]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/time/tick-sched.c
nohz: prevent tick stop outside of the idle loop
[mirror_ubuntu-bionic-kernel.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23
24 #include <asm/irq_regs.h>
25
26 #include "tick-internal.h"
27
28 /*
29 * Per cpu nohz control structure
30 */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32
33 /*
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
35 */
36 static ktime_t last_jiffies_update;
37
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 return &per_cpu(tick_cpu_sched, cpu);
41 }
42
43 /*
44 * Must be called with interrupts disabled !
45 */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 unsigned long ticks = 0;
49 ktime_t delta;
50
51 /*
52 * Do a quick check without holding xtime_lock:
53 */
54 delta = ktime_sub(now, last_jiffies_update);
55 if (delta.tv64 < tick_period.tv64)
56 return;
57
58 /* Reevalute with xtime_lock held */
59 write_seqlock(&xtime_lock);
60
61 delta = ktime_sub(now, last_jiffies_update);
62 if (delta.tv64 >= tick_period.tv64) {
63
64 delta = ktime_sub(delta, tick_period);
65 last_jiffies_update = ktime_add(last_jiffies_update,
66 tick_period);
67
68 /* Slow path for long timeouts */
69 if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 s64 incr = ktime_to_ns(tick_period);
71
72 ticks = ktime_divns(delta, incr);
73
74 last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 incr * ticks);
76 }
77 do_timer(++ticks);
78 }
79 write_sequnlock(&xtime_lock);
80 }
81
82 /*
83 * Initialize and return retrieve the jiffies update.
84 */
85 static ktime_t tick_init_jiffy_update(void)
86 {
87 ktime_t period;
88
89 write_seqlock(&xtime_lock);
90 /* Did we start the jiffies update yet ? */
91 if (last_jiffies_update.tv64 == 0)
92 last_jiffies_update = tick_next_period;
93 period = last_jiffies_update;
94 write_sequnlock(&xtime_lock);
95 return period;
96 }
97
98 /*
99 * NOHZ - aka dynamic tick functionality
100 */
101 #ifdef CONFIG_NO_HZ
102 /*
103 * NO HZ enabled ?
104 */
105 static int tick_nohz_enabled __read_mostly = 1;
106
107 /*
108 * Enable / Disable tickless mode
109 */
110 static int __init setup_tick_nohz(char *str)
111 {
112 if (!strcmp(str, "off"))
113 tick_nohz_enabled = 0;
114 else if (!strcmp(str, "on"))
115 tick_nohz_enabled = 1;
116 else
117 return 0;
118 return 1;
119 }
120
121 __setup("nohz=", setup_tick_nohz);
122
123 /**
124 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
125 *
126 * Called from interrupt entry when the CPU was idle
127 *
128 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
129 * must be updated. Otherwise an interrupt handler could use a stale jiffy
130 * value. We do this unconditionally on any cpu, as we don't know whether the
131 * cpu, which has the update task assigned is in a long sleep.
132 */
133 void tick_nohz_update_jiffies(void)
134 {
135 int cpu = smp_processor_id();
136 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
137 unsigned long flags;
138 ktime_t now;
139
140 if (!ts->tick_stopped)
141 return;
142
143 touch_softlockup_watchdog();
144
145 cpu_clear(cpu, nohz_cpu_mask);
146 now = ktime_get();
147 ts->idle_waketime = now;
148
149 local_irq_save(flags);
150 tick_do_update_jiffies64(now);
151 local_irq_restore(flags);
152 }
153
154 void tick_nohz_stop_idle(int cpu)
155 {
156 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
157
158 if (ts->idle_active) {
159 ktime_t now, delta;
160 now = ktime_get();
161 delta = ktime_sub(now, ts->idle_entrytime);
162 ts->idle_lastupdate = now;
163 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
164 ts->idle_active = 0;
165 }
166 }
167
168 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
169 {
170 ktime_t now, delta;
171
172 now = ktime_get();
173 if (ts->idle_active) {
174 delta = ktime_sub(now, ts->idle_entrytime);
175 ts->idle_lastupdate = now;
176 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
177 }
178 ts->idle_entrytime = now;
179 ts->idle_active = 1;
180 return now;
181 }
182
183 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
184 {
185 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
186
187 *last_update_time = ktime_to_us(ts->idle_lastupdate);
188 return ktime_to_us(ts->idle_sleeptime);
189 }
190
191 /**
192 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
193 *
194 * When the next event is more than a tick into the future, stop the idle tick
195 * Called either from the idle loop or from irq_exit() when an idle period was
196 * just interrupted by an interrupt which did not cause a reschedule.
