NMI safe.
232 */
233 void tick_nohz_full_kick(void)
234 {
235 if (!tick_nohz_full_cpu(smp_processor_id()))
236 return;
237
238 irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
239 }
240
241 /*
242 * Kick the CPU if it's full dynticks in order to force it to
243 * re-evaluate its dependency on the tick and restart it if necessary.
244 */
245 void tick_nohz_full_kick_cpu(int cpu)
246 {
247 if (!tick_nohz_full_cpu(cpu))
248 return;
249
250 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
251 }
252
253 static void nohz_full_kick_ipi(void *info)
254 {
255 __tick_nohz_full_check();
256 }
257
258 /*
259 * Kick all full dynticks CPUs in order to force these to re-evaluate
260 * their dependency on the tick and restart it if necessary.
261 */
262 void tick_nohz_full_kick_all(void)
263 {
264 if (!tick_nohz_full_running)
265 return;
266
267 preempt_disable();
268 smp_call_function_many(tick_nohz_full_mask,
269 nohz_full_kick_ipi, NULL, false);
270 tick_nohz_full_kick();
271 preempt_enable();
272 }
273
274 /*
275 * Re-evaluate the need for the tick as we switch the current task.
276 * It might need the tick due to per task/process properties:
277 * perf events, posix cpu timers, ...
278 */
279 void __tick_nohz_task_switch(struct task_struct *tsk)
280 {
281 unsigned long flags;
282
283 local_irq_save(flags);
284
285 if (!tick_nohz_full_cpu(smp_processor_id()))
286 goto out;
287
288 if (tick_nohz_tick_stopped() && !can_stop_full_tick())
289 tick_nohz_full_kick();
290
291 out:
292 local_irq_restore(flags);
293 }
294
295 /* Parse the boot-time nohz CPU list from the kernel parameters. */
296 static int __init tick_nohz_full_setup(char *str)
297 {
298 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
299 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
300 pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
301 free_bootmem_cpumask_var(tick_nohz_full_mask);
302 return 1;
303 }
304 tick_nohz_full_running = true;
305
306 return 1;
307 }
308 __setup("nohz_full=", tick_nohz_full_setup);
309
310 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
311 unsigned long action,
312 void *hcpu)
313 {
314 unsigned int cpu = (unsigned long)hcpu;
315
316 switch (action & ~CPU_TASKS_FROZEN) {
317 case CPU_DOWN_PREPARE:
318 /*
319 * If we handle the timekeeping duty for full dynticks CPUs,
320 * we can't safely shutdown that CPU.
321 */
322 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
323 return NOTIFY_BAD;
324 break;
325 }
326 return NOTIFY_OK;
327 }
328
329 /*
330 * Worst case string length in chunks of CPU range seems 2 steps
331 * separations: 0,2,4,6,...
332 * This is NR_CPUS + sizeof('\0')
333 */
334 static char __initdata nohz_full_buf[NR_CPUS + 1];
335
336 static int tick_nohz_init_all(void)
337 {
338 int err = -1;
339
340 #ifdef CONFIG_NO_HZ_FULL_ALL
341 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
342 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
343 return err;
344 }
345 err = 0;
346 cpumask_setall(tick_nohz_full_mask);
347 tick_nohz_full_running = true;
348 #endif
349 return err;
350 }
351
352 void __init tick_nohz_init(void)
353 {
354 int cpu;
355
356 if (!tick_nohz_full_running) {
357 if (tick_nohz_init_all() < 0)
358 return;
359 }
360
361 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
362 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
363 cpumask_clear(tick_nohz_full_mask);
364 tick_nohz_full_running = false;
365 return;
366 }
367
368 /*
369 * Full dynticks uses irq work to drive the tick rescheduling on safe
370 * locking contexts. But then we need irq work to raise its own
371 * interrupts to avoid circular dependency on the tick
372 */
373 if (!arch_irq_work_has_interrupt()) {
374 pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
375 "support irq work self-IPIs\n");
376 cpumask_clear(tick_nohz_full_mask);
377 cpumask_copy(housekeeping_mask, cpu_possible_mask);
378 tick_nohz_full_running = false;
379 return;
380 }
381
382 cpu = smp_processor_id();
383
384 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
385 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
386 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
387 }
388
389 cpumask_andnot(housekeeping_mask,
390 cpu_possible_mask, tick_nohz_full_mask);
391
392 for_each_cpu(cpu, tick_nohz_full_mask)
393 context_tracking_cpu_set(cpu);
394
395 cpu_notifier(tick_nohz_cpu_down_callback, 0);
396 cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
397 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
398 }
399 #endif
400
401 /*
402 * NOHZ - aka dynamic tick functionality
403 */
404 #ifdef CONFIG_NO_HZ_COMMON
405 /*
406 * NO HZ enabled ?
