]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/time/tick-sched.c
Merge tag 'drm-fixes-for-v4.10-rc6' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-zesty-kernel.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/context_tracking.h>
26
27 #include <asm/irq_regs.h>
28
29 #include "tick-internal.h"
30
31 #include <trace/events/timer.h>
32
33 /*
34 * Per-CPU nohz control structure
35 */
36 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 return &per_cpu(tick_cpu_sched, cpu);
41 }
42
43 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
44 /*
45 * The time, when the last jiffy update happened. Protected by jiffies_lock.
46 */
47 static ktime_t last_jiffies_update;
48
49 /*
50 * Must be called with interrupts disabled !
51 */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 unsigned long ticks = 0;
55 ktime_t delta;
56
57 /*
58 * Do a quick check without holding jiffies_lock:
59 */
60 delta = ktime_sub(now, last_jiffies_update);
61 if (delta < tick_period)
62 return;
63
64 /* Reevaluate with jiffies_lock held */
65 write_seqlock(&jiffies_lock);
66
67 delta = ktime_sub(now, last_jiffies_update);
68 if (delta >= tick_period) {
69
70 delta = ktime_sub(delta, tick_period);
71 last_jiffies_update = ktime_add(last_jiffies_update,
72 tick_period);
73
74 /* Slow path for long timeouts */
75 if (unlikely(delta >= tick_period)) {
76 s64 incr = ktime_to_ns(tick_period);
77
78 ticks = ktime_divns(delta, incr);
79
80 last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 incr * ticks);
82 }
83 do_timer(++ticks);
84
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 } else {
88 write_sequnlock(&jiffies_lock);
89 return;
90 }
91 write_sequnlock(&jiffies_lock);
92 update_wall_time();
93 }
94
95 /*
96 * Initialize and return retrieve the jiffies update.
97 */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 ktime_t period;
101
102 write_seqlock(&jiffies_lock);
103 /* Did we start the jiffies update yet ? */
104 if (last_jiffies_update == 0)
105 last_jiffies_update = tick_next_period;
106 period = last_jiffies_update;
107 write_sequnlock(&jiffies_lock);
108 return period;
109 }
110
111
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 int cpu = smp_processor_id();
115
116 #ifdef CONFIG_NO_HZ_COMMON
117 /*
118 * Check if the do_timer duty was dropped. We don't care about
119 * concurrency: This happens only when the CPU in charge went
120 * into a long sleep. If two CPUs happen to assign themselves to
121 * this duty, then the jiffies update is still serialized by
122 * jiffies_lock.
123 */
124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 && !tick_nohz_full_cpu(cpu))
126 tick_do_timer_cpu = cpu;
127 #endif
128
129 /* Check, if the jiffies need an update */
130 if (tick_do_timer_cpu == cpu)
131 tick_do_update_jiffies64(now);
132 }
133
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 /*
138 * When we are idle and the tick is stopped, we have to touch
139 * the watchdog as we might not schedule for a really long
140 * time. This happens on complete idle SMP systems while
141 * waiting on the login prompt. We also increment the "start of
142 * idle" jiffy stamp so the idle accounting adjustment we do
143 * when we go busy again does not account too much ticks.
144 */
145 if (ts->tick_stopped) {
146 touch_softlockup_watchdog_sched();
147 if (is_idle_task(current))
148 ts->idle_jiffies++;
149 }
150 #endif
151 update_process_times(user_mode(regs));
152 profile_tick(CPU_PROFILING);
153 }
154 #endif
155
156 #ifdef CONFIG_NO_HZ_FULL
157 cpumask_var_t tick_nohz_full_mask;
158 cpumask_var_t housekeeping_mask;
159 bool tick_nohz_full_running;
160 static atomic_t tick_dep_mask;
161
162 static bool check_tick_dependency(atomic_t *dep)
163 {
164 int val = atomic_read(dep);
165
166 if (val & TICK_DEP_MASK_POSIX_TIMER) {
167 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
168 return true;
169 }
170
171 if (val & TICK_DEP_MASK_PERF_EVENTS) {
172 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
173 return true;
174 }
175
176 if (val & TICK_DEP_MASK_SCHED) {
177 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
178 return true;
179 }
180
181 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
182 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
183 return true;
184 }
185
186 return false;
187 }
188
189 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
190 {
191 WARN_ON_ONCE(!irqs_disabled());
192
193 if (unlikely(!cpu_online(cpu)))
194 return false;
195
196 if (check_tick_dependency(&tick_dep_mask))
197 return false;
198
199 if (check_tick_dependency(&ts->tick_dep_mask))
200 return false;
201
202 if (check_tick_dependency(&current->tick_dep_mask))
203 return false;
204
205 if (check_tick_dependency(&current->signal->tick_dep_mask))
206 return false;
207
208 return true;
209 }
210
211 static void nohz_full_kick_func(struct irq_work *work)
212 {
213 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
214 }
215
216 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
217 .func = nohz_full_kick_func,
218 };
219
220 /*
221 * Kick this CPU if it's full dynticks in order to force it to
222 * re-evaluate its dependency on the tick and restart it if necessary.
