]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/time/tick-sched.c
Merge tag 'microblaze-v5.6-rc1' of git://git.monstr.eu/linux-2.6-microblaze
[mirror_ubuntu-jammy-kernel.git] / kernel / time / tick-sched.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * No idle tick implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
10 */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/module.h>
24 #include <linux/irq_work.h>
25 #include <linux/posix-timers.h>
26 #include <linux/context_tracking.h>
27 #include <linux/mm.h>
28
29 #include <asm/irq_regs.h>
30
31 #include "tick-internal.h"
32
33 #include <trace/events/timer.h>
34
35 /*
36 * Per-CPU nohz control structure
37 */
38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
39
40 struct tick_sched *tick_get_tick_sched(int cpu)
41 {
42 return &per_cpu(tick_cpu_sched, cpu);
43 }
44
45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46 /*
47 * The time, when the last jiffy update happened. Protected by jiffies_lock.
48 */
49 static ktime_t last_jiffies_update;
50
51 /*
52 * Must be called with interrupts disabled !
53 */
54 static void tick_do_update_jiffies64(ktime_t now)
55 {
56 unsigned long ticks = 0;
57 ktime_t delta;
58
59 /*
60 * Do a quick check without holding jiffies_lock:
61 * The READ_ONCE() pairs with two updates done later in this function.
62 */
63 delta = ktime_sub(now, READ_ONCE(last_jiffies_update));
64 if (delta < tick_period)
65 return;
66
67 /* Reevaluate with jiffies_lock held */
68 write_seqlock(&jiffies_lock);
69
70 delta = ktime_sub(now, last_jiffies_update);
71 if (delta >= tick_period) {
72
73 delta = ktime_sub(delta, tick_period);
74 /* Pairs with the lockless read in this function. */
75 WRITE_ONCE(last_jiffies_update,
76 ktime_add(last_jiffies_update, tick_period));
77
78 /* Slow path for long timeouts */
79 if (unlikely(delta >= tick_period)) {
80 s64 incr = ktime_to_ns(tick_period);
81
82 ticks = ktime_divns(delta, incr);
83
84 /* Pairs with the lockless read in this function. */
85 WRITE_ONCE(last_jiffies_update,
86 ktime_add_ns(last_jiffies_update,
87 incr * ticks));
88 }
89 do_timer(++ticks);
90
91 /* Keep the tick_next_period variable up to date */
92 tick_next_period = ktime_add(last_jiffies_update, tick_period);
93 } else {
94 write_sequnlock(&jiffies_lock);
95 return;
96 }
97 write_sequnlock(&jiffies_lock);
98 update_wall_time();
99 }
100
101 /*
102 * Initialize and return retrieve the jiffies update.
103 */
104 static ktime_t tick_init_jiffy_update(void)
105 {
106 ktime_t period;
107
108 write_seqlock(&jiffies_lock);
109 /* Did we start the jiffies update yet ? */
110 if (last_jiffies_update == 0)
111 last_jiffies_update = tick_next_period;
112 period = last_jiffies_update;
113 write_sequnlock(&jiffies_lock);
114 return period;
115 }
116
117 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
118 {
119 int cpu = smp_processor_id();
120
121 #ifdef CONFIG_NO_HZ_COMMON
122 /*
123 * Check if the do_timer duty was dropped. We don't care about
124 * concurrency: This happens only when the CPU in charge went
125 * into a long sleep. If two CPUs happen to assign themselves to
126 * this duty, then the jiffies update is still serialized by
127 * jiffies_lock.
128 *
129 * If nohz_full is enabled, this should not happen because the
130 * tick_do_timer_cpu never relinquishes.
131 */
132 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
133 #ifdef CONFIG_NO_HZ_FULL
134 WARN_ON(tick_nohz_full_running);
135 #endif
136 tick_do_timer_cpu = cpu;
137 }
138 #endif
139
140 /* Check, if the jiffies need an update */
141 if (tick_do_timer_cpu == cpu)
142 tick_do_update_jiffies64(now);
143
144 if (ts->inidle)
145 ts->got_idle_tick = 1;
146 }
147
148 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
149 {
150 #ifdef CONFIG_NO_HZ_COMMON
151 /*
152 * When we are idle and the tick is stopped, we have to touch
153 * the watchdog as we might not schedule for a really long
154 * time. This happens on complete idle SMP systems while
155 * waiting on the login prompt. We also increment the "start of
156 * idle" jiffy stamp so the idle accounting adjustment we do
157 * when we go busy again does not account too much ticks.
158 */
159 if (ts->tick_stopped) {
160 touch_softlockup_watchdog_sched();
161 if (is_idle_task(current))
162 ts->idle_jiffies++;
163 /*
164 * In case the current tick fired too early past its expected
165 * expiration, make sure we don't bypass the next clock reprogramming
166 * to the same deadline.
