]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/time/tick-sched.c
sched: Rate-limit nohz
[mirror_ubuntu-jammy-kernel.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 #include <linux/module.h>
24
25 #include <asm/irq_regs.h>
26
27 #include "tick-internal.h"
28
29 /*
30 * Per cpu nohz control structure
31 */
32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33
34 /*
35 * The time, when the last jiffy update happened. Protected by xtime_lock.
36 */
37 static ktime_t last_jiffies_update;
38
39 struct tick_sched *tick_get_tick_sched(int cpu)
40 {
41 return &per_cpu(tick_cpu_sched, cpu);
42 }
43
44 /*
45 * Must be called with interrupts disabled !
46 */
47 static void tick_do_update_jiffies64(ktime_t now)
48 {
49 unsigned long ticks = 0;
50 ktime_t delta;
51
52 /*
53 * Do a quick check without holding xtime_lock:
54 */
55 delta = ktime_sub(now, last_jiffies_update);
56 if (delta.tv64 < tick_period.tv64)
57 return;
58
59 /* Reevalute with xtime_lock held */
60 write_seqlock(&xtime_lock);
61
62 delta = ktime_sub(now, last_jiffies_update);
63 if (delta.tv64 >= tick_period.tv64) {
64
65 delta = ktime_sub(delta, tick_period);
66 last_jiffies_update = ktime_add(last_jiffies_update,
67 tick_period);
68
69 /* Slow path for long timeouts */
70 if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 s64 incr = ktime_to_ns(tick_period);
72
73 ticks = ktime_divns(delta, incr);
74
75 last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 incr * ticks);
77 }
78 do_timer(++ticks);
79
80 /* Keep the tick_next_period variable up to date */
81 tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 }
83 write_sequnlock(&xtime_lock);
84 }
85
86 /*
87 * Initialize and return retrieve the jiffies update.
88 */
89 static ktime_t tick_init_jiffy_update(void)
90 {
91 ktime_t period;
92
93 write_seqlock(&xtime_lock);
94 /* Did we start the jiffies update yet ? */
95 if (last_jiffies_update.tv64 == 0)
96 last_jiffies_update = tick_next_period;
97 period = last_jiffies_update;
98 write_sequnlock(&xtime_lock);
99 return period;
100 }
101
102 /*
103 * NOHZ - aka dynamic tick functionality
104 */
105 #ifdef CONFIG_NO_HZ
106 /*
107 * NO HZ enabled ?
108 */
109 static int tick_nohz_enabled __read_mostly = 1;
110
111 /*
112 * Enable / Disable tickless mode
113 */
114 static int __init setup_tick_nohz(char *str)
115 {
116 if (!strcmp(str, "off"))
117 tick_nohz_enabled = 0;
118 else if (!strcmp(str, "on"))
119 tick_nohz_enabled = 1;
120 else
121 return 0;
122 return 1;
123 }
124
125 __setup("nohz=", setup_tick_nohz);
126
127 /**
128 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
129 *
130 * Called from interrupt entry when the CPU was idle
131 *
132 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
133 * must be updated. Otherwise an interrupt handler could use a stale jiffy
134 * value. We do this unconditionally on any cpu, as we don't know whether the
135 * cpu, which has the update task assigned is in a long sleep.