407 */
408 static int tick_nohz_enabled __read_mostly = 1;
409 int tick_nohz_active __read_mostly;
410 /*
411 * Enable / Disable tickless mode
412 */
413 static int __init setup_tick_nohz(char *str)
414 {
415 if (!strcmp(str, "off"))
416 tick_nohz_enabled = 0;
417 else if (!strcmp(str, "on"))
418 tick_nohz_enabled = 1;
419 else
420 return 0;
421 return 1;
422 }
423
424 __setup("nohz=", setup_tick_nohz);
425
426 /**
427 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
428 *
429 * Called from interrupt entry when the CPU was idle
430 *
431 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
432 * must be updated. Otherwise an interrupt handler could use a stale jiffy
433 * value. We do this unconditionally on any cpu, as we don't know whether the
434 * cpu, which has the update task assigned is in a long sleep.
435 */
436 static void tick_nohz_update_jiffies(ktime_t now)
437 {
438 unsigned long flags;
439
440 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
441
442 local_irq_save(flags);
443 tick_do_update_jiffies64(now);
444 local_irq_restore(flags);
445
446 touch_softlockup_watchdog();
447 }
448
449 /*
450 * Updates the per cpu time idle statistics counters
451 */
452 static void
453 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
454 {
455 ktime_t delta;
456
457 if (ts->idle_active) {
458 delta = ktime_sub(now, ts->idle_entrytime);
459 if (nr_iowait_cpu(cpu) > 0)
460 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
461 else
462 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
463 ts->idle_entrytime = now;
464 }
465
466 if (last_update_time)
467 *last_update_time = ktime_to_us(now);
468
469 }
470
471 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
472 {
473 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
474 ts->idle_active = 0;
475
476 sched_clock_idle_wakeup_event(0);
477 }
478
479 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
480 {
481 ktime_t now = ktime_get();
482
483 ts->idle_entrytime = now;
484 ts->idle_active = 1;
485 sched_clock_idle_sleep_event();
486 return now;
487 }
488
489 /**
490 * get_cpu_idle_time_us - get the total idle time of a cpu
491 * @cpu: CPU number to query
492 * @last_update_time: variable to store update time in. Do not update
493 * counters if NULL.
494 *
495 * Return the cummulative idle time (since boot) for a given
496 * CPU, in microseconds.
497 *
498 * This time is measured via accounting rather than sampling,
499 * and is as accurate as ktime_get() is.
500 *
501 * This function returns -1 if NOHZ is not enabled.
502 */
503 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
504 {
505 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
506 ktime_t now, idle;
507
508 if (!tick_nohz_active)
509 return -1;
510
511 now = ktime_get();
512 if (last_update_time) {
513 update_ts_time_stats(cpu, ts, now, last_update_time);
514 idle = ts->idle_sleeptime;
515 } else {
516 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
517 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
518
519 idle = ktime_add(ts->idle_sleeptime, delta);
520 } else {
521 idle = ts->idle_sleeptime;
522 }
523 }
524
525 return ktime_to_us(idle);
526
527 }
528 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
529
530 /**
531 * get_cpu_iowait_time_us - get the total iowait time of a cpu
532 * @cpu: CPU number to query
533 * @last_update_time: variable to store update time in. Do not update
534 * counters if NULL.
535 *
536 * Return the cummulative iowait time (since boot) for a given
537 * CPU, in microseconds.
538 *
539 * This time is measured via accounting rather than sampling,
540 * and is as accurate as ktime_get() is.