167 */
168 ts->next_tick = 0;
169 }
170 #endif
171 update_process_times(user_mode(regs));
172 profile_tick(CPU_PROFILING);
173 }
174 #endif
175
176 #ifdef CONFIG_NO_HZ_FULL
177 cpumask_var_t tick_nohz_full_mask;
178 bool tick_nohz_full_running;
179 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
180 static atomic_t tick_dep_mask;
181
182 static bool check_tick_dependency(atomic_t *dep)
183 {
184 int val = atomic_read(dep);
185
186 if (val & TICK_DEP_MASK_POSIX_TIMER) {
187 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
188 return true;
189 }
190
191 if (val & TICK_DEP_MASK_PERF_EVENTS) {
192 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
193 return true;
194 }
195
196 if (val & TICK_DEP_MASK_SCHED) {
197 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
198 return true;
199 }
200
201 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
202 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
203 return true;
204 }
205
206 if (val & TICK_DEP_MASK_RCU) {
207 trace_tick_stop(0, TICK_DEP_MASK_RCU);
208 return true;
209 }
210
211 return false;
212 }
213
214 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
215 {
216 lockdep_assert_irqs_disabled();
217
218 if (unlikely(!cpu_online(cpu)))
219 return false;
220
221 if (check_tick_dependency(&tick_dep_mask))
222 return false;
223
224 if (check_tick_dependency(&ts->tick_dep_mask))
225 return false;
226
227 if (check_tick_dependency(&current->tick_dep_mask))
228 return false;
229
230 if (check_tick_dependency(&current->signal->tick_dep_mask))
231 return false;
232
233 return true;
234 }
235
236 static void nohz_full_kick_func(struct irq_work *work)
237 {
238 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
239 }
240
241 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
242 .func = nohz_full_kick_func,
243 };
244
245 /*
246 * Kick this CPU if it's full dynticks in order to force it to
247 * re-evaluate its dependency on the tick and restart it if necessary.
248 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
249 * is NMI safe.
250 */
251 static void tick_nohz_full_kick(void)
252 {
253 if (!tick_nohz_full_cpu(smp_processor_id()))
254 return;
255
256 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
257 }
258
259 /*
260 * Kick the CPU if it's full dynticks in order to force it to
261 * re-evaluate its dependency on the tick and restart it if necessary.
262 */
263 void tick_nohz_full_kick_cpu(int cpu)
264 {
265 if (!tick_nohz_full_cpu(cpu))
266 return;
267
268 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
269 }
270
271 /*
272 * Kick all full dynticks CPUs in order to force these to re-evaluate
273 * their dependency on the tick and restart it if necessary.
274 */
275 static void tick_nohz_full_kick_all(void)
276 {
277 int cpu;
278
279 if (!tick_nohz_full_running)
280 return;
281
282 preempt_disable();
283 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
284 tick_nohz_full_kick_cpu(cpu);
285 preempt_enable();
286 }
287
288 static void tick_nohz_dep_set_all(atomic_t *dep,
289 enum tick_dep_bits bit)
290 {
291 int prev;
292
293 prev = atomic_fetch_or(BIT(bit), dep);
294 if (!prev)
295 tick_nohz_full_kick_all();
296 }
297
298 /*
299 * Set a global tick dependency. Used by perf events that rely on freq and
300 * by unstable clock.
301 */
302 void tick_nohz_dep_set(enum tick_dep_bits bit)
303 {
304 tick_nohz_dep_set_all(&tick_dep_mask, bit);
305 }
306
307 void tick_nohz_dep_clear(enum tick_dep_bits bit)
308 {
309 atomic_andnot(BIT(bit), &tick_dep_mask);
310 }
311
312 /*
313 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
314 * manage events throttling.
315 */
316 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
317 {
318 int prev;
319 struct tick_sched *ts;
320
321 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
322
323 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
324 if (!prev) {
325 preempt_disable();
326 /* Perf needs local kick that is NMI safe */
327 if (cpu == smp_processor_id()) {
328 tick_nohz_full_kick();
329 } else {
330 /* Remote irq work not NMI-safe */
331 if (!WARN_ON_ONCE(in_nmi()))
332 tick_nohz_full_kick_cpu(cpu);
333 }
334 preempt_enable();
335 }
336 }
337 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
338
339 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
340 {
341 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
342
343 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
344 }
345 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
346
347 /*
348 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
349 * per task timers.
350 */
351 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
352 {
353 /*
354 * We could optimize this with just kicking the target running the task
355 * if that noise matters for nohz full users.
356 */
357 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
358 }
359 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
360
361 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
362 {
363 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
364 }
365 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
366
367 /*
368 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
369 * per process timers.
370 */
371 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
372 {
373 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
374 }
375
376 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
377 {
378 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
379 }
380
381 /*
382 * Re-evaluate the need for the tick as we switch the current task.
383 * It might need the tick due to per task/process properties:
384 * perf events, posix CPU timers, ...
