]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/time/tick-sched.c
Merge remote-tracking branch 'asoc/topic/pcm512x' into asoc-next
[mirror_ubuntu-focal-kernel.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/sched/nohz.h>
26 #include <linux/module.h>
27 #include <linux/irq_work.h>
28 #include <linux/posix-timers.h>
29 #include <linux/context_tracking.h>
30 #include <linux/mm.h>
31
32 #include <asm/irq_regs.h>
33
34 #include "tick-internal.h"
35
36 #include <trace/events/timer.h>
37
38 /*
39 * Per-CPU nohz control structure
40 */
41 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
42
43 struct tick_sched *tick_get_tick_sched(int cpu)
44 {
45 return &per_cpu(tick_cpu_sched, cpu);
46 }
47
48 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
49 /*
50 * The time, when the last jiffy update happened. Protected by jiffies_lock.
51 */
52 static ktime_t last_jiffies_update;
53
54 /*
55 * Must be called with interrupts disabled !
56 */
57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 unsigned long ticks = 0;
60 ktime_t delta;
61
62 /*
63 * Do a quick check without holding jiffies_lock:
64 */
65 delta = ktime_sub(now, last_jiffies_update);
66 if (delta < tick_period)
67 return;
68
69 /* Reevaluate with jiffies_lock held */
70 write_seqlock(&jiffies_lock);
71
72 delta = ktime_sub(now, last_jiffies_update);
73 if (delta >= tick_period) {
74
75 delta = ktime_sub(delta, tick_period);
76 last_jiffies_update = ktime_add(last_jiffies_update,
77 tick_period);
78
79 /* Slow path for long timeouts */
80 if (unlikely(delta >= tick_period)) {
81 s64 incr = ktime_to_ns(tick_period);
82
83 ticks = ktime_divns(delta, incr);
84
85 last_jiffies_update = ktime_add_ns(last_jiffies_update,
86 incr * ticks);
87 }
88 do_timer(++ticks);
89
90 /* Keep the tick_next_period variable up to date */
91 tick_next_period = ktime_add(last_jiffies_update, tick_period);
92 } else {
93 write_sequnlock(&jiffies_lock);
94 return;
95 }
96 write_sequnlock(&jiffies_lock);
97 update_wall_time();
98 }
99
100 /*
101 * Initialize and return retrieve the jiffies update.
102 */
103 static ktime_t tick_init_jiffy_update(void)
104 {
105 ktime_t period;
106
107 write_seqlock(&jiffies_lock);
108 /* Did we start the jiffies update yet ? */
109 if (last_jiffies_update == 0)
110 last_jiffies_update = tick_next_period;
111 period = last_jiffies_update;
112 write_sequnlock(&jiffies_lock);
113 return period;
114 }
115
116
117 static void tick_sched_do_timer(ktime_t now)
118 {
119 int cpu = smp_processor_id();
120
121 #ifdef CONFIG_NO_HZ_COMMON
122 /*
123 * Check if the do_timer duty was dropped. We don't care about
124 * concurrency: This happens only when the CPU in charge went
125 * into a long sleep. If two CPUs happen to assign themselves to
126 * this duty, then the jiffies update is still serialized by
127 * jiffies_lock.
128 */
129 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
130 && !tick_nohz_full_cpu(cpu))
131 tick_do_timer_cpu = cpu;
132 #endif
133
134 /* Check, if the jiffies need an update */
135 if (tick_do_timer_cpu == cpu)
136 tick_do_update_jiffies64(now);
137 }
138
139 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
140 {
141 #ifdef CONFIG_NO_HZ_COMMON
142 /*
143 * When we are idle and the tick is stopped, we have to touch
144 * the watchdog as we might not schedule for a really long
145 * time. This happens on complete idle SMP systems while
146 * waiting on the login prompt. We also increment the "start of
147 * idle" jiffy stamp so the idle accounting adjustment we do
148 * when we go busy again does not account too much ticks.
149 */
150 if (ts->tick_stopped) {
151 touch_softlockup_watchdog_sched();
152 if (is_idle_task(current))
153 ts->idle_jiffies++;
154 /*
155 * In case the current tick fired too early past its expected
156 * expiration, make sure we don't bypass the next clock reprogramming
157 * to the same deadline.