197 */
198 void tick_nohz_stop_sched_tick(int inidle)
199 {
200 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
201 struct tick_sched *ts;
202 ktime_t last_update, expires, now;
203 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
204 int cpu;
205
206 local_irq_save(flags);
207
208 cpu = smp_processor_id();
209 ts = &per_cpu(tick_cpu_sched, cpu);
210 now = tick_nohz_start_idle(ts);
211
212 /*
213 * If this cpu is offline and it is the one which updates
214 * jiffies, then give up the assignment and let it be taken by
215 * the cpu which runs the tick timer next. If we don't drop
216 * this here the jiffies might be stale and do_timer() never
217 * invoked.
218 */
219 if (unlikely(!cpu_online(cpu))) {
220 if (cpu == tick_do_timer_cpu)
221 tick_do_timer_cpu = -1;
222 }
223
224 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
225 goto end;
226
227 if (!inidle && !ts->inidle)
228 goto end;
229
230 ts->inidle = 1;
231
232 if (need_resched())
233 goto end;
234
235 if (unlikely(local_softirq_pending())) {
236 static int ratelimit;
237
238 if (ratelimit < 10) {
239 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
240 local_softirq_pending());
241 ratelimit++;
242 }
243 goto end;
244 }
245
246 ts->idle_calls++;
247 /* Read jiffies and the time when jiffies were updated last */
248 do {
249 seq = read_seqbegin(&xtime_lock);
250 last_update = last_jiffies_update;
251 last_jiffies = jiffies;
252 } while (read_seqretry(&xtime_lock, seq));
253
254 /* Get the next timer wheel timer */
255 next_jiffies = get_next_timer_interrupt(last_jiffies);
256 delta_jiffies = next_jiffies - last_jiffies;
257
258 if (rcu_needs_cpu(cpu))
259 delta_jiffies = 1;
260 /*
261 * Do not stop the tick, if we are only one off
262 * or if the cpu is required for rcu
263 */
264 if (!ts->tick_stopped && delta_jiffies == 1)
265 goto out;
266
267 /* Schedule the tick, if we are at least one jiffie off */
268 if ((long)delta_jiffies >= 1) {
269
270 if (delta_jiffies > 1)
271 cpu_set(cpu, nohz_cpu_mask);
272 /*
273 * nohz_stop_sched_tick can be called several times before
274 * the nohz_restart_sched_tick is called. This happens when
275 * interrupts arrive which do not cause a reschedule. In the
276 * first call we save the current tick time, so we can restart
277 * the scheduler tick in nohz_restart_sched_tick.
278 */
279 if (!ts->tick_stopped) {
280 if (select_nohz_load_balancer(1)) {
281 /*
282 * sched tick not stopped!
283 */
284 cpu_clear(cpu, nohz_cpu_mask);
285 goto out;
286 }
287
288 ts->idle_tick = ts->sched_timer.expires;
289 ts->tick_stopped = 1;
290 ts->idle_jiffies = last_jiffies;
291 rcu_enter_nohz();
292 }
293
294 /*
295 * If this cpu is the one which updates jiffies, then
296 * give up the assignment and let it be taken by the
297 * cpu which runs the tick timer next, which might be
298 * this cpu as well. If we don't drop this here the
299 * jiffies might be stale and do_timer() never
300 * invoked.