385 */
386 void __tick_nohz_task_switch(void)
387 {
388 unsigned long flags;
389 struct tick_sched *ts;
390
391 local_irq_save(flags);
392
393 if (!tick_nohz_full_cpu(smp_processor_id()))
394 goto out;
395
396 ts = this_cpu_ptr(&tick_cpu_sched);
397
398 if (ts->tick_stopped) {
399 if (atomic_read(&current->tick_dep_mask) ||
400 atomic_read(&current->signal->tick_dep_mask))
401 tick_nohz_full_kick();
402 }
403 out:
404 local_irq_restore(flags);
405 }
406
407 /* Get the boot-time nohz CPU list from the kernel parameters. */
408 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
409 {
410 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
411 cpumask_copy(tick_nohz_full_mask, cpumask);
412 tick_nohz_full_running = true;
413 }
414 EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
415
416 static int tick_nohz_cpu_down(unsigned int cpu)
417 {
418 /*
419 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
420 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
421 * CPUs. It must remain online when nohz full is enabled.
422 */
423 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
424 return -EBUSY;
425 return 0;
426 }
427
428 void __init tick_nohz_init(void)
429 {
430 int cpu, ret;
431
432 if (!tick_nohz_full_running)
433 return;
434
435 /*
436 * Full dynticks uses irq work to drive the tick rescheduling on safe
437 * locking contexts. But then we need irq work to raise its own
438 * interrupts to avoid circular dependency on the tick
439 */
440 if (!arch_irq_work_has_interrupt()) {
441 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
442 cpumask_clear(tick_nohz_full_mask);
443 tick_nohz_full_running = false;
444 return;
445 }
446
447 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
448 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
449 cpu = smp_processor_id();
450
451 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
452 pr_warn("NO_HZ: Clearing %d from nohz_full range "
453 "for timekeeping\n", cpu);
454 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
455 }
456 }
457
458 for_each_cpu(cpu, tick_nohz_full_mask)
459 context_tracking_cpu_set(cpu);
460
461 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
462 "kernel/nohz:predown", NULL,
463 tick_nohz_cpu_down);
464 WARN_ON(ret < 0);
465 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
466 cpumask_pr_args(tick_nohz_full_mask));
467 }
468 #endif
469
470 /*
471 * NOHZ - aka dynamic tick functionality
472 */
473 #ifdef CONFIG_NO_HZ_COMMON
474 /*
475 * NO HZ enabled ?
476 */
477 bool tick_nohz_enabled __read_mostly = true;
478 unsigned long tick_nohz_active __read_mostly;
479 /*
480 * Enable / Disable tickless mode
481 */
482 static int __init setup_tick_nohz(char *str)
483 {
484 return (kstrtobool(str, &tick_nohz_enabled) == 0);
485 }
486
487 __setup("nohz=", setup_tick_nohz);
488
489 bool tick_nohz_tick_stopped(void)
490 {
491 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
492
493 return ts->tick_stopped;
494 }
495
496 bool tick_nohz_tick_stopped_cpu(int cpu)
497 {
498 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
499
500 return ts->tick_stopped;
501 }
502
503 /**
504 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
505 *
506 * Called from interrupt entry when the CPU was idle
507 *
508 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
509 * must be updated. Otherwise an interrupt handler could use a stale jiffy
510 * value. We do this unconditionally on any CPU, as we don't know whether the
511 * CPU, which has the update task assigned is in a long sleep.
512 */
513 static void tick_nohz_update_jiffies(ktime_t now)
514 {
515 unsigned long flags;
516
517 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
518
519 local_irq_save(flags);
520 tick_do_update_jiffies64(now);
521 local_irq_restore(flags);
522
523 touch_softlockup_watchdog_sched();
524 }
525
526 /*
527 * Updates the per-CPU time idle statistics counters
528 */
529 static void
530 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
531 {
532 ktime_t delta;
533
534 if (ts->idle_active) {
535 delta = ktime_sub(now, ts->idle_entrytime);
536 if (nr_iowait_cpu(cpu) > 0)
537 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
538 else
539 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
540 ts->idle_entrytime = now;
541 }
542
543 if (last_update_time)
544 *last_update_time = ktime_to_us(now);
545
546 }
547
548 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
549 {
550 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
551 ts->idle_active = 0;
552
553 sched_clock_idle_wakeup_event();
554 }
555
556 static void tick_nohz_start_idle(struct tick_sched *ts)
557 {
558 ts->idle_entrytime = ktime_get();
559 ts->idle_active = 1;
560 sched_clock_idle_sleep_event();
561 }
562
563 /**
564 * get_cpu_idle_time_us - get the total idle time of a CPU
565 * @cpu: CPU number to query
566 * @last_update_time: variable to store update time in. Do not update
567 * counters if NULL.
