]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/tick-sched.c
sched: Fix fork() error path to not crash
[mirror_ubuntu-artful-kernel.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23
24 #include <asm/irq_regs.h>
25
26 #include "tick-internal.h"
27
28 /*
29 * Per cpu nohz control structure
30 */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32
33 /*
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
35 */
36 static ktime_t last_jiffies_update;
37
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 return &per_cpu(tick_cpu_sched, cpu);
41 }
42
43 /*
44 * Must be called with interrupts disabled !
45 */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 unsigned long ticks = 0;
49 ktime_t delta;
50
51 /*
52 * Do a quick check without holding xtime_lock:
53 */
54 delta = ktime_sub(now, last_jiffies_update);
55 if (delta.tv64 < tick_period.tv64)
56 return;
57
58 /* Reevalute with xtime_lock held */
59 write_seqlock(&xtime_lock);
60
61 delta = ktime_sub(now, last_jiffies_update);
62 if (delta.tv64 >= tick_period.tv64) {
63
64 delta = ktime_sub(delta, tick_period);
65 last_jiffies_update = ktime_add(last_jiffies_update,
66 tick_period);
67
68 /* Slow path for long timeouts */
69 if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 s64 incr = ktime_to_ns(tick_period);
71
72 ticks = ktime_divns(delta, incr);
73
74 last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 incr * ticks);
76 }
77 do_timer(++ticks);
78
79 /* Keep the tick_next_period variable up to date */
80 tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 }
82 write_sequnlock(&xtime_lock);
83 }
84
85 /*
86 * Initialize and return retrieve the jiffies update.
87 */
88 static ktime_t tick_init_jiffy_update(void)
89 {
90 ktime_t period;
91
92 write_seqlock(&xtime_lock);
93 /* Did we start the jiffies update yet ? */
94 if (last_jiffies_update.tv64 == 0)
95 last_jiffies_update = tick_next_period;
96 period = last_jiffies_update;
97 write_sequnlock(&xtime_lock);
98 return period;
99 }
100
101 /*
102 * NOHZ - aka dynamic tick functionality
103 */
104 #ifdef CONFIG_NO_HZ
105 /*
106 * NO HZ enabled ?
107 */
108 static int tick_nohz_enabled __read_mostly = 1;
109
110 /*
111 * Enable / Disable tickless mode
112 */
113 static int __init setup_tick_nohz(char *str)
114 {
115 if (!strcmp(str, "off"))
116 tick_nohz_enabled = 0;
117 else if (!strcmp(str, "on"))
118 tick_nohz_enabled = 1;
119 else
120 return 0;
121 return 1;
122 }
123
124 __setup("nohz=", setup_tick_nohz);
125
126 /**
127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
128 *
129 * Called from interrupt entry when the CPU was idle
130 *
131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132 * must be updated. Otherwise an interrupt handler could use a stale jiffy
133 * value. We do this unconditionally on any cpu, as we don't know whether the
134 * cpu, which has the update task assigned is in a long sleep.
135 */
136 static void tick_nohz_update_jiffies(ktime_t now)
137 {
138 int cpu = smp_processor_id();
139 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140 unsigned long flags;
141
142 ts->idle_waketime = now;
143
144 local_irq_save(flags);
145 tick_do_update_jiffies64(now);
146 local_irq_restore(flags);
147
148 touch_softlockup_watchdog();
149 }
150
151 /*
152 * Updates the per cpu time idle statistics counters
153 */
154 static void
155 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
156 {
157 ktime_t delta;
158
159 if (ts->idle_active) {
160 delta = ktime_sub(now, ts->idle_entrytime);
161 if (nr_iowait_cpu(cpu) > 0)
162 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
163 else
164 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
165 ts->idle_entrytime = now;
166 }
167
168 if (last_update_time)
169 *last_update_time = ktime_to_us(now);
170
171 }
172
173 static void tick_nohz_stop_idle(int cpu, ktime_t now)
174 {
175 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
176
177 update_ts_time_stats(cpu, ts, now, NULL);
178 ts->idle_active = 0;
179
180 sched_clock_idle_wakeup_event(0);
181 }
182
183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
184 {
185 ktime_t now = ktime_get();
186
187 ts->idle_entrytime = now;
188 ts->idle_active = 1;
189 sched_clock_idle_sleep_event();
190 return now;
191 }
192
193 /**
194 * get_cpu_idle_time_us - get the total idle time of a cpu
195 * @cpu: CPU number to query
196 * @last_update_time: variable to store update time in. Do not update
197 * counters if NULL.