541 *
542 * This function returns -1 if NOHZ is not enabled.
543 */
544 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
545 {
546 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
547 ktime_t now, iowait;
548
549 if (!tick_nohz_active)
550 return -1;
551
552 now = ktime_get();
553 if (last_update_time) {
554 update_ts_time_stats(cpu, ts, now, last_update_time);
555 iowait = ts->iowait_sleeptime;
556 } else {
557 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
558 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
559
560 iowait = ktime_add(ts->iowait_sleeptime, delta);
561 } else {
562 iowait = ts->iowait_sleeptime;
563 }
564 }
565
566 return ktime_to_us(iowait);
567 }
568 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
569
570 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
571 ktime_t now, int cpu)
572 {
573 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
574 ktime_t last_update, expires, ret = { .tv64 = 0 };
575 unsigned long rcu_delta_jiffies;
576 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
577 u64 time_delta;
578
579 time_delta = timekeeping_max_deferment();
580
581 /* Read jiffies and the time when jiffies were updated last */
582 do {
583 seq = read_seqbegin(&jiffies_lock);
584 last_update = last_jiffies_update;
585 last_jiffies = jiffies;
586 } while (read_seqretry(&jiffies_lock, seq));
587
588 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
589 arch_needs_cpu() || irq_work_needs_cpu()) {
590 next_jiffies = last_jiffies + 1;
591 delta_jiffies = 1;
592 } else {
593 /* Get the next timer wheel timer */
594 next_jiffies = get_next_timer_interrupt(last_jiffies);
595 delta_jiffies = next_jiffies - last_jiffies;
596 if (rcu_delta_jiffies < delta_jiffies) {
597 next_jiffies = last_jiffies + rcu_delta_jiffies;
598 delta_jiffies = rcu_delta_jiffies;
599 }
600 }
601
602 /*
603 * Do not stop the tick, if we are only one off (or less)
604 * or if the cpu is required for RCU:
605 */
606 if (!ts->tick_stopped && delta_jiffies <= 1)
607 goto out;
608
609 /* Schedule the tick, if we are at least one jiffie off */
610 if ((long)delta_jiffies >= 1) {
611
612 /*
613 * If this cpu is the one which updates jiffies, then
614 * give up the assignment and let it be taken by the
615 * cpu which runs the tick timer next, which might be
616 * this cpu as well. If we don't drop this here the
617 * jiffies might be stale and do_timer() never
618 * invoked. Keep track of the fact that it was the one
619 * which had the do_timer() duty last. If this cpu is
620 * the one which had the do_timer() duty last, we
621 * limit the sleep time to the timekeeping
622 * max_deferement value which we retrieved
623 * above. Otherwise we can sleep as long as we want.
624 */
625 if (cpu == tick_do_timer_cpu) {
626 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
627 ts->do_timer_last = 1;
628 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
629 time_delta = KTIME_MAX;
630 ts->do_timer_last = 0;
631 } else if (!ts->do_timer_last) {
632 time_delta = KTIME_MAX;
633 }
634
635 #ifdef CONFIG_NO_HZ_FULL
636 if (!ts->inidle) {
637 time_delta = min(time_delta,
638 scheduler_tick_max_deferment());
639 }
640 #endif
641
642 /*
643 * calculate the expiry time for the next timer wheel
644 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
645 * that there is no timer pending or at least extremely
646 * far into the future (12 days for HZ=1000). In this
647 * case we set the expiry to the end of time.
648 */
649 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
650 /*
651 * Calculate the time delta for the next timer event.
652 * If the time delta exceeds the maximum time delta
653 * permitted by the current clocksource then adjust
654 * the time delta accordingly to ensure the
655 * clocksource does not wrap.
656 */
657 time_delta = min_t(u64, time_delta,
658 tick_period.tv64 * delta_jiffies);
659 }
660
661 if (time_delta < KTIME_MAX)
662 expires = ktime_add_ns(last_update, time_delta);
663 else
664 expires.tv64 = KTIME_MAX;
665
666 /* Skip reprogram of event if its not changed */
667 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
668 goto out;
669
670 ret = expires;
671
672 /*
673 * nohz_stop_sched_tick can be called several times before
674 * the nohz_restart_sched_tick is called. This happens when
675 * interrupts arrive which do not cause a reschedule. In the
676 * first call we save the current tick time, so we can restart
677 * the scheduler tick in nohz_restart_sched_tick.