158 */
159 ts->next_tick = 0;
160 }
161 #endif
162 update_process_times(user_mode(regs));
163 profile_tick(CPU_PROFILING);
164 }
165 #endif
166
167 #ifdef CONFIG_NO_HZ_FULL
168 cpumask_var_t tick_nohz_full_mask;
169 bool tick_nohz_full_running;
170 static atomic_t tick_dep_mask;
171
172 static bool check_tick_dependency(atomic_t *dep)
173 {
174 int val = atomic_read(dep);
175
176 if (val & TICK_DEP_MASK_POSIX_TIMER) {
177 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
178 return true;
179 }
180
181 if (val & TICK_DEP_MASK_PERF_EVENTS) {
182 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
183 return true;
184 }
185
186 if (val & TICK_DEP_MASK_SCHED) {
187 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
188 return true;
189 }
190
191 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
192 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
193 return true;
194 }
195
196 return false;
197 }
198
199 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
200 {
201 lockdep_assert_irqs_disabled();
202
203 if (unlikely(!cpu_online(cpu)))
204 return false;
205
206 if (check_tick_dependency(&tick_dep_mask))
207 return false;
208
209 if (check_tick_dependency(&ts->tick_dep_mask))
210 return false;
211
212 if (check_tick_dependency(&current->tick_dep_mask))
213 return false;
214
215 if (check_tick_dependency(&current->signal->tick_dep_mask))
216 return false;
217
218 return true;
219 }
220
221 static void nohz_full_kick_func(struct irq_work *work)
222 {
223 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
224 }
225
226 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
227 .func = nohz_full_kick_func,
228 };
229
230 /*
231 * Kick this CPU if it's full dynticks in order to force it to
232 * re-evaluate its dependency on the tick and restart it if necessary.
233 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
234 * is NMI safe.
235 */
236 static void tick_nohz_full_kick(void)
237 {
238 if (!tick_nohz_full_cpu(smp_processor_id()))
239 return;
240
241 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
242 }
243
244 /*
245 * Kick the CPU if it's full dynticks in order to force it to
246 * re-evaluate its dependency on the tick and restart it if necessary.
247 */
248 void tick_nohz_full_kick_cpu(int cpu)
249 {
250 if (!tick_nohz_full_cpu(cpu))
251 return;
252
253 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
254 }
255
256 /*
257 * Kick all full dynticks CPUs in order to force these to re-evaluate
258 * their dependency on the tick and restart it if necessary.
259 */
260 static void tick_nohz_full_kick_all(void)
261 {
262 int cpu;
263
264 if (!tick_nohz_full_running)
265 return;
266
267 preempt_disable();
268 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
269 tick_nohz_full_kick_cpu(cpu);
270 preempt_enable();
271 }
272
273 static void tick_nohz_dep_set_all(atomic_t *dep,
274 enum tick_dep_bits bit)
275 {
276 int prev;
277
278 prev = atomic_fetch_or(BIT(bit), dep);
279 if (!prev)
280 tick_nohz_full_kick_all();
281 }
282
283 /*
284 * Set a global tick dependency. Used by perf events that rely on freq and
285 * by unstable clock.
286 */
287 void tick_nohz_dep_set(enum tick_dep_bits bit)
288 {
289 tick_nohz_dep_set_all(&tick_dep_mask, bit);
290 }
291
292 void tick_nohz_dep_clear(enum tick_dep_bits bit)
293 {
294 atomic_andnot(BIT(bit), &tick_dep_mask);
295 }
296
297 /*
298 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
299 * manage events throttling.
300 */
301 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
302 {
303 int prev;
304 struct tick_sched *ts;
305
306 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
307
308 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
309 if (!prev) {
310 preempt_disable();
311 /* Perf needs local kick that is NMI safe */
312 if (cpu == smp_processor_id()) {
313 tick_nohz_full_kick();
314 } else {
315 /* Remote irq work not NMI-safe */
316 if (!WARN_ON_ONCE(in_nmi()))
317 tick_nohz_full_kick_cpu(cpu);
318 }
319 preempt_enable();
320 }
321 }
322
323 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
324 {
325 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
326
327 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
328 }
329
330 /*
331 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
332 * per task timers.
333 */
334 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
335 {
336 /*
337 * We could optimize this with just kicking the target running the task
338 * if that noise matters for nohz full users.
339 */
340 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
341 }
342
343 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
344 {
345 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
346 }
347
348 /*
349 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
350 * per process timers.
351 */
352 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
353 {
354 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
355 }
356
357 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
358 {
359 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
360 }
361
362 /*
363 * Re-evaluate the need for the tick as we switch the current task.