136 */
137 static void tick_nohz_update_jiffies(ktime_t now)
138 {
139 int cpu = smp_processor_id();
140 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
141 unsigned long flags;
142
143 cpumask_clear_cpu(cpu, nohz_cpu_mask);
144 ts->idle_waketime = now;
145
146 local_irq_save(flags);
147 tick_do_update_jiffies64(now);
148 local_irq_restore(flags);
149
150 touch_softlockup_watchdog();
151 }
152
153 static void tick_nohz_stop_idle(int cpu, ktime_t now)
154 {
155 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
156 ktime_t delta;
157
158 delta = ktime_sub(now, ts->idle_entrytime);
159 ts->idle_lastupdate = now;
160 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
161 ts->idle_active = 0;
162
163 sched_clock_idle_wakeup_event(0);
164 }
165
166 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
167 {
168 ktime_t now, delta;
169
170 now = ktime_get();
171 if (ts->idle_active) {
172 delta = ktime_sub(now, ts->idle_entrytime);
173 ts->idle_lastupdate = now;
174 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
175 }
176 ts->idle_entrytime = now;
177 ts->idle_active = 1;
178 sched_clock_idle_sleep_event();
179 return now;
180 }
181
182 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
183 {
184 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
185
186 if (!tick_nohz_enabled)
187 return -1;
188
189 if (ts->idle_active)
190 *last_update_time = ktime_to_us(ts->idle_lastupdate);
191 else
192 *last_update_time = ktime_to_us(ktime_get());
193
194 return ktime_to_us(ts->idle_sleeptime);
195 }
196 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
197
198 /**
199 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
200 *
201 * When the next event is more than a tick into the future, stop the idle tick
202 * Called either from the idle loop or from irq_exit() when an idle period was
203 * just interrupted by an interrupt which did not cause a reschedule.
204 */
205 void tick_nohz_stop_sched_tick(int inidle)
206 {
207 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
208 struct tick_sched *ts;
209 ktime_t last_update, expires, now;
210 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
211 u64 time_delta;
212 int cpu;
213
214 local_irq_save(flags);
215
216 cpu = smp_processor_id();
217 ts = &per_cpu(tick_cpu_sched, cpu);
218
219 /*
220 * Call to tick_nohz_start_idle stops the last_update_time from being
221 * updated. Thus, it must not be called in the event we are called from
222 * irq_exit() with the prior state different than idle.
223 */
224 if (!inidle && !ts->inidle)
225 goto end;
226
227 /*
228 * Set ts->inidle unconditionally. Even if the system did not
229 * switch to NOHZ mode the cpu frequency governers rely on the
230 * update of the idle time accounting in tick_nohz_start_idle().
231 */
232 ts->inidle = 1;
233
234 now = tick_nohz_start_idle(ts);
235
236 /*
237 * If this cpu is offline and it is the one which updates
238 * jiffies, then give up the assignment and let it be taken by
239 * the cpu which runs the tick timer next. If we don't drop
240 * this here the jiffies might be stale and do_timer() never
241 * invoked.
242 */
243 if (unlikely(!cpu_online(cpu))) {
244 if (cpu == tick_do_timer_cpu)
245 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
246 }
247
248 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
249 goto end;
250
251 if (need_resched())
252 goto end;
253
254 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
255 static int ratelimit;
256
257 if (ratelimit < 10) {
258 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
259 (unsigned int) local_softirq_pending());
260 ratelimit++;
261 }
262 goto end;
263 }
264
265 if (nohz_ratelimit(cpu))
266 goto end;
267
268 ts->idle_calls++;
269 /* Read jiffies and the time when jiffies were updated last */
270 do {
271 seq = read_seqbegin(&xtime_lock);
272 last_update = last_jiffies_update;
273 last_jiffies = jiffies;
274 time_delta = timekeeping_max_deferment();
275 } while (read_seqretry(&xtime_lock, seq));
276
277 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
278 arch_needs_cpu(cpu)) {
279 next_jiffies = last_jiffies + 1;
280 delta_jiffies = 1;
281 } else {
282 /* Get the next timer wheel timer */
283 next_jiffies = get_next_timer_interrupt(last_jiffies);
284 delta_jiffies = next_jiffies - last_jiffies;
285 }
286 /*
287 * Do not stop the tick, if we are only one off
288 * or if the cpu is required for rcu
289 */
290 if (!ts->tick_stopped && delta_jiffies == 1)
291 goto out;
292
293 /* Schedule the tick, if we are at least one jiffie off */
294 if ((long)delta_jiffies >= 1) {
295
296 /*
297 * If this cpu is the one which updates jiffies, then
298 * give up the assignment and let it be taken by the
299 * cpu which runs the tick timer next, which might be
300 * this cpu as well. If we don't drop this here the
301 * jiffies might be stale and do_timer() never
302 * invoked. Keep track of the fact that it was the one
303 * which had the do_timer() duty last. If this cpu is
304 * the one which had the do_timer() duty last, we
305 * limit the sleep time to the timekeeping
306 * max_deferement value which we retrieved
307 * above. Otherwise we can sleep as long as we want.