678 */
679 if (!ts->tick_stopped) {
680 nohz_balance_enter_idle(cpu);
681 calc_load_enter_idle();
682
683 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
684 ts->tick_stopped = 1;
685 trace_tick_stop(1, " ");
686 }
687
688 /*
689 * If the expiration time == KTIME_MAX, then
690 * in this case we simply stop the tick timer.
691 */
692 if (unlikely(expires.tv64 == KTIME_MAX)) {
693 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
694 hrtimer_cancel(&ts->sched_timer);
695 goto out;
696 }
697
698 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
699 hrtimer_start(&ts->sched_timer, expires,
700 HRTIMER_MODE_ABS_PINNED);
701 /* Check, if the timer was already in the past */
702 if (hrtimer_active(&ts->sched_timer))
703 goto out;
704 } else if (!tick_program_event(expires, 0))
705 goto out;
706 /*
707 * We are past the event already. So we crossed a
708 * jiffie boundary. Update jiffies and raise the
709 * softirq.
710 */
711 tick_do_update_jiffies64(ktime_get());
712 }
713 raise_softirq_irqoff(TIMER_SOFTIRQ);
714 out:
715 ts->next_jiffies = next_jiffies;
716 ts->last_jiffies = last_jiffies;
717 ts->sleep_length = ktime_sub(dev->next_event, now);
718
719 return ret;
720 }
721
722 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
723 {
724 #ifdef CONFIG_NO_HZ_FULL
725 int cpu = smp_processor_id();
726
727 if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
728 return;
729
730 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
731 return;
732
733 if (!can_stop_full_tick())
734 return;
735
736 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
737 #endif
738 }
739
740 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
741 {
742 /*
743 * If this cpu is offline and it is the one which updates
744 * jiffies, then give up the assignment and let it be taken by
745 * the cpu which runs the tick timer next. If we don't drop
746 * this here the jiffies might be stale and do_timer() never
747 * invoked.
748 */
749 if (unlikely(!cpu_online(cpu))) {
750 if (cpu == tick_do_timer_cpu)
751 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
752 return false;
753 }
754
755 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
756 ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
757 return false;
758 }
759
760 if (need_resched())
761 return false;
762
763 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
764 static int ratelimit;
765
766 if (ratelimit < 10 &&
767 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
768 pr_warn("NOHZ: local_softirq_pending %02x\n",
769 (unsigned int) local_softirq_pending());
770 ratelimit++;
771 }
772 return false;
773 }
774
775 if (tick_nohz_full_enabled()) {
776 /*
777 * Keep the tick alive to guarantee timekeeping progression
778 * if there are full dynticks CPUs around
779 */
780 if (tick_do_timer_cpu == cpu)
781 return false;
782 /*
783 * Boot safety: make sure the timekeeping duty has been
784 * assigned before entering dyntick-idle mode,
785 */
786 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
787 return false;
788 }
789
790 return true;
791 }
792
793 static void __tick_nohz_idle_enter(struct tick_sched *ts)
794 {
795 ktime_t now, expires;
796 int cpu = smp_processor_id();
797
798 now = tick_nohz_start_idle(ts);
799
800 if (can_stop_idle_tick(cpu, ts)) {
801 int was_stopped = ts->tick_stopped;
802
803 ts->idle_calls++;
804
805 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
806 if (expires.tv64 > 0LL) {
807 ts->idle_sleeps++;
808 ts->idle_expires = expires;
809 }
810
811 if (!was_stopped && ts->tick_stopped)
812 ts->idle_jiffies = ts->last_jiffies;
813 }
814 }
815
816 /**
817 * tick_nohz_idle_enter - stop the idle tick from the idle task
818 *
819 * When the next event is more than a tick into the future, stop the idle tick
820 * Called when we start the idle loop.
821 *
822 * The arch is responsible of calling:
823 *
824 * - rcu_idle_enter() after its last use of RCU before the CPU is put
825 * to sleep.