198 *
199 * Return the cummulative idle time (since boot) for a given
200 * CPU, in microseconds.
201 *
202 * This time is measured via accounting rather than sampling,
203 * and is as accurate as ktime_get() is.
204 *
205 * This function returns -1 if NOHZ is not enabled.
206 */
207 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
208 {
209 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
210 ktime_t now, idle;
211
212 if (!tick_nohz_enabled)
213 return -1;
214
215 now = ktime_get();
216 if (last_update_time) {
217 update_ts_time_stats(cpu, ts, now, last_update_time);
218 idle = ts->idle_sleeptime;
219 } else {
220 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
221 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
222
223 idle = ktime_add(ts->idle_sleeptime, delta);
224 } else {
225 idle = ts->idle_sleeptime;
226 }
227 }
228
229 return ktime_to_us(idle);
230
231 }
232 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
233
234 /**
235 * get_cpu_iowait_time_us - get the total iowait time of a cpu
236 * @cpu: CPU number to query
237 * @last_update_time: variable to store update time in. Do not update
238 * counters if NULL.
239 *
240 * Return the cummulative iowait time (since boot) for a given
241 * CPU, in microseconds.
242 *
243 * This time is measured via accounting rather than sampling,
244 * and is as accurate as ktime_get() is.
245 *
246 * This function returns -1 if NOHZ is not enabled.
247 */
248 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
249 {
250 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
251 ktime_t now, iowait;
252
253 if (!tick_nohz_enabled)
254 return -1;
255
256 now = ktime_get();
257 if (last_update_time) {
258 update_ts_time_stats(cpu, ts, now, last_update_time);
259 iowait = ts->iowait_sleeptime;
260 } else {
261 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
262 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
263
264 iowait = ktime_add(ts->iowait_sleeptime, delta);
265 } else {
266 iowait = ts->iowait_sleeptime;
267 }
268 }
269
270 return ktime_to_us(iowait);
271 }
272 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
273
274 static void tick_nohz_stop_sched_tick(struct tick_sched *ts)
275 {
276 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
277 unsigned long rcu_delta_jiffies;
278 ktime_t last_update, expires, now;
279 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
280 u64 time_delta;
281 int cpu;
282
283 cpu = smp_processor_id();
284 ts = &per_cpu(tick_cpu_sched, cpu);
285
286 now = tick_nohz_start_idle(cpu, ts);
287
288 /*
289 * If this cpu is offline and it is the one which updates
290 * jiffies, then give up the assignment and let it be taken by
291 * the cpu which runs the tick timer next. If we don't drop
292 * this here the jiffies might be stale and do_timer() never
293 * invoked.
294 */
295 if (unlikely(!cpu_online(cpu))) {
296 if (cpu == tick_do_timer_cpu)
297 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
298 }
299
300 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
301 return;
302
303 if (need_resched())
304 return;
305
306 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
307 static int ratelimit;
308
309 if (ratelimit < 10) {
310 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
311 (unsigned int) local_softirq_pending());
312 ratelimit++;
313 }
314 return;
315 }
316
317 ts->idle_calls++;
318 /* Read jiffies and the time when jiffies were updated last */
319 do {
320 seq = read_seqbegin(&xtime_lock);
321 last_update = last_jiffies_update;
322 last_jiffies = jiffies;
323 time_delta = timekeeping_max_deferment();
324 } while (read_seqretry(&xtime_lock, seq));
325
326 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || printk_needs_cpu(cpu) ||
327 arch_needs_cpu(cpu)) {
328 next_jiffies = last_jiffies + 1;
329 delta_jiffies = 1;
330 } else {
331 /* Get the next timer wheel timer */
332 next_jiffies = get_next_timer_interrupt(last_jiffies);
333 delta_jiffies = next_jiffies - last_jiffies;
334 if (rcu_delta_jiffies < delta_jiffies) {
335 next_jiffies = last_jiffies + rcu_delta_jiffies;
336 delta_jiffies = rcu_delta_jiffies;
337 }
338 }
339 /*
340 * Do not stop the tick, if we are only one off
341 * or if the cpu is required for rcu
342 */
343 if (!ts->tick_stopped && delta_jiffies == 1)
344 goto out;
345
346 /* Schedule the tick, if we are at least one jiffie off */
347 if ((long)delta_jiffies >= 1) {
348
349 /*
350 * If this cpu is the one which updates jiffies, then
351 * give up the assignment and let it be taken by the
352 * cpu which runs the tick timer next, which might be
353 * this cpu as well. If we don't drop this here the
354 * jiffies might be stale and do_timer() never
355 * invoked. Keep track of the fact that it was the one
356 * which had the do_timer() duty last. If this cpu is
357 * the one which had the do_timer() duty last, we
358 * limit the sleep time to the timekeeping
359 * max_deferement value which we retrieved
360 * above. Otherwise we can sleep as long as we want.