301 */
302 if (cpu == tick_do_timer_cpu)
303 tick_do_timer_cpu = -1;
304
305 ts->idle_sleeps++;
306
307 /*
308 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
309 * there is no timer pending or at least extremly far
310 * into the future (12 days for HZ=1000). In this case
311 * we simply stop the tick timer:
312 */
313 if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
314 ts->idle_expires.tv64 = KTIME_MAX;
315 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
316 hrtimer_cancel(&ts->sched_timer);
317 goto out;
318 }
319
320 /*
321 * calculate the expiry time for the next timer wheel
322 * timer
323 */
324 expires = ktime_add_ns(last_update, tick_period.tv64 *
325 delta_jiffies);
326 ts->idle_expires = expires;
327
328 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
329 hrtimer_start(&ts->sched_timer, expires,
330 HRTIMER_MODE_ABS);
331 /* Check, if the timer was already in the past */
332 if (hrtimer_active(&ts->sched_timer))
333 goto out;
334 } else if (!tick_program_event(expires, 0))
335 goto out;
336 /*
337 * We are past the event already. So we crossed a
338 * jiffie boundary. Update jiffies and raise the
339 * softirq.
340 */
341 tick_do_update_jiffies64(ktime_get());
342 cpu_clear(cpu, nohz_cpu_mask);
343 }
344 raise_softirq_irqoff(TIMER_SOFTIRQ);
345 out:
346 ts->next_jiffies = next_jiffies;
347 ts->last_jiffies = last_jiffies;
348 ts->sleep_length = ktime_sub(dev->next_event, now);
349 end:
350 local_irq_restore(flags);
351 }
352
353 /**
354 * tick_nohz_get_sleep_length - return the length of the current sleep
355 *
356 * Called from power state control code with interrupts disabled
357 */
358 ktime_t tick_nohz_get_sleep_length(void)
359 {
360 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
361
362 return ts->sleep_length;
363 }
364
365 /**
366 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
367 *
368 * Restart the idle tick when the CPU is woken up from idle
369 */
370 void tick_nohz_restart_sched_tick(void)
371 {
372 int cpu = smp_processor_id();
373 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
374 unsigned long ticks;
375 ktime_t now;
376
377 local_irq_disable();
378 tick_nohz_stop_idle(cpu);
379
380 if (!ts->inidle || !ts->tick_stopped) {
381 ts->inidle = 0;
382 local_irq_enable();
383 return;
384 }
385
386 ts->inidle = 0;
387
388 rcu_exit_nohz();
389
390 /* Update jiffies first */
391 select_nohz_load_balancer(0);
392 now = ktime_get();
393 tick_do_update_jiffies64(now);
394 cpu_clear(cpu, nohz_cpu_mask);
395
396 /*
397 * We stopped the tick in idle. Update process times would miss the
398 * time we slept as update_process_times does only a 1 tick
399 * accounting. Enforce that this is accounted to idle !
400 */
401 ticks = jiffies - ts->idle_jiffies;
402 /*
403 * We might be one off. Do not randomly account a huge number of ticks!