826 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
827 */
828 void tick_nohz_idle_enter(void)
829 {
830 struct tick_sched *ts;
831
832 WARN_ON_ONCE(irqs_disabled());
833
834 /*
835 * Update the idle state in the scheduler domain hierarchy
836 * when tick_nohz_stop_sched_tick() is called from the idle loop.
837 * State will be updated to busy during the first busy tick after
838 * exiting idle.
839 */
840 set_cpu_sd_state_idle();
841
842 local_irq_disable();
843
844 ts = &__get_cpu_var(tick_cpu_sched);
845 ts->inidle = 1;
846 __tick_nohz_idle_enter(ts);
847
848 local_irq_enable();
849 }
850 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
851
852 /**
853 * tick_nohz_irq_exit - update next tick event from interrupt exit
854 *
855 * When an interrupt fires while we are idle and it doesn't cause
856 * a reschedule, it may still add, modify or delete a timer, enqueue
857 * an RCU callback, etc...
858 * So we need to re-calculate and reprogram the next tick event.
859 */
860 void tick_nohz_irq_exit(void)
861 {
862 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
863
864 if (ts->inidle)
865 __tick_nohz_idle_enter(ts);
866 else
867 tick_nohz_full_stop_tick(ts);
868 }
869
870 /**
871 * tick_nohz_get_sleep_length - return the length of the current sleep
872 *
873 * Called from power state control code with interrupts disabled
874 */
875 ktime_t tick_nohz_get_sleep_length(void)
876 {
877 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
878
879 return ts->sleep_length;
880 }
881
882 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
883 {
884 hrtimer_cancel(&ts->sched_timer);
885 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
886
887 while (1) {
888 /* Forward the time to expire in the future */
889 hrtimer_forward(&ts->sched_timer, now, tick_period);
890
891 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
892 hrtimer_start_expires(&ts->sched_timer,
893 HRTIMER_MODE_ABS_PINNED);
894 /* Check, if the timer was already in the past */
895 if (hrtimer_active(&ts->sched_timer))
896 break;
897 } else {
898 if (!tick_program_event(
899 hrtimer_get_expires(&ts->sched_timer), 0))
900 break;
901 }
902 /* Reread time and update jiffies */
903 now = ktime_get();
904 tick_do_update_jiffies64(now);
905 }
906 }
907
908 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
909 {
910 /* Update jiffies first */
911 tick_do_update_jiffies64(now);
912 update_cpu_load_nohz();
913
914 calc_load_exit_idle();
915 touch_softlockup_watchdog();
916 /*
917 * Cancel the scheduled timer and restore the tick
918 */
919 ts->tick_stopped = 0;
920 ts->idle_exittime = now;
921
922 tick_nohz_restart(ts, now);
923 }
924
925 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
926 {
927 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
928 unsigned long ticks;
929
930 if (vtime_accounting_enabled())
931 return;
932 /*
933 * We stopped the tick in idle. Update process times would miss the
934 * time we slept as update_process_times does only a 1 tick
935 * accounting. Enforce that this is accounted to idle !
936 */
937 ticks = jiffies - ts->idle_jiffies;
938 /*
939 * We might be one off. Do not randomly account a huge number of ticks!
940 */
941 if (ticks && ticks < LONG_MAX)
942 account_idle_ticks(ticks);
943 #endif
944 }
945
946 /**
947 * tick_nohz_idle_exit - restart the idle tick from the idle task
948 *
949 * Restart the idle tick when the CPU is woken up from idle
950 * This also exit the RCU extended quiescent state. The CPU
951 * can use RCU again after this function is called.
