]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/time/tick-sched.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bart/ide-2.6
[mirror_ubuntu-bionic-kernel.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23
24 #include <asm/irq_regs.h>
25
26 #include "tick-internal.h"
27
28 /*
29 * Per cpu nohz control structure
30 */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32
33 /*
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
35 */
36 static ktime_t last_jiffies_update;
37
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 return &per_cpu(tick_cpu_sched, cpu);
41 }
42
43 /*
44 * Must be called with interrupts disabled !
45 */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 unsigned long ticks = 0;
49 ktime_t delta;
50
51 /* Reevalute with xtime_lock held */
52 write_seqlock(&xtime_lock);
53
54 delta = ktime_sub(now, last_jiffies_update);
55 if (delta.tv64 >= tick_period.tv64) {
56
57 delta = ktime_sub(delta, tick_period);
58 last_jiffies_update = ktime_add(last_jiffies_update,
59 tick_period);
60
61 /* Slow path for long timeouts */
62 if (unlikely(delta.tv64 >= tick_period.tv64)) {
63 s64 incr = ktime_to_ns(tick_period);
64
65 ticks = ktime_divns(delta, incr);
66
67 last_jiffies_update = ktime_add_ns(last_jiffies_update,
68 incr * ticks);
69 }
70 do_timer(++ticks);
71 }
72 write_sequnlock(&xtime_lock);
73 }
74
75 /*
76 * Initialize and return retrieve the jiffies update.
77 */
78 static ktime_t tick_init_jiffy_update(void)
79 {
80 ktime_t period;
81
82 write_seqlock(&xtime_lock);
83 /* Did we start the jiffies update yet ? */
84 if (last_jiffies_update.tv64 == 0)
85 last_jiffies_update = tick_next_period;
86 period = last_jiffies_update;
87 write_sequnlock(&xtime_lock);
88 return period;
89 }
90
91 /*
92 * NOHZ - aka dynamic tick functionality
93 */
94 #ifdef CONFIG_NO_HZ
95 /*
96 * NO HZ enabled ?
97 */
98 static int tick_nohz_enabled __read_mostly = 1;
99
100 /*
101 * Enable / Disable tickless mode
102 */
103 static int __init setup_tick_nohz(char *str)
104 {
105 if (!strcmp(str, "off"))
106 tick_nohz_enabled = 0;
107 else if (!strcmp(str, "on"))
108 tick_nohz_enabled = 1;
109 else
110 return 0;
111 return 1;
112 }
113
114 __setup("nohz=", setup_tick_nohz);
115
116 /**
117 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
118 *
119 * Called from interrupt entry when the CPU was idle
120 *
121 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
122 * must be updated. Otherwise an interrupt handler could use a stale jiffy
123 * value. We do this unconditionally on any cpu, as we don't know whether the
124 * cpu, which has the update task assigned is in a long sleep.
125 */
126 void tick_nohz_update_jiffies(void)
127 {
128 int cpu = smp_processor_id();
129 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
130 unsigned long flags;
131 ktime_t now;
132
133 if (!ts->tick_stopped)
134 return;
135
136 touch_softlockup_watchdog();
137
138 cpu_clear(cpu, nohz_cpu_mask);
139 now = ktime_get();
140 ts->idle_waketime = now;
141
142 local_irq_save(flags);
143 tick_do_update_jiffies64(now);
144 local_irq_restore(flags);
145 }
146
147 void tick_nohz_stop_idle(int cpu)
148 {
149 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
150
151 if (ts->idle_active) {
152 ktime_t now, delta;
153 now = ktime_get();
154 delta = ktime_sub(now, ts->idle_entrytime);
155 ts->idle_lastupdate = now;
156 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
157 ts->idle_active = 0;
158 }
159 }
160
161 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
162 {
163 ktime_t now, delta;
164
165 now = ktime_get();
166 if (ts->idle_active) {
167 delta = ktime_sub(now, ts->idle_entrytime);
168 ts->idle_lastupdate = now;
169 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
170 }
171 ts->idle_entrytime = now;
172 ts->idle_active = 1;
173 return now;
174 }
175
176 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
177 {
178 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
179
180 *last_update_time = ktime_to_us(ts->idle_lastupdate);
181 return ktime_to_us(ts->idle_sleeptime);
182 }
183
184 /**
185 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
186 *
187 * When the next event is more than a tick into the future, stop the idle tick
188 * Called either from the idle loop or from irq_exit() when an idle period was
189 * just interrupted by an interrupt which did not cause a reschedule.