364 * It might need the tick due to per task/process properties:
365 * perf events, posix CPU timers, ...
366 */
367 void __tick_nohz_task_switch(void)
368 {
369 unsigned long flags;
370 struct tick_sched *ts;
371
372 local_irq_save(flags);
373
374 if (!tick_nohz_full_cpu(smp_processor_id()))
375 goto out;
376
377 ts = this_cpu_ptr(&tick_cpu_sched);
378
379 if (ts->tick_stopped) {
380 if (atomic_read(&current->tick_dep_mask) ||
381 atomic_read(&current->signal->tick_dep_mask))
382 tick_nohz_full_kick();
383 }
384 out:
385 local_irq_restore(flags);
386 }
387
388 /* Get the boot-time nohz CPU list from the kernel parameters. */
389 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
390 {
391 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
392 cpumask_copy(tick_nohz_full_mask, cpumask);
393 tick_nohz_full_running = true;
394 }
395
396 static int tick_nohz_cpu_down(unsigned int cpu)
397 {
398 /*
399 * The boot CPU handles housekeeping duty (unbound timers,
400 * workqueues, timekeeping, ...) on behalf of full dynticks
401 * CPUs. It must remain online when nohz full is enabled.
402 */
403 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
404 return -EBUSY;
405 return 0;
406 }
407
408 static int tick_nohz_init_all(void)
409 {
410 int err = -1;
411
412 #ifdef CONFIG_NO_HZ_FULL_ALL
413 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
414 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
415 return err;
416 }
417 err = 0;
418 cpumask_setall(tick_nohz_full_mask);
419 tick_nohz_full_running = true;
420 #endif
421 return err;
422 }
423
424 void __init tick_nohz_init(void)
425 {
426 int cpu, ret;
427
428 if (!tick_nohz_full_running) {
429 if (tick_nohz_init_all() < 0)
430 return;
431 }
432
433 /*
434 * Full dynticks uses irq work to drive the tick rescheduling on safe
435 * locking contexts. But then we need irq work to raise its own
436 * interrupts to avoid circular dependency on the tick
437 */
438 if (!arch_irq_work_has_interrupt()) {
439 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
440 cpumask_clear(tick_nohz_full_mask);
441 tick_nohz_full_running = false;
442 return;
443 }
444
445 cpu = smp_processor_id();
446
447 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
448 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
449 cpu);
450 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
451 }
452
453 for_each_cpu(cpu, tick_nohz_full_mask)
454 context_tracking_cpu_set(cpu);
455
456 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
457 "kernel/nohz:predown", NULL,
458 tick_nohz_cpu_down);
459 WARN_ON(ret < 0);
460 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
461 cpumask_pr_args(tick_nohz_full_mask));
462 }
463 #endif
464
465 /*
466 * NOHZ - aka dynamic tick functionality
467 */
468 #ifdef CONFIG_NO_HZ_COMMON
469 /*
470 * NO HZ enabled ?
471 */
472 bool tick_nohz_enabled __read_mostly = true;
473 unsigned long tick_nohz_active __read_mostly;
474 /*
475 * Enable / Disable tickless mode
476 */
477 static int __init setup_tick_nohz(char *str)
478 {
479 return (kstrtobool(str, &tick_nohz_enabled) == 0);
480 }
481
482 __setup("nohz=", setup_tick_nohz);
483
484 int tick_nohz_tick_stopped(void)
485 {
486 return __this_cpu_read(tick_cpu_sched.tick_stopped);
487 }
488
489 /**
490 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
491 *
492 * Called from interrupt entry when the CPU was idle
493 *
494 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
495 * must be updated. Otherwise an interrupt handler could use a stale jiffy
496 * value. We do this unconditionally on any CPU, as we don't know whether the
497 * CPU, which has the update task assigned is in a long sleep.