952 */
953 void tick_nohz_idle_exit(void)
954 {
955 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
956 ktime_t now;
957
958 local_irq_disable();
959
960 WARN_ON_ONCE(!ts->inidle);
961
962 ts->inidle = 0;
963
964 if (ts->idle_active || ts->tick_stopped)
965 now = ktime_get();
966
967 if (ts->idle_active)
968 tick_nohz_stop_idle(ts, now);
969
970 if (ts->tick_stopped) {
971 tick_nohz_restart_sched_tick(ts, now);
972 tick_nohz_account_idle_ticks(ts);
973 }
974
975 local_irq_enable();
976 }
977 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
978
979 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
980 {
981 hrtimer_forward(&ts->sched_timer, now, tick_period);
982 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
983 }
984
985 /*
986 * The nohz low res interrupt handler
987 */
988 static void tick_nohz_handler(struct clock_event_device *dev)
989 {
990 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
991 struct pt_regs *regs = get_irq_regs();
992 ktime_t now = ktime_get();
993
994 dev->next_event.tv64 = KTIME_MAX;
995
996 tick_sched_do_timer(now);
997 tick_sched_handle(ts, regs);
998
999 /* No need to reprogram if we are running tickless */
1000 if (unlikely(ts->tick_stopped))
1001 return;
1002
1003 while (tick_nohz_reprogram(ts, now)) {
1004 now = ktime_get();
1005 tick_do_update_jiffies64(now);
1006 }
1007 }
1008
1009 /**
1010 * tick_nohz_switch_to_nohz - switch to nohz mode
1011 */
1012 static void tick_nohz_switch_to_nohz(void)
1013 {
1014 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1015 ktime_t next;
1016
1017 if (!tick_nohz_enabled)
1018 return;
1019
1020 local_irq_disable();
1021 if (tick_switch_to_oneshot(tick_nohz_handler)) {
1022 local_irq_enable();
1023 return;
1024 }
1025 tick_nohz_active = 1;
1026 ts->nohz_mode = NOHZ_MODE_LOWRES;
1027
1028 /*
1029 * Recycle the hrtimer in ts, so we can share the
1030 * hrtimer_forward with the highres code.
1031 */
1032 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1033 /* Get the next period */
1034 next = tick_init_jiffy_update();
1035
1036 for (;;) {
1037 hrtimer_set_expires(&ts->sched_timer, next);
1038 if (!tick_program_event(next, 0))
1039 break;
1040 next = ktime_add(next, tick_period);
1041 }
1042 local_irq_enable();
1043 }
1044
1045 /*
1046 * When NOHZ is enabled and the tick is stopped, we need to kick the
1047 * tick timer from irq_enter() so that the jiffies update is kept
1048 * alive during long running softirqs. That's ugly as hell, but
1049 * correctness is key even if we need to fix the offending softirq in
1050 * the first place.
1051 *
1052 * Note, this is different to tick_nohz_restart. We just kick the
1053 * timer and do not touch the other magic bits which need to be done
1054 * when idle is left.
1055 */
1056 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1057 {
1058 #if 0
1059 /* Switch back to 2.6.27 behaviour */
1060 ktime_t delta;
1061
1062 /*
1063 * Do not touch the tick device, when the next expiry is either
1064 * already reached or less/equal than the tick period.
1065 */
1066 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1067 if (delta.tv64 <= tick_period.tv64)
1068 return;
1069
1070 tick_nohz_restart(ts, now);
1071 #endif
1072 }
1073
1074 static inline void tick_nohz_irq_enter(void)
1075 {
1076 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1077 ktime_t now;
1078
1079 if (!ts->idle_active && !ts->tick_stopped)
1080 return;
1081 now = ktime_get();
1082 if (ts->idle_active)
1083 tick_nohz_stop_idle(ts, now);
1084 if (ts->tick_stopped) {
1085 tick_nohz_update_jiffies(now);
1086 tick_nohz_kick_tick(ts, now);
1087 }
1088 }
1089
1090 #else
1091
1092 static inline void tick_nohz_switch_to_nohz(void) { }
1093 static inline void tick_nohz_irq_enter(void) { }
1094
1095 #endif /* CONFIG_NO_HZ_COMMON */
1096
1097 /*
1098 * Called from irq_enter to notify about the possible interruption of idle()
1099 */
1100 void tick_irq_enter(void)
1101 {
1102 tick_check_oneshot_broadcast_this_cpu();
1103 tick_nohz_irq_enter();
1104 }
1105
1106 /*
1107 * High resolution timer specific code
1108 */
1109 #ifdef CONFIG_HIGH_RES_TIMERS
1110 /*
1111 * We rearm the timer until we get disabled by the idle code.