361 */
362 if (cpu == tick_do_timer_cpu) {
363 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
364 ts->do_timer_last = 1;
365 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
366 time_delta = KTIME_MAX;
367 ts->do_timer_last = 0;
368 } else if (!ts->do_timer_last) {
369 time_delta = KTIME_MAX;
370 }
371
372 /*
373 * calculate the expiry time for the next timer wheel
374 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
375 * that there is no timer pending or at least extremely
376 * far into the future (12 days for HZ=1000). In this
377 * case we set the expiry to the end of time.
378 */
379 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
380 /*
381 * Calculate the time delta for the next timer event.
382 * If the time delta exceeds the maximum time delta
383 * permitted by the current clocksource then adjust
384 * the time delta accordingly to ensure the
385 * clocksource does not wrap.
386 */
387 time_delta = min_t(u64, time_delta,
388 tick_period.tv64 * delta_jiffies);
389 }
390
391 if (time_delta < KTIME_MAX)
392 expires = ktime_add_ns(last_update, time_delta);
393 else
394 expires.tv64 = KTIME_MAX;
395
396 /* Skip reprogram of event if its not changed */
397 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
398 goto out;
399
400 /*
401 * nohz_stop_sched_tick can be called several times before
402 * the nohz_restart_sched_tick is called. This happens when
403 * interrupts arrive which do not cause a reschedule. In the
404 * first call we save the current tick time, so we can restart
405 * the scheduler tick in nohz_restart_sched_tick.
406 */
407 if (!ts->tick_stopped) {
408 select_nohz_load_balancer(1);
409
410 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
411 ts->tick_stopped = 1;
412 ts->idle_jiffies = last_jiffies;
413 }
414
415 ts->idle_sleeps++;
416
417 /* Mark expires */
418 ts->idle_expires = expires;
419
420 /*
421 * If the expiration time == KTIME_MAX, then
422 * in this case we simply stop the tick timer.
423 */
424 if (unlikely(expires.tv64 == KTIME_MAX)) {
425 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
426 hrtimer_cancel(&ts->sched_timer);
427 goto out;
428 }
429
430 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
431 hrtimer_start(&ts->sched_timer, expires,
432 HRTIMER_MODE_ABS_PINNED);
433 /* Check, if the timer was already in the past */
434 if (hrtimer_active(&ts->sched_timer))
435 goto out;
436 } else if (!tick_program_event(expires, 0))
437 goto out;
438 /*
439 * We are past the event already. So we crossed a
440 * jiffie boundary. Update jiffies and raise the
441 * softirq.
442 */
443 tick_do_update_jiffies64(ktime_get());
444 }
445 raise_softirq_irqoff(TIMER_SOFTIRQ);
446 out:
447 ts->next_jiffies = next_jiffies;
448 ts->last_jiffies = last_jiffies;
449 ts->sleep_length = ktime_sub(dev->next_event, now);
450 }
451
452 /**
453 * tick_nohz_idle_enter - stop the idle tick from the idle task
454 *
455 * When the next event is more than a tick into the future, stop the idle tick
456 * Called when we start the idle loop.
457 *
458 * The arch is responsible of calling:
459 *
460 * - rcu_idle_enter() after its last use of RCU before the CPU is put
461 * to sleep.
462 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
463 */
464 void tick_nohz_idle_enter(void)
465 {
466 struct tick_sched *ts;
467
468 WARN_ON_ONCE(irqs_disabled());
469
470 /*
471 * Update the idle state in the scheduler domain hierarchy
472 * when tick_nohz_stop_sched_tick() is called from the idle loop.
473 * State will be updated to busy during the first busy tick after
474 * exiting idle.