568 *
569 * Return the cumulative idle time (since boot) for a given
570 * CPU, in microseconds.
571 *
572 * This time is measured via accounting rather than sampling,
573 * and is as accurate as ktime_get() is.
574 *
575 * This function returns -1 if NOHZ is not enabled.
576 */
577 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
578 {
579 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
580 ktime_t now, idle;
581
582 if (!tick_nohz_active)
583 return -1;
584
585 now = ktime_get();
586 if (last_update_time) {
587 update_ts_time_stats(cpu, ts, now, last_update_time);
588 idle = ts->idle_sleeptime;
589 } else {
590 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
591 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
592
593 idle = ktime_add(ts->idle_sleeptime, delta);
594 } else {
595 idle = ts->idle_sleeptime;
596 }
597 }
598
599 return ktime_to_us(idle);
600
601 }
602 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
603
604 /**
605 * get_cpu_iowait_time_us - get the total iowait time of a CPU
606 * @cpu: CPU number to query
607 * @last_update_time: variable to store update time in. Do not update
608 * counters if NULL.
609 *
610 * Return the cumulative iowait time (since boot) for a given
611 * CPU, in microseconds.
612 *
613 * This time is measured via accounting rather than sampling,
614 * and is as accurate as ktime_get() is.
615 *
616 * This function returns -1 if NOHZ is not enabled.
617 */
618 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
619 {
620 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
621 ktime_t now, iowait;
622
623 if (!tick_nohz_active)
624 return -1;
625
626 now = ktime_get();
627 if (last_update_time) {
628 update_ts_time_stats(cpu, ts, now, last_update_time);
629 iowait = ts->iowait_sleeptime;
630 } else {
631 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
632 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
633
634 iowait = ktime_add(ts->iowait_sleeptime, delta);
635 } else {
636 iowait = ts->iowait_sleeptime;
637 }
638 }
639
640 return ktime_to_us(iowait);
641 }
642 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
643
644 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
645 {
646 hrtimer_cancel(&ts->sched_timer);
647 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
648
649 /* Forward the time to expire in the future */
650 hrtimer_forward(&ts->sched_timer, now, tick_period);
651
652 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
653 hrtimer_start_expires(&ts->sched_timer,
654 HRTIMER_MODE_ABS_PINNED_HARD);
655 } else {
656 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
657 }
658
659 /*
660 * Reset to make sure next tick stop doesn't get fooled by past
661 * cached clock deadline.
662 */
663 ts->next_tick = 0;
664 }
665
666 static inline bool local_timer_softirq_pending(void)
667 {
668 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
669 }
670
671 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
672 {
673 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
674 unsigned long basejiff;
675 unsigned int seq;
676
677 /* Read jiffies and the time when jiffies were updated last */
678 do {
679 seq = read_seqbegin(&jiffies_lock);
680 basemono = last_jiffies_update;
681 basejiff = jiffies;
682 } while (read_seqretry(&jiffies_lock, seq));
683 ts->last_jiffies = basejiff;
684 ts->timer_expires_base = basemono;
685
686 /*
687 * Keep the periodic tick, when RCU, architecture or irq_work
688 * requests it.
689 * Aside of that check whether the local timer softirq is
690 * pending. If so its a bad idea to call get_next_timer_interrupt()
691 * because there is an already expired timer, so it will request
692 * immeditate expiry, which rearms the hardware timer with a
693 * minimal delta which brings us back to this place
694 * immediately. Lather, rinse and repeat...
695 */
696 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
697 irq_work_needs_cpu() || local_timer_softirq_pending()) {
698 next_tick = basemono + TICK_NSEC;
699 } else {
700 /*
701 * Get the next pending timer. If high resolution
702 * timers are enabled this only takes the timer wheel
703 * timers into account. If high resolution timers are
704 * disabled this also looks at the next expiring
705 * hrtimer.
706 */
707 next_tmr = get_next_timer_interrupt(basejiff, basemono);
708 ts->next_timer = next_tmr;
709 /* Take the next rcu event into account */
710 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
711 }
712
713 /*
714 * If the tick is due in the next period, keep it ticking or
715 * force prod the timer.
716 */
717 delta = next_tick - basemono;
718 if (delta <= (u64)TICK_NSEC) {
719 /*
720 * Tell the timer code that the base is not idle, i.e. undo
721 * the effect of get_next_timer_interrupt():
722 */
723 timer_clear_idle();
724 /*
725 * We've not stopped the tick yet, and there's a timer in the
726 * next period, so no point in stopping it either, bail.
727 */
728 if (!ts->tick_stopped) {
729 ts->timer_expires = 0;
730 goto out;
731 }
732 }
733
734 /*
735 * If this CPU is the one which had the do_timer() duty last, we limit
736 * the sleep time to the timekeeping max_deferment value.
737 * Otherwise we can sleep as long as we want.