190 */
191 void tick_nohz_stop_sched_tick(void)
192 {
193 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
194 unsigned long rt_jiffies;
195 struct tick_sched *ts;
196 ktime_t last_update, expires, now;
197 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
198 int cpu;
199
200 local_irq_save(flags);
201
202 cpu = smp_processor_id();
203 ts = &per_cpu(tick_cpu_sched, cpu);
204 now = tick_nohz_start_idle(ts);
205
206 /*
207 * If this cpu is offline and it is the one which updates
208 * jiffies, then give up the assignment and let it be taken by
209 * the cpu which runs the tick timer next. If we don't drop
210 * this here the jiffies might be stale and do_timer() never
211 * invoked.
212 */
213 if (unlikely(!cpu_online(cpu))) {
214 if (cpu == tick_do_timer_cpu)
215 tick_do_timer_cpu = -1;
216 }
217
218 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
219 goto end;
220
221 if (need_resched())
222 goto end;
223
224 if (unlikely(local_softirq_pending())) {
225 static int ratelimit;
226
227 if (ratelimit < 10) {
228 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
229 local_softirq_pending());
230 ratelimit++;
231 }
232 }
233
234 ts->idle_calls++;
235 /* Read jiffies and the time when jiffies were updated last */
236 do {
237 seq = read_seqbegin(&xtime_lock);
238 last_update = last_jiffies_update;
239 last_jiffies = jiffies;
240 } while (read_seqretry(&xtime_lock, seq));
241
242 /* Get the next timer wheel timer */
243 next_jiffies = get_next_timer_interrupt(last_jiffies);
244 delta_jiffies = next_jiffies - last_jiffies;
245
246 rt_jiffies = rt_needs_cpu(cpu);
247 if (rt_jiffies && rt_jiffies < delta_jiffies)
248 delta_jiffies = rt_jiffies;
249
250 if (rcu_needs_cpu(cpu))
251 delta_jiffies = 1;
252 /*
253 * Do not stop the tick, if we are only one off
254 * or if the cpu is required for rcu
255 */
256 if (!ts->tick_stopped && delta_jiffies == 1)
257 goto out;
258
259 /* Schedule the tick, if we are at least one jiffie off */
260 if ((long)delta_jiffies >= 1) {
261
262 if (delta_jiffies > 1)
263 cpu_set(cpu, nohz_cpu_mask);
264 /*
265 * nohz_stop_sched_tick can be called several times before
266 * the nohz_restart_sched_tick is called. This happens when
267 * interrupts arrive which do not cause a reschedule. In the
268 * first call we save the current tick time, so we can restart
269 * the scheduler tick in nohz_restart_sched_tick.
270 */
271 if (!ts->tick_stopped) {
272 if (select_nohz_load_balancer(1)) {
273 /*
274 * sched tick not stopped!
275 */
276 cpu_clear(cpu, nohz_cpu_mask);
277 goto out;
278 }
279
280 ts->idle_tick = ts->sched_timer.expires;
281 ts->tick_stopped = 1;
282 ts->idle_jiffies = last_jiffies;
283 rcu_enter_nohz();
284 }
285
286 /*
287 * If this cpu is the one which updates jiffies, then
288 * give up the assignment and let it be taken by the
289 * cpu which runs the tick timer next, which might be
290 * this cpu as well. If we don't drop this here the
291 * jiffies might be stale and do_timer() never
292 * invoked.