498 */
499 static void tick_nohz_update_jiffies(ktime_t now)
500 {
501 unsigned long flags;
502
503 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
504
505 local_irq_save(flags);
506 tick_do_update_jiffies64(now);
507 local_irq_restore(flags);
508
509 touch_softlockup_watchdog_sched();
510 }
511
512 /*
513 * Updates the per-CPU time idle statistics counters
514 */
515 static void
516 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
517 {
518 ktime_t delta;
519
520 if (ts->idle_active) {
521 delta = ktime_sub(now, ts->idle_entrytime);
522 if (nr_iowait_cpu(cpu) > 0)
523 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
524 else
525 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
526 ts->idle_entrytime = now;
527 }
528
529 if (last_update_time)
530 *last_update_time = ktime_to_us(now);
531
532 }
533
534 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
535 {
536 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
537 ts->idle_active = 0;
538
539 sched_clock_idle_wakeup_event();
540 }
541
542 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
543 {
544 ktime_t now = ktime_get();
545
546 ts->idle_entrytime = now;
547 ts->idle_active = 1;
548 sched_clock_idle_sleep_event();
549 return now;
550 }
551
552 /**
553 * get_cpu_idle_time_us - get the total idle time of a CPU
554 * @cpu: CPU number to query
555 * @last_update_time: variable to store update time in. Do not update
556 * counters if NULL.
557 *
558 * Return the cumulative idle time (since boot) for a given
559 * CPU, in microseconds.
560 *
561 * This time is measured via accounting rather than sampling,
562 * and is as accurate as ktime_get() is.
563 *
564 * This function returns -1 if NOHZ is not enabled.
565 */
566 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
567 {
568 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
569 ktime_t now, idle;
570
571 if (!tick_nohz_active)
572 return -1;
573
574 now = ktime_get();
575 if (last_update_time) {
576 update_ts_time_stats(cpu, ts, now, last_update_time);
577 idle = ts->idle_sleeptime;
578 } else {
579 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
580 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
581
582 idle = ktime_add(ts->idle_sleeptime, delta);
583 } else {
584 idle = ts->idle_sleeptime;
585 }
586 }
587
588 return ktime_to_us(idle);
589
590 }
591 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
592
593 /**
594 * get_cpu_iowait_time_us - get the total iowait time of a CPU
595 * @cpu: CPU number to query
596 * @last_update_time: variable to store update time in. Do not update
597 * counters if NULL.
598 *
599 * Return the cumulative iowait time (since boot) for a given
600 * CPU, in microseconds.
601 *
602 * This time is measured via accounting rather than sampling,
603 * and is as accurate as ktime_get() is.
604 *
605 * This function returns -1 if NOHZ is not enabled.
606 */
607 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
608 {
609 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
610 ktime_t now, iowait;
611
612 if (!tick_nohz_active)
613 return -1;
614
615 now = ktime_get();
616 if (last_update_time) {
617 update_ts_time_stats(cpu, ts, now, last_update_time);
618 iowait = ts->iowait_sleeptime;
619 } else {
620 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
621 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
622
623 iowait = ktime_add(ts->iowait_sleeptime, delta);
624 } else {
625 iowait = ts->iowait_sleeptime;
626 }
627 }
628
629 return ktime_to_us(iowait);
630 }
631 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
632
633 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
634 {
635 hrtimer_cancel(&ts->sched_timer);
636 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
637
638 /* Forward the time to expire in the future */
639 hrtimer_forward(&ts->sched_timer, now, tick_period);
640
641 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
642 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
643 else
644 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
645
646 /*
647 * Reset to make sure next tick stop doesn't get fooled by past
648 * cached clock deadline.
649 */
650 ts->next_tick = 0;
651 }
652
653 static inline bool local_timer_softirq_pending(void)
654 {
655 return local_softirq_pending() & TIMER_SOFTIRQ;
656 }
657
658 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
659 ktime_t now, int cpu)
660 {
661 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
662 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
663 unsigned long seq, basejiff;
664 ktime_t tick;
665
666 /* Read jiffies and the time when jiffies were updated last */
667 do {
668 seq = read_seqbegin(&jiffies_lock);
669 basemono = last_jiffies_update;
670 basejiff = jiffies;
671 } while (read_seqretry(&jiffies_lock, seq));
672 ts->last_jiffies = basejiff;
673
674 /*
675 * Keep the periodic tick, when RCU, architecture or irq_work
676 * requests it.
677 * Aside of that check whether the local timer softirq is
678 * pending. If so its a bad idea to call get_next_timer_interrupt()
679 * because there is an already expired timer, so it will request
680 * immeditate expiry, which rearms the hardware timer with a
681 * minimal delta which brings us back to this place
682 * immediately. Lather, rinse and repeat...
683 */
684 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
685 irq_work_needs_cpu() || local_timer_softirq_pending()) {
686 next_tick = basemono + TICK_NSEC;
687 } else {
688 /*
689 * Get the next pending timer. If high resolution
690 * timers are enabled this only takes the timer wheel
691 * timers into account. If high resolution timers are
692 * disabled this also looks at the next expiring
693 * hrtimer.