308 */
309 if (cpu == tick_do_timer_cpu) {
310 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
311 ts->do_timer_last = 1;
312 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
313 time_delta = KTIME_MAX;
314 ts->do_timer_last = 0;
315 } else if (!ts->do_timer_last) {
316 time_delta = KTIME_MAX;
317 }
318
319 /*
320 * calculate the expiry time for the next timer wheel
321 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
322 * that there is no timer pending or at least extremely
323 * far into the future (12 days for HZ=1000). In this
324 * case we set the expiry to the end of time.
325 */
326 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
327 /*
328 * Calculate the time delta for the next timer event.
329 * If the time delta exceeds the maximum time delta
330 * permitted by the current clocksource then adjust
331 * the time delta accordingly to ensure the
332 * clocksource does not wrap.
333 */
334 time_delta = min_t(u64, time_delta,
335 tick_period.tv64 * delta_jiffies);
336 }
337
338 if (time_delta < KTIME_MAX)
339 expires = ktime_add_ns(last_update, time_delta);
340 else
341 expires.tv64 = KTIME_MAX;
342
343 if (delta_jiffies > 1)
344 cpumask_set_cpu(cpu, nohz_cpu_mask);
345
346 /* Skip reprogram of event if its not changed */
347 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
348 goto out;
349
350 /*
351 * nohz_stop_sched_tick can be called several times before
352 * the nohz_restart_sched_tick is called. This happens when
353 * interrupts arrive which do not cause a reschedule. In the
354 * first call we save the current tick time, so we can restart
355 * the scheduler tick in nohz_restart_sched_tick.
356 */
357 if (!ts->tick_stopped) {
358 if (select_nohz_load_balancer(1)) {
359 /*
360 * sched tick not stopped!
361 */
362 cpumask_clear_cpu(cpu, nohz_cpu_mask);
363 goto out;
364 }
365
366 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
367 ts->tick_stopped = 1;
368 ts->idle_jiffies = last_jiffies;
369 rcu_enter_nohz();
370 }
371
372 ts->idle_sleeps++;
373
374 /* Mark expires */
375 ts->idle_expires = expires;
376
377 /*
378 * If the expiration time == KTIME_MAX, then
379 * in this case we simply stop the tick timer.
380 */
381 if (unlikely(expires.tv64 == KTIME_MAX)) {
382 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
383 hrtimer_cancel(&ts->sched_timer);
384 goto out;
385 }
386
387 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
388 hrtimer_start(&ts->sched_timer, expires,
389 HRTIMER_MODE_ABS_PINNED);
390 /* Check, if the timer was already in the past */
391 if (hrtimer_active(&ts->sched_timer))
392 goto out;
393 } else if (!tick_program_event(expires, 0))
394 goto out;
395 /*
396 * We are past the event already. So we crossed a
397 * jiffie boundary. Update jiffies and raise the
398 * softirq.