293 */
294 if (cpu == tick_do_timer_cpu)
295 tick_do_timer_cpu = -1;
296
297 ts->idle_sleeps++;
298
299 /*
300 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
301 * there is no timer pending or at least extremly far
302 * into the future (12 days for HZ=1000). In this case
303 * we simply stop the tick timer:
304 */
305 if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
306 ts->idle_expires.tv64 = KTIME_MAX;
307 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
308 hrtimer_cancel(&ts->sched_timer);
309 goto out;
310 }
311
312 /*
313 * calculate the expiry time for the next timer wheel
314 * timer
315 */
316 expires = ktime_add_ns(last_update, tick_period.tv64 *
317 delta_jiffies);
318 ts->idle_expires = expires;
319
320 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
321 hrtimer_start(&ts->sched_timer, expires,
322 HRTIMER_MODE_ABS);
323 /* Check, if the timer was already in the past */
324 if (hrtimer_active(&ts->sched_timer))
325 goto out;
326 } else if (!tick_program_event(expires, 0))
327 goto out;
328 /*
329 * We are past the event already. So we crossed a
330 * jiffie boundary. Update jiffies and raise the
331 * softirq.
332 */
333 tick_do_update_jiffies64(ktime_get());
334 cpu_clear(cpu, nohz_cpu_mask);
335 }
336 raise_softirq_irqoff(TIMER_SOFTIRQ);
337 out:
338 ts->next_jiffies = next_jiffies;
339 ts->last_jiffies = last_jiffies;
340 ts->sleep_length = ktime_sub(dev->next_event, now);
341 end:
342 local_irq_restore(flags);
343 }
344
345 /**
346 * tick_nohz_get_sleep_length - return the length of the current sleep
347 *
348 * Called from power state control code with interrupts disabled
349 */
350 ktime_t tick_nohz_get_sleep_length(void)
351 {
352 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
353
354 return ts->sleep_length;
355 }
356
357 /**
358 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
359 *
360 * Restart the idle tick when the CPU is woken up from idle
361 */
362 void tick_nohz_restart_sched_tick(void)
363 {
364 int cpu = smp_processor_id();
365 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
366 unsigned long ticks;
367 ktime_t now;
368
369 local_irq_disable();
370 tick_nohz_stop_idle(cpu);
371
372 if (!ts->tick_stopped) {
373 local_irq_enable();
374 return;
375 }
376
377 rcu_exit_nohz();
378
379 /* Update jiffies first */
380 select_nohz_load_balancer(0);
381 now = ktime_get();
382 tick_do_update_jiffies64(now);
383 cpu_clear(cpu, nohz_cpu_mask);
384
385 /*
386 * We stopped the tick in idle. Update process times would miss the
387 * time we slept as update_process_times does only a 1 tick
388 * accounting. Enforce that this is accounted to idle !
389 */
390 ticks = jiffies - ts->idle_jiffies;
391 /*
392 * We might be one off. Do not randomly account a huge number of ticks!
393 */
394 if (ticks && ticks < LONG_MAX) {
395 add_preempt_count(HARDIRQ_OFFSET);
396 account_system_time(current, HARDIRQ_OFFSET,
397 jiffies_to_cputime(ticks));
398 sub_preempt_count(HARDIRQ_OFFSET);
399 }
400
401 /*
402 * Cancel the scheduled timer and restore the tick
403 */
404 ts->tick_stopped = 0;
405 ts->idle_exittime = now;
406 hrtimer_cancel(&ts->sched_timer);
407 ts->sched_timer.expires = ts->idle_tick;
408
409 while (1) {
410 /* Forward the time to expire in the future */
411 hrtimer_forward(&ts->sched_timer, now, tick_period);
412
413 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
414 hrtimer_start(&ts->sched_timer,
415 ts->sched_timer.expires,
416 HRTIMER_MODE_ABS);
417 /* Check, if the timer was already in the past */
418 if (hrtimer_active(&ts->sched_timer))
419 break;
420 } else {
421 if (!tick_program_event(ts->sched_timer.expires, 0))
422 break;
423 }
424 /* Update jiffies and reread time */
425 tick_do_update_jiffies64(now);
426 now = ktime_get();
427 }
428 local_irq_enable();
429 }
430
431 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
432 {
433 hrtimer_forward(&ts->sched_timer, now, tick_period);
434 return tick_program_event(ts->sched_timer.expires, 0);
435 }
436
437 /*
438 * The nohz low res interrupt handler
439 */
440 static void tick_nohz_handler(struct clock_event_device *dev)
441 {
442 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
443 struct pt_regs *regs = get_irq_regs();
444 int cpu = smp_processor_id();
445 ktime_t now = ktime_get();
446
447 dev->next_event.tv64 = KTIME_MAX;
448
449 /*
450 * Check if the do_timer duty was dropped. We don't care about
451 * concurrency: This happens only when the cpu in charge went
452 * into a long sleep. If two cpus happen to assign themself to
453 * this duty, then the jiffies update is still serialized by
454 * xtime_lock.