694 */
695 next_tmr = get_next_timer_interrupt(basejiff, basemono);
696 ts->next_timer = next_tmr;
697 /* Take the next rcu event into account */
698 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
699 }
700
701 /*
702 * If the tick is due in the next period, keep it ticking or
703 * force prod the timer.
704 */
705 delta = next_tick - basemono;
706 if (delta <= (u64)TICK_NSEC) {
707 /*
708 * Tell the timer code that the base is not idle, i.e. undo
709 * the effect of get_next_timer_interrupt():
710 */
711 timer_clear_idle();
712 /*
713 * We've not stopped the tick yet, and there's a timer in the
714 * next period, so no point in stopping it either, bail.
715 */
716 if (!ts->tick_stopped) {
717 tick = 0;
718 goto out;
719 }
720 }
721
722 /*
723 * If this CPU is the one which updates jiffies, then give up
724 * the assignment and let it be taken by the CPU which runs
725 * the tick timer next, which might be this CPU as well. If we
726 * don't drop this here the jiffies might be stale and
727 * do_timer() never invoked. Keep track of the fact that it
728 * was the one which had the do_timer() duty last. If this CPU
729 * is the one which had the do_timer() duty last, we limit the
730 * sleep time to the timekeeping max_deferment value.
731 * Otherwise we can sleep as long as we want.
732 */
733 delta = timekeeping_max_deferment();
734 if (cpu == tick_do_timer_cpu) {
735 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
736 ts->do_timer_last = 1;
737 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
738 delta = KTIME_MAX;
739 ts->do_timer_last = 0;
740 } else if (!ts->do_timer_last) {
741 delta = KTIME_MAX;
742 }
743
744 #ifdef CONFIG_NO_HZ_FULL
745 /* Limit the tick delta to the maximum scheduler deferment */
746 if (!ts->inidle)
747 delta = min(delta, scheduler_tick_max_deferment());
748 #endif
749
750 /* Calculate the next expiry time */
751 if (delta < (KTIME_MAX - basemono))
752 expires = basemono + delta;
753 else
754 expires = KTIME_MAX;
755
756 expires = min_t(u64, expires, next_tick);
757 tick = expires;
758
759 /* Skip reprogram of event if its not changed */
760 if (ts->tick_stopped && (expires == ts->next_tick)) {
761 /* Sanity check: make sure clockevent is actually programmed */
762 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
763 goto out;
764
765 WARN_ON_ONCE(1);
766 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
767 basemono, ts->next_tick, dev->next_event,
768 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
769 }
770
771 /*
772 * nohz_stop_sched_tick can be called several times before
773 * the nohz_restart_sched_tick is called. This happens when
774 * interrupts arrive which do not cause a reschedule. In the
775 * first call we save the current tick time, so we can restart
776 * the scheduler tick in nohz_restart_sched_tick.
777 */
778 if (!ts->tick_stopped) {
779 calc_load_nohz_start();
780 cpu_load_update_nohz_start();
781 quiet_vmstat();
782
783 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
784 ts->tick_stopped = 1;
785 trace_tick_stop(1, TICK_DEP_MASK_NONE);
786 }
787
788 ts->next_tick = tick;
789
790 /*
791 * If the expiration time == KTIME_MAX, then we simply stop
792 * the tick timer.
793 */
794 if (unlikely(expires == KTIME_MAX)) {
795 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
796 hrtimer_cancel(&ts->sched_timer);
797 goto out;
798 }
799
800 hrtimer_set_expires(&ts->sched_timer, tick);
801
802 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
803 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
804 else
805 tick_program_event(tick, 1);
806 out:
807 /*
808 * Update the estimated sleep length until the next timer
809 * (not only the tick).
810 */
811 ts->sleep_length = ktime_sub(dev->next_event, now);
812 return tick;
813 }
814
815 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
816 {
817 /* Update jiffies first */
818 tick_do_update_jiffies64(now);
819 cpu_load_update_nohz_stop();
820
821 /*
822 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
823 * the clock forward checks in the enqueue path:
824 */
825 timer_clear_idle();
826
827 calc_load_nohz_stop();
828 touch_softlockup_watchdog_sched();
829 /*
830 * Cancel the scheduled timer and restore the tick
831 */
832 ts->tick_stopped = 0;
833 ts->idle_exittime = now;
834
835 tick_nohz_restart(ts, now);
836 }
837
838 static void tick_nohz_full_update_tick(struct tick_sched *ts)
839 {
840 #ifdef CONFIG_NO_HZ_FULL
841 int cpu = smp_processor_id();
842
843 if (!tick_nohz_full_cpu(cpu))
844 return;
845
846 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
847 return;
848
849 if (can_stop_full_tick(cpu, ts))
850 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
851 else if (ts->tick_stopped)
852 tick_nohz_restart_sched_tick(ts, ktime_get());
853 #endif
854 }
855
856 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
857 {
858 /*
859 * If this CPU is offline and it is the one which updates
860 * jiffies, then give up the assignment and let it be taken by
861 * the CPU which runs the tick timer next. If we don't drop
862 * this here the jiffies might be stale and do_timer() never
863 * invoked.