399 */
400 tick_do_update_jiffies64(ktime_get());
401 cpumask_clear_cpu(cpu, nohz_cpu_mask);
402 }
403 raise_softirq_irqoff(TIMER_SOFTIRQ);
404 out:
405 ts->next_jiffies = next_jiffies;
406 ts->last_jiffies = last_jiffies;
407 ts->sleep_length = ktime_sub(dev->next_event, now);
408 end:
409 local_irq_restore(flags);
410 }
411
412 /**
413 * tick_nohz_get_sleep_length - return the length of the current sleep
414 *
415 * Called from power state control code with interrupts disabled
416 */
417 ktime_t tick_nohz_get_sleep_length(void)
418 {
419 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
420
421 return ts->sleep_length;
422 }
423
424 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
425 {
426 hrtimer_cancel(&ts->sched_timer);
427 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
428
429 while (1) {
430 /* Forward the time to expire in the future */
431 hrtimer_forward(&ts->sched_timer, now, tick_period);
432
433 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
434 hrtimer_start_expires(&ts->sched_timer,
435 HRTIMER_MODE_ABS_PINNED);
436 /* Check, if the timer was already in the past */
437 if (hrtimer_active(&ts->sched_timer))
438 break;
439 } else {
440 if (!tick_program_event(
441 hrtimer_get_expires(&ts->sched_timer), 0))
442 break;
443 }
444 /* Update jiffies and reread time */
445 tick_do_update_jiffies64(now);
446 now = ktime_get();
447 }
448 }
449
450 /**
451 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
452 *
453 * Restart the idle tick when the CPU is woken up from idle
454 */
455 void tick_nohz_restart_sched_tick(void)
456 {
457 int cpu = smp_processor_id();
458 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
459 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
460 unsigned long ticks;
461 #endif
462 ktime_t now;
463
464 local_irq_disable();
465 if (ts->idle_active || (ts->inidle && ts->tick_stopped))
466 now = ktime_get();
467
468 if (ts->idle_active)
469 tick_nohz_stop_idle(cpu, now);
470
471 if (!ts->inidle || !ts->tick_stopped) {
472 ts->inidle = 0;
473 local_irq_enable();
474 return;
475 }
476
477 ts->inidle = 0;
478
479 rcu_exit_nohz();
480
481 /* Update jiffies first */
482 select_nohz_load_balancer(0);
483 tick_do_update_jiffies64(now);
484 cpumask_clear_cpu(cpu, nohz_cpu_mask);
485
486 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
487 /*
488 * We stopped the tick in idle. Update process times would miss the
489 * time we slept as update_process_times does only a 1 tick
490 * accounting. Enforce that this is accounted to idle !
491 */
492 ticks = jiffies - ts->idle_jiffies;
493 /*
494 * We might be one off. Do not randomly account a huge number of ticks!
495 */
496 if (ticks && ticks < LONG_MAX)
497 account_idle_ticks(ticks);
498 #endif
499
500 touch_softlockup_watchdog();
501 /*
502 * Cancel the scheduled timer and restore the tick
503 */
504 ts->tick_stopped = 0;
505 ts->idle_exittime = now;
506
507 tick_nohz_restart(ts, now);
508
509 local_irq_enable();
510 }
511
512 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
513 {
514 hrtimer_forward(&ts->sched_timer, now, tick_period);
515 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
516 }
517
518 /*
519 * The nohz low res interrupt handler
520 */
521 static void tick_nohz_handler(struct clock_event_device *dev)
522 {
523 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
524 struct pt_regs *regs = get_irq_regs();
525 int cpu = smp_processor_id();
526 ktime_t now = ktime_get();
527
528 dev->next_event.tv64 = KTIME_MAX;
529
530 /*
531 * Check if the do_timer duty was dropped. We don't care about
532 * concurrency: This happens only when the cpu in charge went
533 * into a long sleep. If two cpus happen to assign themself to
534 * this duty, then the jiffies update is still serialized by
535 * xtime_lock.
536 */
537 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
538 tick_do_timer_cpu = cpu;
539
540 /* Check, if the jiffies need an update */
541 if (tick_do_timer_cpu == cpu)
542 tick_do_update_jiffies64(now);
543
544 /*
545 * When we are idle and the tick is stopped, we have to touch
546 * the watchdog as we might not schedule for a really long
547 * time. This happens on complete idle SMP systems while
548 * waiting on the login prompt. We also increment the "start
549 * of idle" jiffy stamp so the idle accounting adjustment we
550 * do when we go busy again does not account too much ticks.