475 */
476 set_cpu_sd_state_idle();
477
478 local_irq_disable();
479
480 ts = &__get_cpu_var(tick_cpu_sched);
481 /*
482 * set ts->inidle unconditionally. even if the system did not
483 * switch to nohz mode the cpu frequency governers rely on the
484 * update of the idle time accounting in tick_nohz_start_idle().
485 */
486 ts->inidle = 1;
487 tick_nohz_stop_sched_tick(ts);
488
489 local_irq_enable();
490 }
491
492 /**
493 * tick_nohz_irq_exit - update next tick event from interrupt exit
494 *
495 * When an interrupt fires while we are idle and it doesn't cause
496 * a reschedule, it may still add, modify or delete a timer, enqueue
497 * an RCU callback, etc...
498 * So we need to re-calculate and reprogram the next tick event.
499 */
500 void tick_nohz_irq_exit(void)
501 {
502 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
503
504 if (!ts->inidle)
505 return;
506
507 tick_nohz_stop_sched_tick(ts);
508 }
509
510 /**
511 * tick_nohz_get_sleep_length - return the length of the current sleep
512 *
513 * Called from power state control code with interrupts disabled
514 */
515 ktime_t tick_nohz_get_sleep_length(void)
516 {
517 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
518
519 return ts->sleep_length;
520 }
521
522 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
523 {
524 hrtimer_cancel(&ts->sched_timer);
525 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
526
527 while (1) {
528 /* Forward the time to expire in the future */
529 hrtimer_forward(&ts->sched_timer, now, tick_period);
530
531 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
532 hrtimer_start_expires(&ts->sched_timer,
533 HRTIMER_MODE_ABS_PINNED);
534 /* Check, if the timer was already in the past */
535 if (hrtimer_active(&ts->sched_timer))
536 break;
537 } else {
538 if (!tick_program_event(
539 hrtimer_get_expires(&ts->sched_timer), 0))
540 break;
541 }
542 /* Reread time and update jiffies */
543 now = ktime_get();
544 tick_do_update_jiffies64(now);
545 }
546 }
547
548 /**
549 * tick_nohz_idle_exit - restart the idle tick from the idle task
550 *
551 * Restart the idle tick when the CPU is woken up from idle
552 * This also exit the RCU extended quiescent state. The CPU
553 * can use RCU again after this function is called.
554 */
555 void tick_nohz_idle_exit(void)
556 {
557 int cpu = smp_processor_id();
558 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
559 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
560 unsigned long ticks;
561 #endif
562 ktime_t now;
563
564 local_irq_disable();
565
566 WARN_ON_ONCE(!ts->inidle);
567
568 ts->inidle = 0;
569
570 if (ts->idle_active || ts->tick_stopped)
571 now = ktime_get();
572
573 if (ts->idle_active)
574 tick_nohz_stop_idle(cpu, now);
575
576 if (!ts->tick_stopped) {
577 local_irq_enable();
578 return;
579 }
580
581 /* Update jiffies first */
582 select_nohz_load_balancer(0);
583 tick_do_update_jiffies64(now);
584 update_cpu_load_nohz();
585
586 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
587 /*
588 * We stopped the tick in idle. Update process times would miss the
589 * time we slept as update_process_times does only a 1 tick
590 * accounting. Enforce that this is accounted to idle !
591 */
592 ticks = jiffies - ts->idle_jiffies;
593 /*
594 * We might be one off. Do not randomly account a huge number of ticks!
595 */
596 if (ticks && ticks < LONG_MAX)
597 account_idle_ticks(ticks);
598 #endif
599
600 touch_softlockup_watchdog();
601 /*
602 * Cancel the scheduled timer and restore the tick
603 */
604 ts->tick_stopped = 0;
605 ts->idle_exittime = now;
606
607 tick_nohz_restart(ts, now);
608
609 local_irq_enable();
610 }
611
612 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
613 {
614 hrtimer_forward(&ts->sched_timer, now, tick_period);
615 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
616 }
617
618 /*
619 * The nohz low res interrupt handler
620 */
621 static void tick_nohz_handler(struct clock_event_device *dev)
622 {
623 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
624 struct pt_regs *regs = get_irq_regs();
625 int cpu = smp_processor_id();
626 ktime_t now = ktime_get();
627
628 dev->next_event.tv64 = KTIME_MAX;
629
630 /*
631 * Check if the do_timer duty was dropped. We don't care about
632 * concurrency: This happens only when the cpu in charge went
633 * into a long sleep. If two cpus happen to assign themself to
634 * this duty, then the jiffies update is still serialized by
635 * xtime_lock.