455 */
456 if (unlikely(tick_do_timer_cpu == -1))
457 tick_do_timer_cpu = cpu;
458
459 /* Check, if the jiffies need an update */
460 if (tick_do_timer_cpu == cpu)
461 tick_do_update_jiffies64(now);
462
463 /*
464 * When we are idle and the tick is stopped, we have to touch
465 * the watchdog as we might not schedule for a really long
466 * time. This happens on complete idle SMP systems while
467 * waiting on the login prompt. We also increment the "start
468 * of idle" jiffy stamp so the idle accounting adjustment we
469 * do when we go busy again does not account too much ticks.
470 */
471 if (ts->tick_stopped) {
472 touch_softlockup_watchdog();
473 ts->idle_jiffies++;
474 }
475
476 update_process_times(user_mode(regs));
477 profile_tick(CPU_PROFILING);
478
479 /* Do not restart, when we are in the idle loop */
480 if (ts->tick_stopped)
481 return;
482
483 while (tick_nohz_reprogram(ts, now)) {
484 now = ktime_get();
485 tick_do_update_jiffies64(now);
486 }
487 }
488
489 /**
490 * tick_nohz_switch_to_nohz - switch to nohz mode
491 */
492 static void tick_nohz_switch_to_nohz(void)
493 {
494 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
495 ktime_t next;
496
497 if (!tick_nohz_enabled)
498 return;
499
500 local_irq_disable();
501 if (tick_switch_to_oneshot(tick_nohz_handler)) {
502 local_irq_enable();
503 return;
504 }
505
506 ts->nohz_mode = NOHZ_MODE_LOWRES;
507
508 /*
509 * Recycle the hrtimer in ts, so we can share the
510 * hrtimer_forward with the highres code.
511 */
512 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
513 /* Get the next period */
514 next = tick_init_jiffy_update();
515
516 for (;;) {
517 ts->sched_timer.expires = next;
518 if (!tick_program_event(next, 0))
519 break;
520 next = ktime_add(next, tick_period);
521 }
522 local_irq_enable();
523
524 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
525 smp_processor_id());
526 }
527
528 #else
529
530 static inline void tick_nohz_switch_to_nohz(void) { }
531
532 #endif /* NO_HZ */
533
534 /*
535 * High resolution timer specific code
536 */
537 #ifdef CONFIG_HIGH_RES_TIMERS
538 /*
539 * We rearm the timer until we get disabled by the idle code.
540 * Called with interrupts disabled and timer->base->cpu_base->lock held.
541 */
542 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
543 {
544 struct tick_sched *ts =
545 container_of(timer, struct tick_sched, sched_timer);
546 struct pt_regs *regs = get_irq_regs();
547 ktime_t now = ktime_get();
548 int cpu = smp_processor_id();
549
550 #ifdef CONFIG_NO_HZ
551 /*
552 * Check if the do_timer duty was dropped. We don't care about
553 * concurrency: This happens only when the cpu in charge went
554 * into a long sleep. If two cpus happen to assign themself to
555 * this duty, then the jiffies update is still serialized by
556 * xtime_lock.