551 */
552 if (ts->tick_stopped) {
553 touch_softlockup_watchdog();
554 ts->idle_jiffies++;
555 }
556
557 update_process_times(user_mode(regs));
558 profile_tick(CPU_PROFILING);
559
560 while (tick_nohz_reprogram(ts, now)) {
561 now = ktime_get();
562 tick_do_update_jiffies64(now);
563 }
564 }
565
566 /**
567 * tick_nohz_switch_to_nohz - switch to nohz mode
568 */
569 static void tick_nohz_switch_to_nohz(void)
570 {
571 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
572 ktime_t next;
573
574 if (!tick_nohz_enabled)
575 return;
576
577 local_irq_disable();
578 if (tick_switch_to_oneshot(tick_nohz_handler)) {
579 local_irq_enable();
580 return;
581 }
582
583 ts->nohz_mode = NOHZ_MODE_LOWRES;
584
585 /*
586 * Recycle the hrtimer in ts, so we can share the
587 * hrtimer_forward with the highres code.
588 */
589 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
590 /* Get the next period */
591 next = tick_init_jiffy_update();
592
593 for (;;) {
594 hrtimer_set_expires(&ts->sched_timer, next);
595 if (!tick_program_event(next, 0))
596 break;
597 next = ktime_add(next, tick_period);
598 }
599 local_irq_enable();
600
601 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
602 smp_processor_id());
603 }
604
605 /*
606 * When NOHZ is enabled and the tick is stopped, we need to kick the
607 * tick timer from irq_enter() so that the jiffies update is kept
608 * alive during long running softirqs. That's ugly as hell, but
609 * correctness is key even if we need to fix the offending softirq in
610 * the first place.
611 *
612 * Note, this is different to tick_nohz_restart. We just kick the
613 * timer and do not touch the other magic bits which need to be done
614 * when idle is left.
615 */
616 static void tick_nohz_kick_tick(int cpu, ktime_t now)
617 {
618 #if 0
619 /* Switch back to 2.6.27 behaviour */
620
621 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
622 ktime_t delta;
623
624 /*
625 * Do not touch the tick device, when the next expiry is either
626 * already reached or less/equal than the tick period.
627 */
628 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
629 if (delta.tv64 <= tick_period.tv64)
630 return;
631
632 tick_nohz_restart(ts, now);
633 #endif
634 }
635
636 static inline void tick_check_nohz(int cpu)
637 {
638 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
639 ktime_t now;
640
641 if (!ts->idle_active && !ts->tick_stopped)
642 return;
643 now = ktime_get();
644 if (ts->idle_active)
645 tick_nohz_stop_idle(cpu, now);
646 if (ts->tick_stopped) {
647 tick_nohz_update_jiffies(now);
648 tick_nohz_kick_tick(cpu, now);
649 }
650 }
651
652 #else
653
654 static inline void tick_nohz_switch_to_nohz(void) { }
655 static inline void tick_check_nohz(int cpu) { }
656
657 #endif /* NO_HZ */
658
659 /*
660 * Called from irq_enter to notify about the possible interruption of idle()
661 */
662 void tick_check_idle(int cpu)
663 {
664 tick_check_oneshot_broadcast(cpu);
665 tick_check_nohz(cpu);
666 }
667
668 /*
669 * High resolution timer specific code
670 */
671 #ifdef CONFIG_HIGH_RES_TIMERS
672 /*
673 * We rearm the timer until we get disabled by the idle code.
674 * Called with interrupts disabled and timer->base->cpu_base->lock held.
675 */
676 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
677 {
678 struct tick_sched *ts =
679 container_of(timer, struct tick_sched, sched_timer);
680 struct pt_regs *regs = get_irq_regs();
681 ktime_t now = ktime_get();
682 int cpu = smp_processor_id();
683
684 #ifdef CONFIG_NO_HZ
685 /*
686 * Check if the do_timer duty was dropped. We don't care about
687 * concurrency: This happens only when the cpu in charge went
688 * into a long sleep. If two cpus happen to assign themself to
689 * this duty, then the jiffies update is still serialized by
690 * xtime_lock.