864 */
865 if (unlikely(!cpu_online(cpu))) {
866 if (cpu == tick_do_timer_cpu)
867 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
868 /*
869 * Make sure the CPU doesn't get fooled by obsolete tick
870 * deadline if it comes back online later.
871 */
872 ts->next_tick = 0;
873 return false;
874 }
875
876 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
877 ts->sleep_length = NSEC_PER_SEC / HZ;
878 return false;
879 }
880
881 if (need_resched())
882 return false;
883
884 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
885 static int ratelimit;
886
887 if (ratelimit < 10 &&
888 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
889 pr_warn("NOHZ: local_softirq_pending %02x\n",
890 (unsigned int) local_softirq_pending());
891 ratelimit++;
892 }
893 return false;
894 }
895
896 if (tick_nohz_full_enabled()) {
897 /*
898 * Keep the tick alive to guarantee timekeeping progression
899 * if there are full dynticks CPUs around
900 */
901 if (tick_do_timer_cpu == cpu)
902 return false;
903 /*
904 * Boot safety: make sure the timekeeping duty has been
905 * assigned before entering dyntick-idle mode,
906 */
907 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
908 return false;
909 }
910
911 return true;
912 }
913
914 static void __tick_nohz_idle_enter(struct tick_sched *ts)
915 {
916 ktime_t now, expires;
917 int cpu = smp_processor_id();
918
919 now = tick_nohz_start_idle(ts);
920
921 if (can_stop_idle_tick(cpu, ts)) {
922 int was_stopped = ts->tick_stopped;
923
924 ts->idle_calls++;
925
926 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
927 if (expires > 0LL) {
928 ts->idle_sleeps++;
929 ts->idle_expires = expires;
930 }
931
932 if (!was_stopped && ts->tick_stopped) {
933 ts->idle_jiffies = ts->last_jiffies;
934 nohz_balance_enter_idle(cpu);
935 }
936 }
937 }
938
939 /**
940 * tick_nohz_idle_enter - stop the idle tick from the idle task
941 *
942 * When the next event is more than a tick into the future, stop the idle tick
943 * Called when we start the idle loop.
944 *
945 * The arch is responsible of calling:
946 *
947 * - rcu_idle_enter() after its last use of RCU before the CPU is put
948 * to sleep.
949 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
950 */
951 void tick_nohz_idle_enter(void)
952 {
953 struct tick_sched *ts;
954
955 lockdep_assert_irqs_enabled();
956 /*
957 * Update the idle state in the scheduler domain hierarchy
958 * when tick_nohz_stop_sched_tick() is called from the idle loop.
959 * State will be updated to busy during the first busy tick after
960 * exiting idle.
961 */
962 set_cpu_sd_state_idle();
963
964 local_irq_disable();
965
966 ts = this_cpu_ptr(&tick_cpu_sched);
967 ts->inidle = 1;
968 __tick_nohz_idle_enter(ts);
969
970 local_irq_enable();
971 }
972
973 /**
974 * tick_nohz_irq_exit - update next tick event from interrupt exit
975 *
976 * When an interrupt fires while we are idle and it doesn't cause
977 * a reschedule, it may still add, modify or delete a timer, enqueue
978 * an RCU callback, etc...
979 * So we need to re-calculate and reprogram the next tick event.
980 */
981 void tick_nohz_irq_exit(void)
982 {
983 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
984
985 if (ts->inidle)
986 __tick_nohz_idle_enter(ts);
987 else
988 tick_nohz_full_update_tick(ts);
989 }
990
991 /**
992 * tick_nohz_get_sleep_length - return the length of the current sleep
993 *
994 * Called from power state control code with interrupts disabled
995 */
996 ktime_t tick_nohz_get_sleep_length(void)
997 {
998 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
999
1000 return ts->sleep_length;
1001 }
1002
1003 /**
1004 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1005 * for a particular CPU.