738 */
739 delta = timekeeping_max_deferment();
740 if (cpu != tick_do_timer_cpu &&
741 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
742 delta = KTIME_MAX;
743
744 /* Calculate the next expiry time */
745 if (delta < (KTIME_MAX - basemono))
746 expires = basemono + delta;
747 else
748 expires = KTIME_MAX;
749
750 ts->timer_expires = min_t(u64, expires, next_tick);
751
752 out:
753 return ts->timer_expires;
754 }
755
756 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
757 {
758 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
759 u64 basemono = ts->timer_expires_base;
760 u64 expires = ts->timer_expires;
761 ktime_t tick = expires;
762
763 /* Make sure we won't be trying to stop it twice in a row. */
764 ts->timer_expires_base = 0;
765
766 /*
767 * If this CPU is the one which updates jiffies, then give up
768 * the assignment and let it be taken by the CPU which runs
769 * the tick timer next, which might be this CPU as well. If we
770 * don't drop this here the jiffies might be stale and
771 * do_timer() never invoked. Keep track of the fact that it
772 * was the one which had the do_timer() duty last.
773 */
774 if (cpu == tick_do_timer_cpu) {
775 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
776 ts->do_timer_last = 1;
777 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
778 ts->do_timer_last = 0;
779 }
780
781 /* Skip reprogram of event if its not changed */
782 if (ts->tick_stopped && (expires == ts->next_tick)) {
783 /* Sanity check: make sure clockevent is actually programmed */
784 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
785 return;
786
787 WARN_ON_ONCE(1);
788 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
789 basemono, ts->next_tick, dev->next_event,
790 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
791 }
792
793 /*
794 * nohz_stop_sched_tick can be called several times before
795 * the nohz_restart_sched_tick is called. This happens when
796 * interrupts arrive which do not cause a reschedule. In the
797 * first call we save the current tick time, so we can restart
798 * the scheduler tick in nohz_restart_sched_tick.
799 */
800 if (!ts->tick_stopped) {
801 calc_load_nohz_start();
802 quiet_vmstat();
803
804 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
805 ts->tick_stopped = 1;
806 trace_tick_stop(1, TICK_DEP_MASK_NONE);
807 }
808
809 ts->next_tick = tick;
810
811 /*
812 * If the expiration time == KTIME_MAX, then we simply stop
813 * the tick timer.
814 */
815 if (unlikely(expires == KTIME_MAX)) {
816 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
817 hrtimer_cancel(&ts->sched_timer);
818 return;
819 }
820
821 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
822 hrtimer_start(&ts->sched_timer, tick,
823 HRTIMER_MODE_ABS_PINNED_HARD);
824 } else {
825 hrtimer_set_expires(&ts->sched_timer, tick);
826 tick_program_event(tick, 1);
827 }
828 }
829
830 static void tick_nohz_retain_tick(struct tick_sched *ts)
831 {
832 ts->timer_expires_base = 0;
833 }
834
835 #ifdef CONFIG_NO_HZ_FULL
836 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
837 {
838 if (tick_nohz_next_event(ts, cpu))
839 tick_nohz_stop_tick(ts, cpu);
840 else
841 tick_nohz_retain_tick(ts);
842 }
843 #endif /* CONFIG_NO_HZ_FULL */
844
845 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
846 {
847 /* Update jiffies first */
848 tick_do_update_jiffies64(now);
849
850 /*
851 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
852 * the clock forward checks in the enqueue path:
853 */
854 timer_clear_idle();
855
856 calc_load_nohz_stop();
857 touch_softlockup_watchdog_sched();
858 /*
859 * Cancel the scheduled timer and restore the tick
860 */
861 ts->tick_stopped = 0;
862 ts->idle_exittime = now;
863
864 tick_nohz_restart(ts, now);
865 }
866
867 static void tick_nohz_full_update_tick(struct tick_sched *ts)
868 {
869 #ifdef CONFIG_NO_HZ_FULL
870 int cpu = smp_processor_id();
871
872 if (!tick_nohz_full_cpu(cpu))
873 return;
874
875 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
876 return;
877
878 if (can_stop_full_tick(cpu, ts))
879 tick_nohz_stop_sched_tick(ts, cpu);
880 else if (ts->tick_stopped)
881 tick_nohz_restart_sched_tick(ts, ktime_get());
882 #endif
883 }
884
885 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
886 {
887 /*
888 * If this CPU is offline and it is the one which updates
889 * jiffies, then give up the assignment and let it be taken by
890 * the CPU which runs the tick timer next. If we don't drop
891 * this here the jiffies might be stale and do_timer() never
892 * invoked.
893 */
894 if (unlikely(!cpu_online(cpu))) {
895 if (cpu == tick_do_timer_cpu)
896 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
897 /*
898 * Make sure the CPU doesn't get fooled by obsolete tick
899 * deadline if it comes back online later.