404 */
405 if (ticks && ticks < LONG_MAX) {
406 add_preempt_count(HARDIRQ_OFFSET);
407 account_system_time(current, HARDIRQ_OFFSET,
408 jiffies_to_cputime(ticks));
409 sub_preempt_count(HARDIRQ_OFFSET);
410 }
411
412 touch_softlockup_watchdog();
413 /*
414 * Cancel the scheduled timer and restore the tick
415 */
416 ts->tick_stopped = 0;
417 ts->idle_exittime = now;
418 hrtimer_cancel(&ts->sched_timer);
419 ts->sched_timer.expires = ts->idle_tick;
420
421 while (1) {
422 /* Forward the time to expire in the future */
423 hrtimer_forward(&ts->sched_timer, now, tick_period);
424
425 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
426 hrtimer_start(&ts->sched_timer,
427 ts->sched_timer.expires,
428 HRTIMER_MODE_ABS);
429 /* Check, if the timer was already in the past */
430 if (hrtimer_active(&ts->sched_timer))
431 break;
432 } else {
433 if (!tick_program_event(ts->sched_timer.expires, 0))
434 break;
435 }
436 /* Update jiffies and reread time */
437 tick_do_update_jiffies64(now);
438 now = ktime_get();
439 }
440 local_irq_enable();
441 }
442
443 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
444 {
445 hrtimer_forward(&ts->sched_timer, now, tick_period);
446 return tick_program_event(ts->sched_timer.expires, 0);
447 }
448
449 /*
450 * The nohz low res interrupt handler
451 */
452 static void tick_nohz_handler(struct clock_event_device *dev)
453 {
454 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
455 struct pt_regs *regs = get_irq_regs();
456 int cpu = smp_processor_id();
457 ktime_t now = ktime_get();
458
459 dev->next_event.tv64 = KTIME_MAX;
460
461 /*
462 * Check if the do_timer duty was dropped. We don't care about
463 * concurrency: This happens only when the cpu in charge went
464 * into a long sleep. If two cpus happen to assign themself to
465 * this duty, then the jiffies update is still serialized by
466 * xtime_lock.
467 */
468 if (unlikely(tick_do_timer_cpu == -1))
469 tick_do_timer_cpu = cpu;
470
471 /* Check, if the jiffies need an update */
472 if (tick_do_timer_cpu == cpu)
473 tick_do_update_jiffies64(now);
474
475 /*
476 * When we are idle and the tick is stopped, we have to touch
477 * the watchdog as we might not schedule for a really long
478 * time. This happens on complete idle SMP systems while
479 * waiting on the login prompt. We also increment the "start
480 * of idle" jiffy stamp so the idle accounting adjustment we
481 * do when we go busy again does not account too much ticks.
482 */
483 if (ts->tick_stopped) {
484 touch_softlockup_watchdog();
485 ts->idle_jiffies++;
486 }
487
488 update_process_times(user_mode(regs));
489 profile_tick(CPU_PROFILING);
490
491 /* Do not restart, when we are in the idle loop */
492 if (ts->tick_stopped)
493 return;
494
495 while (tick_nohz_reprogram(ts, now)) {
496 now = ktime_get();
497 tick_do_update_jiffies64(now);
498 }
499 }
500
501 /**
502 * tick_nohz_switch_to_nohz - switch to nohz mode
503 */
504 static void tick_nohz_switch_to_nohz(void)
505 {
506 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
507 ktime_t next;
508
509 if (!tick_nohz_enabled)
510 return;
511
512 local_irq_disable();
513 if (tick_switch_to_oneshot(tick_nohz_handler)) {
514 local_irq_enable();
515 return;
516 }
517
518 ts->nohz_mode = NOHZ_MODE_LOWRES;
519
520 /*
521 * Recycle the hrtimer in ts, so we can share the
522 * hrtimer_forward with the highres code.
523 */
524 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
525 /* Get the next period */
526 next = tick_init_jiffy_update();
527
528 for (;;) {
529 ts->sched_timer.expires = next;
530 if (!tick_program_event(next, 0))
531 break;
532 next = ktime_add(next, tick_period);
533 }
534 local_irq_enable();
535
536 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
537 smp_processor_id());
538 }
539
540 #else
541
542 static inline void tick_nohz_switch_to_nohz(void) { }
543
544 #endif /* NO_HZ */
545
546 /*
547 * High resolution timer specific code
548 */
549 #ifdef CONFIG_HIGH_RES_TIMERS
550 /*
551 * We rearm the timer until we get disabled by the idle code.
552 * Called with interrupts disabled and timer->base->cpu_base->lock held.
553 */
554 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
555 {
556 struct tick_sched *ts =
557 container_of(timer, struct tick_sched, sched_timer);
558 struct pt_regs *regs = get_irq_regs();
559 ktime_t now = ktime_get();
560 int cpu = smp_processor_id();
561
562 #ifdef CONFIG_NO_HZ
563 /*
564 * Check if the do_timer duty was dropped. We don't care about
565 * concurrency: This happens only when the cpu in charge went
566 * into a long sleep. If two cpus happen to assign themself to
567 * this duty, then the jiffies update is still serialized by
568 * xtime_lock.