1112 * Called with interrupts disabled.
1113 */
1114 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1115 {
1116 struct tick_sched *ts =
1117 container_of(timer, struct tick_sched, sched_timer);
1118 struct pt_regs *regs = get_irq_regs();
1119 ktime_t now = ktime_get();
1120
1121 tick_sched_do_timer(now);
1122
1123 /*
1124 * Do not call, when we are not in irq context and have
1125 * no valid regs pointer
1126 */
1127 if (regs)
1128 tick_sched_handle(ts, regs);
1129
1130 /* No need to reprogram if we are in idle or full dynticks mode */
1131 if (unlikely(ts->tick_stopped))
1132 return HRTIMER_NORESTART;
1133
1134 hrtimer_forward(timer, now, tick_period);
1135
1136 return HRTIMER_RESTART;
1137 }
1138
1139 static int sched_skew_tick;
1140
1141 static int __init skew_tick(char *str)
1142 {
1143 get_option(&str, &sched_skew_tick);
1144
1145 return 0;
1146 }
1147 early_param("skew_tick", skew_tick);
1148
1149 /**
1150 * tick_setup_sched_timer - setup the tick emulation timer
1151 */
1152 void tick_setup_sched_timer(void)
1153 {
1154 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1155 ktime_t now = ktime_get();
1156
1157 /*
1158 * Emulate tick processing via per-CPU hrtimers:
1159 */
1160 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1161 ts->sched_timer.function = tick_sched_timer;
1162
1163 /* Get the next period (per cpu) */
1164 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1165
1166 /* Offset the tick to avert jiffies_lock contention. */
1167 if (sched_skew_tick) {
1168 u64 offset = ktime_to_ns(tick_period) >> 1;
1169 do_div(offset, num_possible_cpus());
1170 offset *= smp_processor_id();
1171 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1172 }
1173
1174 for (;;) {
1175 hrtimer_forward(&ts->sched_timer, now, tick_period);
1176 hrtimer_start_expires(&ts->sched_timer,
1177 HRTIMER_MODE_ABS_PINNED);
1178 /* Check, if the timer was already in the past */
1179 if (hrtimer_active(&ts->sched_timer))
1180 break;
1181 now = ktime_get();
1182 }
1183
1184 #ifdef CONFIG_NO_HZ_COMMON
1185 if (tick_nohz_enabled) {
1186 ts->nohz_mode = NOHZ_MODE_HIGHRES;
1187 tick_nohz_active = 1;
1188 }
1189 #endif
1190 }
1191 #endif /* HIGH_RES_TIMERS */
1192
1193 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1194 void tick_cancel_sched_timer(int cpu)
1195 {
1196 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1197
1198 # ifdef CONFIG_HIGH_RES_TIMERS
1199 if (ts->sched_timer.base)
1200 hrtimer_cancel(&ts->sched_timer);
1201 # endif
1202
1203 memset(ts, 0, sizeof(*ts));
1204 }
1205 #endif
1206
1207 /**
1208 * Async notification about clocksource changes
1209 */
1210 void tick_clock_notify(void)
1211 {
1212 int cpu;
1213
1214 for_each_possible_cpu(cpu)
1215 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1216 }
1217
1218 /*
1219 * Async notification about clock event changes
1220 */
1221 void tick_oneshot_notify(void)
1222 {
1223 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1224
1225 set_bit(0, &ts->check_clocks);
1226 }
1227
1228 /**
1229 * Check, if a change happened, which makes oneshot possible.
1230 *
1231 * Called cyclic from the hrtimer softirq (driven by the timer
1232 * softirq) allow_nohz signals, that we can switch into low-res nohz
1233 * mode, because high resolution timers are disabled (either compile
1234 * or runtime).
1235 */
1236 int tick_check_oneshot_change(int allow_nohz)
1237 {
1238 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1239
1240 if (!test_and_clear_bit(0, &ts->check_clocks))
1241 return 0;
1242
1243 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1244 return 0;
1245
1246 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1247 return 0;
1248
1249 if (!allow_nohz)
1250 return 1;
1251
1252 tick_nohz_switch_to_nohz();
1253 return 0;
1254 }