900 */
901 ts->next_tick = 0;
902 return false;
903 }
904
905 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
906 return false;
907
908 if (need_resched())
909 return false;
910
911 if (unlikely(local_softirq_pending())) {
912 static int ratelimit;
913
914 if (ratelimit < 10 &&
915 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
916 pr_warn("NOHZ: local_softirq_pending %02x\n",
917 (unsigned int) local_softirq_pending());
918 ratelimit++;
919 }
920 return false;
921 }
922
923 if (tick_nohz_full_enabled()) {
924 /*
925 * Keep the tick alive to guarantee timekeeping progression
926 * if there are full dynticks CPUs around
927 */
928 if (tick_do_timer_cpu == cpu)
929 return false;
930 /*
931 * Boot safety: make sure the timekeeping duty has been
932 * assigned before entering dyntick-idle mode,
933 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
934 */
935 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
936 return false;
937
938 /* Should not happen for nohz-full */
939 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
940 return false;
941 }
942
943 return true;
944 }
945
946 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
947 {
948 ktime_t expires;
949 int cpu = smp_processor_id();
950
951 /*
952 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
953 * tick timer expiration time is known already.
954 */
955 if (ts->timer_expires_base)
956 expires = ts->timer_expires;
957 else if (can_stop_idle_tick(cpu, ts))
958 expires = tick_nohz_next_event(ts, cpu);
959 else
960 return;
961
962 ts->idle_calls++;
963
964 if (expires > 0LL) {
965 int was_stopped = ts->tick_stopped;
966
967 tick_nohz_stop_tick(ts, cpu);
968
969 ts->idle_sleeps++;
970 ts->idle_expires = expires;
971
972 if (!was_stopped && ts->tick_stopped) {
973 ts->idle_jiffies = ts->last_jiffies;
974 nohz_balance_enter_idle(cpu);
975 }
976 } else {
977 tick_nohz_retain_tick(ts);
978 }
979 }
980
981 /**
982 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
983 *
984 * When the next event is more than a tick into the future, stop the idle tick
985 */
986 void tick_nohz_idle_stop_tick(void)
987 {
988 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
989 }
990
991 void tick_nohz_idle_retain_tick(void)
992 {
993 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
994 /*
995 * Undo the effect of get_next_timer_interrupt() called from
996 * tick_nohz_next_event().
997 */
998 timer_clear_idle();
999 }
1000
1001 /**
1002 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1003 *
1004 * Called when we start the idle loop.
1005 */
1006 void tick_nohz_idle_enter(void)
1007 {
1008 struct tick_sched *ts;
1009
1010 lockdep_assert_irqs_enabled();
1011
1012 local_irq_disable();
1013
1014 ts = this_cpu_ptr(&tick_cpu_sched);
1015
1016 WARN_ON_ONCE(ts->timer_expires_base);
1017
1018 ts->inidle = 1;
1019 tick_nohz_start_idle(ts);
1020
1021 local_irq_enable();
1022 }
1023
1024 /**
1025 * tick_nohz_irq_exit - update next tick event from interrupt exit
1026 *
1027 * When an interrupt fires while we are idle and it doesn't cause
1028 * a reschedule, it may still add, modify or delete a timer, enqueue
1029 * an RCU callback, etc...
1030 * So we need to re-calculate and reprogram the next tick event.
1031 */
1032 void tick_nohz_irq_exit(void)
1033 {
1034 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1035
1036 if (ts->inidle)
1037 tick_nohz_start_idle(ts);
1038 else
1039 tick_nohz_full_update_tick(ts);
1040 }
1041
1042 /**
1043 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1044 */
1045 bool tick_nohz_idle_got_tick(void)
1046 {
1047 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1048
1049 if (ts->got_idle_tick) {
1050 ts->got_idle_tick = 0;
1051 return true;
1052 }
1053 return false;
1054 }
1055
1056 /**
1057 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1058 * or the tick, whatever that expires first. Note that, if the tick has been
1059 * stopped, it returns the next hrtimer.
1060 *
1061 * Called from power state control code with interrupts disabled
1062 */
1063 ktime_t tick_nohz_get_next_hrtimer(void)
1064 {
1065 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1066 }
1067
1068 /**
1069 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1070 * @delta_next: duration until the next event if the tick cannot be stopped
1071 *
1072 * Called from power state control code with interrupts disabled
1073 */
1074 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1075 {
1076 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1077 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1078 int cpu = smp_processor_id();
1079 /*
1080 * The idle entry time is expected to be a sufficient approximation of
1081 * the current time at this point.
1082 */
1083 ktime_t now = ts->idle_entrytime;
1084 ktime_t next_event;
1085
1086 WARN_ON_ONCE(!ts->inidle);
1087
1088 *delta_next = ktime_sub(dev->next_event, now);
1089
1090 if (!can_stop_idle_tick(cpu, ts))
1091 return *delta_next;
1092
1093 next_event = tick_nohz_next_event(ts, cpu);
1094 if (!next_event)
1095 return *delta_next;
1096
1097 /*
1098 * If the next highres timer to expire is earlier than next_event, the
1099 * idle governor needs to know that.