1006 *
1007 * Called from the schedutil frequency scaling governor in scheduler context.
1008 */
1009 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1010 {
1011 struct tick_sched *ts = tick_get_tick_sched(cpu);
1012
1013 return ts->idle_calls;
1014 }
1015
1016 /**
1017 * tick_nohz_get_idle_calls - return the current idle calls counter value
1018 *
1019 * Called from the schedutil frequency scaling governor in scheduler context.
1020 */
1021 unsigned long tick_nohz_get_idle_calls(void)
1022 {
1023 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1024
1025 return ts->idle_calls;
1026 }
1027
1028 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1029 {
1030 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1031 unsigned long ticks;
1032
1033 if (vtime_accounting_cpu_enabled())
1034 return;
1035 /*
1036 * We stopped the tick in idle. Update process times would miss the
1037 * time we slept as update_process_times does only a 1 tick
1038 * accounting. Enforce that this is accounted to idle !
1039 */
1040 ticks = jiffies - ts->idle_jiffies;
1041 /*
1042 * We might be one off. Do not randomly account a huge number of ticks!
1043 */
1044 if (ticks && ticks < LONG_MAX)
1045 account_idle_ticks(ticks);
1046 #endif
1047 }
1048
1049 /**
1050 * tick_nohz_idle_exit - restart the idle tick from the idle task
1051 *
1052 * Restart the idle tick when the CPU is woken up from idle
1053 * This also exit the RCU extended quiescent state. The CPU
1054 * can use RCU again after this function is called.
1055 */
1056 void tick_nohz_idle_exit(void)
1057 {
1058 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1059 ktime_t now;
1060
1061 local_irq_disable();
1062
1063 WARN_ON_ONCE(!ts->inidle);
1064
1065 ts->inidle = 0;
1066
1067 if (ts->idle_active || ts->tick_stopped)
1068 now = ktime_get();
1069
1070 if (ts->idle_active)
1071 tick_nohz_stop_idle(ts, now);
1072
1073 if (ts->tick_stopped) {
1074 tick_nohz_restart_sched_tick(ts, now);
1075 tick_nohz_account_idle_ticks(ts);
1076 }
1077
1078 local_irq_enable();
1079 }
1080
1081 /*
1082 * The nohz low res interrupt handler
1083 */
1084 static void tick_nohz_handler(struct clock_event_device *dev)
1085 {
1086 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1087 struct pt_regs *regs = get_irq_regs();
1088 ktime_t now = ktime_get();
1089
1090 dev->next_event = KTIME_MAX;
1091
1092 tick_sched_do_timer(now);
1093 tick_sched_handle(ts, regs);
1094
1095 /* No need to reprogram if we are running tickless */
1096 if (unlikely(ts->tick_stopped))
1097 return;
1098
1099 hrtimer_forward(&ts->sched_timer, now, tick_period);
1100 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1101 }
1102
1103 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1104 {
1105 if (!tick_nohz_enabled)
1106 return;
1107 ts->nohz_mode = mode;
1108 /* One update is enough */
1109 if (!test_and_set_bit(0, &tick_nohz_active))
1110 timers_update_migration(true);
1111 }
1112
1113 /**
1114 * tick_nohz_switch_to_nohz - switch to nohz mode
1115 */
1116 static void tick_nohz_switch_to_nohz(void)
1117 {
1118 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1119 ktime_t next;
1120
1121 if (!tick_nohz_enabled)
1122 return;
1123
1124 if (tick_switch_to_oneshot(tick_nohz_handler))
1125 return;
1126
1127 /*
1128 * Recycle the hrtimer in ts, so we can share the
1129 * hrtimer_forward with the highres code.