636 */
637 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
638 tick_do_timer_cpu = cpu;
639
640 /* Check, if the jiffies need an update */
641 if (tick_do_timer_cpu == cpu)
642 tick_do_update_jiffies64(now);
643
644 /*
645 * When we are idle and the tick is stopped, we have to touch
646 * the watchdog as we might not schedule for a really long
647 * time. This happens on complete idle SMP systems while
648 * waiting on the login prompt. We also increment the "start
649 * of idle" jiffy stamp so the idle accounting adjustment we
650 * do when we go busy again does not account too much ticks.
651 */
652 if (ts->tick_stopped) {
653 touch_softlockup_watchdog();
654 ts->idle_jiffies++;
655 }
656
657 update_process_times(user_mode(regs));
658 profile_tick(CPU_PROFILING);
659
660 while (tick_nohz_reprogram(ts, now)) {
661 now = ktime_get();
662 tick_do_update_jiffies64(now);
663 }
664 }
665
666 /**
667 * tick_nohz_switch_to_nohz - switch to nohz mode
668 */
669 static void tick_nohz_switch_to_nohz(void)
670 {
671 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
672 ktime_t next;
673
674 if (!tick_nohz_enabled)
675 return;
676
677 local_irq_disable();
678 if (tick_switch_to_oneshot(tick_nohz_handler)) {
679 local_irq_enable();
680 return;
681 }
682
683 ts->nohz_mode = NOHZ_MODE_LOWRES;
684
685 /*
686 * Recycle the hrtimer in ts, so we can share the
687 * hrtimer_forward with the highres code.
688 */
689 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
690 /* Get the next period */
691 next = tick_init_jiffy_update();
692
693 for (;;) {
694 hrtimer_set_expires(&ts->sched_timer, next);
695 if (!tick_program_event(next, 0))
696 break;
697 next = ktime_add(next, tick_period);
698 }
699 local_irq_enable();
700 }
701
702 /*
703 * When NOHZ is enabled and the tick is stopped, we need to kick the
704 * tick timer from irq_enter() so that the jiffies update is kept
705 * alive during long running softirqs. That's ugly as hell, but
706 * correctness is key even if we need to fix the offending softirq in
707 * the first place.
708 *
709 * Note, this is different to tick_nohz_restart. We just kick the
710 * timer and do not touch the other magic bits which need to be done
711 * when idle is left.
712 */
713 static void tick_nohz_kick_tick(int cpu, ktime_t now)
714 {
715 #if 0
716 /* Switch back to 2.6.27 behaviour */
717
718 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
719 ktime_t delta;
720
721 /*
722 * Do not touch the tick device, when the next expiry is either
723 * already reached or less/equal than the tick period.
724 */
725 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
726 if (delta.tv64 <= tick_period.tv64)
727 return;
728
729 tick_nohz_restart(ts, now);
730 #endif
731 }
732
733 static inline void tick_check_nohz(int cpu)
734 {
735 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
736 ktime_t now;
737
738 if (!ts->idle_active && !ts->tick_stopped)
739 return;
740 now = ktime_get();
741 if (ts->idle_active)
742 tick_nohz_stop_idle(cpu, now);
743 if (ts->tick_stopped) {
744 tick_nohz_update_jiffies(now);
745 tick_nohz_kick_tick(cpu, now);
746 }
747 }
748
749 #else
750
751 static inline void tick_nohz_switch_to_nohz(void) { }
752 static inline void tick_check_nohz(int cpu) { }
753
754 #endif /* NO_HZ */
755
756 /*
757 * Called from irq_enter to notify about the possible interruption of idle()
758 */
759 void tick_check_idle(int cpu)
760 {
761 tick_check_oneshot_broadcast(cpu);
762 tick_check_nohz(cpu);
763 }
764
765 /*
766 * High resolution timer specific code
767 */
768 #ifdef CONFIG_HIGH_RES_TIMERS
769 /*
770 * We rearm the timer until we get disabled by the idle code.
771 * Called with interrupts disabled and timer->base->cpu_base->lock held.
772 */
773 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
774 {
775 struct tick_sched *ts =
776 container_of(timer, struct tick_sched, sched_timer);
777 struct pt_regs *regs = get_irq_regs();
778 ktime_t now = ktime_get();
779 int cpu = smp_processor_id();
780
781 #ifdef CONFIG_NO_HZ
782 /*
783 * Check if the do_timer duty was dropped. We don't care about
784 * concurrency: This happens only when the cpu in charge went
785 * into a long sleep. If two cpus happen to assign themself to
786 * this duty, then the jiffies update is still serialized by
787 * xtime_lock.