557 */
558 if (unlikely(tick_do_timer_cpu == -1))
559 tick_do_timer_cpu = cpu;
560 #endif
561
562 /* Check, if the jiffies need an update */
563 if (tick_do_timer_cpu == cpu)
564 tick_do_update_jiffies64(now);
565
566 /*
567 * Do not call, when we are not in irq context and have
568 * no valid regs pointer
569 */
570 if (regs) {
571 /*
572 * When we are idle and the tick is stopped, we have to touch
573 * the watchdog as we might not schedule for a really long
574 * time. This happens on complete idle SMP systems while
575 * waiting on the login prompt. We also increment the "start of
576 * idle" jiffy stamp so the idle accounting adjustment we do
577 * when we go busy again does not account too much ticks.
578 */
579 if (ts->tick_stopped) {
580 touch_softlockup_watchdog();
581 ts->idle_jiffies++;
582 }
583 update_process_times(user_mode(regs));
584 profile_tick(CPU_PROFILING);
585 }
586
587 /* Do not restart, when we are in the idle loop */
588 if (ts->tick_stopped)
589 return HRTIMER_NORESTART;
590
591 hrtimer_forward(timer, now, tick_period);
592
593 return HRTIMER_RESTART;
594 }
595
596 /**
597 * tick_setup_sched_timer - setup the tick emulation timer
598 */
599 void tick_setup_sched_timer(void)
600 {
601 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
602 ktime_t now = ktime_get();
603 u64 offset;
604
605 /*
606 * Emulate tick processing via per-CPU hrtimers:
607 */
608 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
609 ts->sched_timer.function = tick_sched_timer;
610 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
611
612 /* Get the next period (per cpu) */
613 ts->sched_timer.expires = tick_init_jiffy_update();
614 offset = ktime_to_ns(tick_period) >> 1;
615 do_div(offset, num_possible_cpus());
616 offset *= smp_processor_id();
617 ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
618
619 for (;;) {
620 hrtimer_forward(&ts->sched_timer, now, tick_period);
621 hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
622 HRTIMER_MODE_ABS);
623 /* Check, if the timer was already in the past */
624 if (hrtimer_active(&ts->sched_timer))
625 break;
626 now = ktime_get();
627 }
628
629 #ifdef CONFIG_NO_HZ
630 if (tick_nohz_enabled)
631 ts->nohz_mode = NOHZ_MODE_HIGHRES;
632 #endif
633 }
634
635 void tick_cancel_sched_timer(int cpu)
636 {
637 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
638
639 if (ts->sched_timer.base)
640 hrtimer_cancel(&ts->sched_timer);
641
642 ts->nohz_mode = NOHZ_MODE_INACTIVE;
643 }
644 #endif /* HIGH_RES_TIMERS */
645
646 /**
647 * Async notification about clocksource changes
648 */
649 void tick_clock_notify(void)
650 {
651 int cpu;
652
653 for_each_possible_cpu(cpu)
654 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
655 }
656
657 /*
658 * Async notification about clock event changes
659 */
660 void tick_oneshot_notify(void)
661 {
662 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
663
664 set_bit(0, &ts->check_clocks);
665 }
666
667 /**
668 * Check, if a change happened, which makes oneshot possible.
669 *
670 * Called cyclic from the hrtimer softirq (driven by the timer
671 * softirq) allow_nohz signals, that we can switch into low-res nohz
672 * mode, because high resolution timers are disabled (either compile
673 * or runtime).
674 */
675 int tick_check_oneshot_change(int allow_nohz)
676 {
677 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
678
679 if (!test_and_clear_bit(0, &ts->check_clocks))
680 return 0;
681
682 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
683 return 0;
684
685 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
686 return 0;
687
688 if (!allow_nohz)
689 return 1;
690
691 tick_nohz_switch_to_nohz();
692 return 0;
693 }