1130 */
1131 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1132 /* Get the next period */
1133 next = tick_init_jiffy_update();
1134
1135 hrtimer_set_expires(&ts->sched_timer, next);
1136 hrtimer_forward_now(&ts->sched_timer, tick_period);
1137 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1138 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1139 }
1140
1141 static inline void tick_nohz_irq_enter(void)
1142 {
1143 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1144 ktime_t now;
1145
1146 if (!ts->idle_active && !ts->tick_stopped)
1147 return;
1148 now = ktime_get();
1149 if (ts->idle_active)
1150 tick_nohz_stop_idle(ts, now);
1151 if (ts->tick_stopped)
1152 tick_nohz_update_jiffies(now);
1153 }
1154
1155 #else
1156
1157 static inline void tick_nohz_switch_to_nohz(void) { }
1158 static inline void tick_nohz_irq_enter(void) { }
1159 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1160
1161 #endif /* CONFIG_NO_HZ_COMMON */
1162
1163 /*
1164 * Called from irq_enter to notify about the possible interruption of idle()
1165 */
1166 void tick_irq_enter(void)
1167 {
1168 tick_check_oneshot_broadcast_this_cpu();
1169 tick_nohz_irq_enter();
1170 }
1171
1172 /*
1173 * High resolution timer specific code
1174 */
1175 #ifdef CONFIG_HIGH_RES_TIMERS
1176 /*
1177 * We rearm the timer until we get disabled by the idle code.
1178 * Called with interrupts disabled.
1179 */
1180 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1181 {
1182 struct tick_sched *ts =
1183 container_of(timer, struct tick_sched, sched_timer);
1184 struct pt_regs *regs = get_irq_regs();
1185 ktime_t now = ktime_get();
1186
1187 tick_sched_do_timer(now);
1188
1189 /*
1190 * Do not call, when we are not in irq context and have
1191 * no valid regs pointer
1192 */
1193 if (regs)
1194 tick_sched_handle(ts, regs);
1195 else
1196 ts->next_tick = 0;
1197
1198 /* No need to reprogram if we are in idle or full dynticks mode */
1199 if (unlikely(ts->tick_stopped))
1200 return HRTIMER_NORESTART;
1201
1202 hrtimer_forward(timer, now, tick_period);
1203
1204 return HRTIMER_RESTART;
1205 }
1206
1207 static int sched_skew_tick;
1208
1209 static int __init skew_tick(char *str)
1210 {
1211 get_option(&str, &sched_skew_tick);
1212
1213 return 0;
1214 }
1215 early_param("skew_tick", skew_tick);
1216
1217 /**
1218 * tick_setup_sched_timer - setup the tick emulation timer
1219 */
1220 void tick_setup_sched_timer(void)
1221 {
1222 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1223 ktime_t now = ktime_get();
1224
1225 /*
1226 * Emulate tick processing via per-CPU hrtimers:
1227 */
1228 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1229 ts->sched_timer.function = tick_sched_timer;
1230
1231 /* Get the next period (per-CPU) */
1232 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1233
1234 /* Offset the tick to avert jiffies_lock contention. */
1235 if (sched_skew_tick) {
1236 u64 offset = ktime_to_ns(tick_period) >> 1;
1237 do_div(offset, num_possible_cpus());
1238 offset *= smp_processor_id();
1239 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1240 }
1241
1242 hrtimer_forward(&ts->sched_timer, now, tick_period);
1243 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1244 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1245 }
1246 #endif /* HIGH_RES_TIMERS */
1247
1248 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1249 void tick_cancel_sched_timer(int cpu)
1250 {
1251 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1252
1253 # ifdef CONFIG_HIGH_RES_TIMERS
1254 if (ts->sched_timer.base)
1255 hrtimer_cancel(&ts->sched_timer);
1256 # endif
1257
1258 memset(ts, 0, sizeof(*ts));
1259 }
1260 #endif
1261
1262 /**
1263 * Async notification about clocksource changes
1264 */
1265 void tick_clock_notify(void)
1266 {
1267 int cpu;
1268
1269 for_each_possible_cpu(cpu)
1270 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1271 }
1272
1273 /*
1274 * Async notification about clock event changes
1275 */
1276 void tick_oneshot_notify(void)
1277 {
1278 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1279
1280 set_bit(0, &ts->check_clocks);
1281 }
1282
1283 /**
1284 * Check, if a change happened, which makes oneshot possible.
1285 *
1286 * Called cyclic from the hrtimer softirq (driven by the timer
1287 * softirq) allow_nohz signals, that we can switch into low-res nohz
1288 * mode, because high resolution timers are disabled (either compile
1289 * or runtime). Called with interrupts disabled.
1290 */
1291 int tick_check_oneshot_change(int allow_nohz)
1292 {
1293 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1294
1295 if (!test_and_clear_bit(0, &ts->check_clocks))
1296 return 0;
1297
1298 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1299 return 0;
1300
1301 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1302 return 0;
1303
1304 if (!allow_nohz)
1305 return 1;
1306
1307 tick_nohz_switch_to_nohz();
1308 return 0;
1309 }