788 */
789 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
790 tick_do_timer_cpu = cpu;
791 #endif
792
793 /* Check, if the jiffies need an update */
794 if (tick_do_timer_cpu == cpu)
795 tick_do_update_jiffies64(now);
796
797 /*
798 * Do not call, when we are not in irq context and have
799 * no valid regs pointer
800 */
801 if (regs) {
802 /*
803 * When we are idle and the tick is stopped, we have to touch
804 * the watchdog as we might not schedule for a really long
805 * time. This happens on complete idle SMP systems while
806 * waiting on the login prompt. We also increment the "start of
807 * idle" jiffy stamp so the idle accounting adjustment we do
808 * when we go busy again does not account too much ticks.
809 */
810 if (ts->tick_stopped) {
811 touch_softlockup_watchdog();
812 ts->idle_jiffies++;
813 }
814 update_process_times(user_mode(regs));
815 profile_tick(CPU_PROFILING);
816 }
817
818 hrtimer_forward(timer, now, tick_period);
819
820 return HRTIMER_RESTART;
821 }
822
823 static int sched_skew_tick;
824
825 static int __init skew_tick(char *str)
826 {
827 get_option(&str, &sched_skew_tick);
828
829 return 0;
830 }
831 early_param("skew_tick", skew_tick);
832
833 /**
834 * tick_setup_sched_timer - setup the tick emulation timer
835 */
836 void tick_setup_sched_timer(void)
837 {
838 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
839 ktime_t now = ktime_get();
840
841 /*
842 * Emulate tick processing via per-CPU hrtimers:
843 */
844 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
845 ts->sched_timer.function = tick_sched_timer;
846
847 /* Get the next period (per cpu) */
848 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
849
850 /* Offset the tick to avert xtime_lock contention. */
851 if (sched_skew_tick) {
852 u64 offset = ktime_to_ns(tick_period) >> 1;
853 do_div(offset, num_possible_cpus());
854 offset *= smp_processor_id();
855 hrtimer_add_expires_ns(&ts->sched_timer, offset);
856 }
857
858 for (;;) {
859 hrtimer_forward(&ts->sched_timer, now, tick_period);
860 hrtimer_start_expires(&ts->sched_timer,
861 HRTIMER_MODE_ABS_PINNED);
862 /* Check, if the timer was already in the past */
863 if (hrtimer_active(&ts->sched_timer))
864 break;
865 now = ktime_get();
866 }
867
868 #ifdef CONFIG_NO_HZ
869 if (tick_nohz_enabled)
870 ts->nohz_mode = NOHZ_MODE_HIGHRES;
871 #endif
872 }
873 #endif /* HIGH_RES_TIMERS */
874
875 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
876 void tick_cancel_sched_timer(int cpu)
877 {
878 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
879
880 # ifdef CONFIG_HIGH_RES_TIMERS
881 if (ts->sched_timer.base)
882 hrtimer_cancel(&ts->sched_timer);
883 # endif
884
885 ts->nohz_mode = NOHZ_MODE_INACTIVE;
886 }
887 #endif
888
889 /**
890 * Async notification about clocksource changes
891 */
892 void tick_clock_notify(void)
893 {
894 int cpu;
895
896 for_each_possible_cpu(cpu)
897 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
898 }
899
900 /*
901 * Async notification about clock event changes
902 */
903 void tick_oneshot_notify(void)
904 {
905 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
906
907 set_bit(0, &ts->check_clocks);
908 }
909
910 /**
911 * Check, if a change happened, which makes oneshot possible.
912 *
913 * Called cyclic from the hrtimer softirq (driven by the timer
914 * softirq) allow_nohz signals, that we can switch into low-res nohz
915 * mode, because high resolution timers are disabled (either compile
916 * or runtime).
917 */
918 int tick_check_oneshot_change(int allow_nohz)
919 {
920 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
921
922 if (!test_and_clear_bit(0, &ts->check_clocks))
923 return 0;
924
925 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
926 return 0;
927
928 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
929 return 0;
930
931 if (!allow_nohz)
932 return 1;
933
934 tick_nohz_switch_to_nohz();
935 return 0;
936 }