691 */
692 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
693 tick_do_timer_cpu = cpu;
694 #endif
695
696 /* Check, if the jiffies need an update */
697 if (tick_do_timer_cpu == cpu)
698 tick_do_update_jiffies64(now);
699
700 /*
701 * Do not call, when we are not in irq context and have
702 * no valid regs pointer
703 */
704 if (regs) {
705 /*
706 * When we are idle and the tick is stopped, we have to touch
707 * the watchdog as we might not schedule for a really long
708 * time. This happens on complete idle SMP systems while
709 * waiting on the login prompt. We also increment the "start of
710 * idle" jiffy stamp so the idle accounting adjustment we do
711 * when we go busy again does not account too much ticks.
712 */
713 if (ts->tick_stopped) {
714 touch_softlockup_watchdog();
715 ts->idle_jiffies++;
716 }
717 update_process_times(user_mode(regs));
718 profile_tick(CPU_PROFILING);
719 }
720
721 hrtimer_forward(timer, now, tick_period);
722
723 return HRTIMER_RESTART;
724 }
725
726 /**
727 * tick_setup_sched_timer - setup the tick emulation timer
728 */
729 void tick_setup_sched_timer(void)
730 {
731 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
732 ktime_t now = ktime_get();
733 u64 offset;
734
735 /*
736 * Emulate tick processing via per-CPU hrtimers:
737 */
738 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
739 ts->sched_timer.function = tick_sched_timer;
740
741 /* Get the next period (per cpu) */
742 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
743 offset = ktime_to_ns(tick_period) >> 1;
744 do_div(offset, num_possible_cpus());
745 offset *= smp_processor_id();
746 hrtimer_add_expires_ns(&ts->sched_timer, offset);
747
748 for (;;) {
749 hrtimer_forward(&ts->sched_timer, now, tick_period);
750 hrtimer_start_expires(&ts->sched_timer,
751 HRTIMER_MODE_ABS_PINNED);
752 /* Check, if the timer was already in the past */
753 if (hrtimer_active(&ts->sched_timer))
754 break;
755 now = ktime_get();
756 }
757
758 #ifdef CONFIG_NO_HZ
759 if (tick_nohz_enabled)
760 ts->nohz_mode = NOHZ_MODE_HIGHRES;
761 #endif
762 }
763 #endif /* HIGH_RES_TIMERS */
764
765 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
766 void tick_cancel_sched_timer(int cpu)
767 {
768 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
769
770 # ifdef CONFIG_HIGH_RES_TIMERS
771 if (ts->sched_timer.base)
772 hrtimer_cancel(&ts->sched_timer);
773 # endif
774
775 ts->nohz_mode = NOHZ_MODE_INACTIVE;
776 }
777 #endif
778
779 /**
780 * Async notification about clocksource changes
781 */
782 void tick_clock_notify(void)
783 {
784 int cpu;
785
786 for_each_possible_cpu(cpu)
787 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
788 }
789
790 /*
791 * Async notification about clock event changes
792 */
793 void tick_oneshot_notify(void)
794 {
795 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
796
797 set_bit(0, &ts->check_clocks);
798 }
799
800 /**
801 * Check, if a change happened, which makes oneshot possible.
802 *
803 * Called cyclic from the hrtimer softirq (driven by the timer
804 * softirq) allow_nohz signals, that we can switch into low-res nohz
805 * mode, because high resolution timers are disabled (either compile
806 * or runtime).
807 */
808 int tick_check_oneshot_change(int allow_nohz)
809 {
810 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
811
812 if (!test_and_clear_bit(0, &ts->check_clocks))
813 return 0;
814
815 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
816 return 0;
817
818 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
819 return 0;
820
821 if (!allow_nohz)
822 return 1;
823
824 tick_nohz_switch_to_nohz();
825 return 0;
826 }