569 */
570 if (unlikely(tick_do_timer_cpu == -1))
571 tick_do_timer_cpu = cpu;
572 #endif
573
574 /* Check, if the jiffies need an update */
575 if (tick_do_timer_cpu == cpu)
576 tick_do_update_jiffies64(now);
577
578 /*
579 * Do not call, when we are not in irq context and have
580 * no valid regs pointer
581 */
582 if (regs) {
583 /*
584 * When we are idle and the tick is stopped, we have to touch
585 * the watchdog as we might not schedule for a really long
586 * time. This happens on complete idle SMP systems while
587 * waiting on the login prompt. We also increment the "start of
588 * idle" jiffy stamp so the idle accounting adjustment we do
589 * when we go busy again does not account too much ticks.
590 */
591 if (ts->tick_stopped) {
592 touch_softlockup_watchdog();
593 ts->idle_jiffies++;
594 }
595 update_process_times(user_mode(regs));
596 profile_tick(CPU_PROFILING);
597 }
598
599 /* Do not restart, when we are in the idle loop */
600 if (ts->tick_stopped)
601 return HRTIMER_NORESTART;
602
603 hrtimer_forward(timer, now, tick_period);
604
605 return HRTIMER_RESTART;
606 }
607
608 /**
609 * tick_setup_sched_timer - setup the tick emulation timer
610 */
611 void tick_setup_sched_timer(void)
612 {
613 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
614 ktime_t now = ktime_get();
615 u64 offset;
616
617 /*
618 * Emulate tick processing via per-CPU hrtimers:
619 */
620 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
621 ts->sched_timer.function = tick_sched_timer;
622 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
623
624 /* Get the next period (per cpu) */
625 ts->sched_timer.expires = tick_init_jiffy_update();
626 offset = ktime_to_ns(tick_period) >> 1;
627 do_div(offset, num_possible_cpus());
628 offset *= smp_processor_id();
629 ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
630
631 for (;;) {
632 hrtimer_forward(&ts->sched_timer, now, tick_period);
633 hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
634 HRTIMER_MODE_ABS);
635 /* Check, if the timer was already in the past */
636 if (hrtimer_active(&ts->sched_timer))
637 break;
638 now = ktime_get();
639 }
640
641 #ifdef CONFIG_NO_HZ
642 if (tick_nohz_enabled)
643 ts->nohz_mode = NOHZ_MODE_HIGHRES;
644 #endif
645 }
646
647 void tick_cancel_sched_timer(int cpu)
648 {
649 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
650
651 if (ts->sched_timer.base)
652 hrtimer_cancel(&ts->sched_timer);
653
654 ts->nohz_mode = NOHZ_MODE_INACTIVE;
655 }
656 #endif /* HIGH_RES_TIMERS */
657
658 /**
659 * Async notification about clocksource changes
660 */
661 void tick_clock_notify(void)
662 {
663 int cpu;
664
665 for_each_possible_cpu(cpu)
666 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
667 }
668
669 /*
670 * Async notification about clock event changes
671 */
672 void tick_oneshot_notify(void)
673 {
674 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
675
676 set_bit(0, &ts->check_clocks);
677 }
678
679 /**
680 * Check, if a change happened, which makes oneshot possible.
681 *
682 * Called cyclic from the hrtimer softirq (driven by the timer
683 * softirq) allow_nohz signals, that we can switch into low-res nohz
684 * mode, because high resolution timers are disabled (either compile
685 * or runtime).
686 */
687 int tick_check_oneshot_change(int allow_nohz)
688 {
689 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
690
691 if (!test_and_clear_bit(0, &ts->check_clocks))
692 return 0;
693
694 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
695 return 0;
696
697 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
698 return 0;
699
700 if (!allow_nohz)
701 return 1;
702
703 tick_nohz_switch_to_nohz();
704 return 0;
705 }