1100 */
1101 next_event = min_t(u64, next_event,
1102 hrtimer_next_event_without(&ts->sched_timer));
1103
1104 return ktime_sub(next_event, now);
1105 }
1106
1107 /**
1108 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1109 * for a particular CPU.
1110 *
1111 * Called from the schedutil frequency scaling governor in scheduler context.
1112 */
1113 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1114 {
1115 struct tick_sched *ts = tick_get_tick_sched(cpu);
1116
1117 return ts->idle_calls;
1118 }
1119
1120 /**
1121 * tick_nohz_get_idle_calls - return the current idle calls counter value
1122 *
1123 * Called from the schedutil frequency scaling governor in scheduler context.
1124 */
1125 unsigned long tick_nohz_get_idle_calls(void)
1126 {
1127 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1128
1129 return ts->idle_calls;
1130 }
1131
1132 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1133 {
1134 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1135 unsigned long ticks;
1136
1137 if (vtime_accounting_enabled_this_cpu())
1138 return;
1139 /*
1140 * We stopped the tick in idle. Update process times would miss the
1141 * time we slept as update_process_times does only a 1 tick
1142 * accounting. Enforce that this is accounted to idle !
1143 */
1144 ticks = jiffies - ts->idle_jiffies;
1145 /*
1146 * We might be one off. Do not randomly account a huge number of ticks!
1147 */
1148 if (ticks && ticks < LONG_MAX)
1149 account_idle_ticks(ticks);
1150 #endif
1151 }
1152
1153 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1154 {
1155 tick_nohz_restart_sched_tick(ts, now);
1156 tick_nohz_account_idle_ticks(ts);
1157 }
1158
1159 void tick_nohz_idle_restart_tick(void)
1160 {
1161 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1162
1163 if (ts->tick_stopped)
1164 __tick_nohz_idle_restart_tick(ts, ktime_get());
1165 }
1166
1167 /**
1168 * tick_nohz_idle_exit - restart the idle tick from the idle task
1169 *
1170 * Restart the idle tick when the CPU is woken up from idle
1171 * This also exit the RCU extended quiescent state. The CPU
1172 * can use RCU again after this function is called.
1173 */
1174 void tick_nohz_idle_exit(void)
1175 {
1176 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1177 bool idle_active, tick_stopped;
1178 ktime_t now;
1179
1180 local_irq_disable();
1181
1182 WARN_ON_ONCE(!ts->inidle);
1183 WARN_ON_ONCE(ts->timer_expires_base);
1184
1185 ts->inidle = 0;
1186 idle_active = ts->idle_active;
1187 tick_stopped = ts->tick_stopped;
1188
1189 if (idle_active || tick_stopped)
1190 now = ktime_get();
1191
1192 if (idle_active)
1193 tick_nohz_stop_idle(ts, now);
1194
1195 if (tick_stopped)
1196 __tick_nohz_idle_restart_tick(ts, now);
1197
1198 local_irq_enable();
1199 }
1200
1201 /*
1202 * The nohz low res interrupt handler
1203 */
1204 static void tick_nohz_handler(struct clock_event_device *dev)
1205 {
1206 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1207 struct pt_regs *regs = get_irq_regs();
1208 ktime_t now = ktime_get();
1209
1210 dev->next_event = KTIME_MAX;
1211
1212 tick_sched_do_timer(ts, now);
1213 tick_sched_handle(ts, regs);
1214
1215 /* No need to reprogram if we are running tickless */
1216 if (unlikely(ts->tick_stopped))
1217 return;
1218
1219 hrtimer_forward(&ts->sched_timer, now, tick_period);
1220 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1221 }
1222
1223 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1224 {
1225 if (!tick_nohz_enabled)
1226 return;
1227 ts->nohz_mode = mode;
1228 /* One update is enough */
1229 if (!test_and_set_bit(0, &tick_nohz_active))
1230 timers_update_nohz();
1231 }
1232
1233 /**
1234 * tick_nohz_switch_to_nohz - switch to nohz mode
1235 */
1236 static void tick_nohz_switch_to_nohz(void)
1237 {
1238 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1239 ktime_t next;
1240
1241 if (!tick_nohz_enabled)
1242 return;
1243
1244 if (tick_switch_to_oneshot(tick_nohz_handler))
1245 return;
1246
1247 /*
1248 * Recycle the hrtimer in ts, so we can share the
1249 * hrtimer_forward with the highres code.
1250 */
1251 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1252 /* Get the next period */
1253 next = tick_init_jiffy_update();
1254
1255 hrtimer_set_expires(&ts->sched_timer, next);
1256 hrtimer_forward_now(&ts->sched_timer, tick_period);
1257 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1258 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1259 }
1260
1261 static inline void tick_nohz_irq_enter(void)
1262 {
1263 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1264 ktime_t now;
1265
1266 if (!ts->idle_active && !ts->tick_stopped)
1267 return;
1268 now = ktime_get();
1269 if (ts->idle_active)
1270 tick_nohz_stop_idle(ts, now);
1271 if (ts->tick_stopped)
1272 tick_nohz_update_jiffies(now);
1273 }
1274
1275 #else
1276
1277 static inline void tick_nohz_switch_to_nohz(void) { }
1278 static inline void tick_nohz_irq_enter(void) { }
1279 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1280
1281 #endif /* CONFIG_NO_HZ_COMMON */
1282
1283 /*
1284 * Called from irq_enter to notify about the possible interruption of idle()
1285 */
1286 void tick_irq_enter(void)
1287 {
1288 tick_check_oneshot_broadcast_this_cpu();
1289 tick_nohz_irq_enter();
1290 }
1291
1292 /*
1293 * High resolution timer specific code
1294 */
1295 #ifdef CONFIG_HIGH_RES_TIMERS
1296 /*
1297 * We rearm the timer until we get disabled by the idle code.
1298 * Called with interrupts disabled.
1299 */
1300 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1301 {
1302 struct tick_sched *ts =
1303 container_of(timer, struct tick_sched, sched_timer);
1304 struct pt_regs *regs = get_irq_regs();
1305 ktime_t now = ktime_get();
1306
1307 tick_sched_do_timer(ts, now);
1308
1309 /*
1310 * Do not call, when we are not in irq context and have
1311 * no valid regs pointer
1312 */
1313 if (regs)
1314 tick_sched_handle(ts, regs);
1315 else
1316 ts->next_tick = 0;
1317
1318 /* No need to reprogram if we are in idle or full dynticks mode */
1319 if (unlikely(ts->tick_stopped))
1320 return HRTIMER_NORESTART;
1321
1322 hrtimer_forward(timer, now, tick_period);
1323
1324 return HRTIMER_RESTART;
1325 }
1326
1327 static int sched_skew_tick;
1328
1329 static int __init skew_tick(char *str)
1330 {
1331 get_option(&str, &sched_skew_tick);
1332
1333 return 0;
1334 }
1335 early_param("skew_tick", skew_tick);
1336
1337 /**
1338 * tick_setup_sched_timer - setup the tick emulation timer
1339 */
1340 void tick_setup_sched_timer(void)
1341 {
1342 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1343 ktime_t now = ktime_get();
1344
1345 /*
1346 * Emulate tick processing via per-CPU hrtimers:
1347 */
1348 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1349 ts->sched_timer.function = tick_sched_timer;
1350
1351 /* Get the next period (per-CPU) */
1352 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1353
1354 /* Offset the tick to avert jiffies_lock contention. */
1355 if (sched_skew_tick) {
1356 u64 offset = ktime_to_ns(tick_period) >> 1;
1357 do_div(offset, num_possible_cpus());
1358 offset *= smp_processor_id();
1359 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1360 }
1361
1362 hrtimer_forward(&ts->sched_timer, now, tick_period);
1363 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1364 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1365 }
1366 #endif /* HIGH_RES_TIMERS */
1367
1368 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1369 void tick_cancel_sched_timer(int cpu)
1370 {
1371 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1372
1373 # ifdef CONFIG_HIGH_RES_TIMERS
1374 if (ts->sched_timer.base)
1375 hrtimer_cancel(&ts->sched_timer);
1376 # endif
1377
1378 memset(ts, 0, sizeof(*ts));
1379 }
1380 #endif
1381
1382 /**
1383 * Async notification about clocksource changes
1384 */
1385 void tick_clock_notify(void)
1386 {
1387 int cpu;
1388
1389 for_each_possible_cpu(cpu)
1390 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1391 }
1392
1393 /*
1394 * Async notification about clock event changes
1395 */
1396 void tick_oneshot_notify(void)
1397 {
1398 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1399
1400 set_bit(0, &ts->check_clocks);
1401 }
1402
1403 /**
1404 * Check, if a change happened, which makes oneshot possible.
1405 *
1406 * Called cyclic from the hrtimer softirq (driven by the timer
1407 * softirq) allow_nohz signals, that we can switch into low-res nohz
1408 * mode, because high resolution timers are disabled (either compile
1409 * or runtime). Called with interrupts disabled.
1410 */
1411 int tick_check_oneshot_change(int allow_nohz)
1412 {
1413 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1414
1415 if (!test_and_clear_bit(0, &ts->check_clocks))
1416 return 0;
1417
1418 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1419 return 0;
1420
1421 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1422 return 0;
1423
1424 if (!allow_nohz)
1425 return 1;
1426
1427 tick_nohz_switch_to_nohz();
1428 return 0;
1429 }