223 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
224 * is NMI safe.
225 */
226 static void tick_nohz_full_kick(void)
227 {
228 if (!tick_nohz_full_cpu(smp_processor_id()))
229 return;
230
231 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
232 }
233
234 /*
235 * Kick the CPU if it's full dynticks in order to force it to
236 * re-evaluate its dependency on the tick and restart it if necessary.
237 */
238 void tick_nohz_full_kick_cpu(int cpu)
239 {
240 if (!tick_nohz_full_cpu(cpu))
241 return;
242
243 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
244 }
245
246 /*
247 * Kick all full dynticks CPUs in order to force these to re-evaluate
248 * their dependency on the tick and restart it if necessary.
249 */
250 static void tick_nohz_full_kick_all(void)
251 {
252 int cpu;
253
254 if (!tick_nohz_full_running)
255 return;
256
257 preempt_disable();
258 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
259 tick_nohz_full_kick_cpu(cpu);
260 preempt_enable();
261 }
262
263 static void tick_nohz_dep_set_all(atomic_t *dep,
264 enum tick_dep_bits bit)
265 {
266 int prev;
267
268 prev = atomic_fetch_or(BIT(bit), dep);
269 if (!prev)
270 tick_nohz_full_kick_all();
271 }
272
273 /*
274 * Set a global tick dependency. Used by perf events that rely on freq and
275 * by unstable clock.
276 */
277 void tick_nohz_dep_set(enum tick_dep_bits bit)
278 {
279 tick_nohz_dep_set_all(&tick_dep_mask, bit);
280 }
281
282 void tick_nohz_dep_clear(enum tick_dep_bits bit)
283 {
284 atomic_andnot(BIT(bit), &tick_dep_mask);
285 }
286
287 /*
288 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
289 * manage events throttling.
290 */
291 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
292 {
293 int prev;
294 struct tick_sched *ts;
295
296 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
297
298 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
299 if (!prev) {
300 preempt_disable();
301 /* Perf needs local kick that is NMI safe */
302 if (cpu == smp_processor_id()) {
303 tick_nohz_full_kick();
304 } else {
305 /* Remote irq work not NMI-safe */
306 if (!WARN_ON_ONCE(in_nmi()))
307 tick_nohz_full_kick_cpu(cpu);
308 }
309 preempt_enable();
310 }
311 }
312
313 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
314 {
315 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
316
317 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
318 }
319
320 /*
321 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
322 * per task timers.
323 */
324 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
325 {
326 /*
327 * We could optimize this with just kicking the target running the task
328 * if that noise matters for nohz full users.
329 */
330 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
331 }
332
333 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
334 {
335 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
336 }
337
338 /*
339 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
340 * per process timers.
341 */
342 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
343 {
344 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
345 }
346
347 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
348 {
349 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
350 }
351
352 /*
353 * Re-evaluate the need for the tick as we switch the current task.
354 * It might need the tick due to per task/process properties:
355 * perf events, posix CPU timers, ...
356 */
357 void __tick_nohz_task_switch(void)
358 {
359 unsigned long flags;
360 struct tick_sched *ts;
361
362 local_irq_save(flags);
363
364 if (!tick_nohz_full_cpu(smp_processor_id()))
365 goto out;
366
367 ts = this_cpu_ptr(&tick_cpu_sched);
368
369 if (ts->tick_stopped) {
370 if (atomic_read(&current->tick_dep_mask) ||
371 atomic_read(&current->signal->tick_dep_mask))
372 tick_nohz_full_kick();
373 }
374 out:
375 local_irq_restore(flags);
376 }
377
378 /* Parse the boot-time nohz CPU list from the kernel parameters. */
379 static int __init tick_nohz_full_setup(char *str)
380 {
381 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
382 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
383 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
384 free_bootmem_cpumask_var(tick_nohz_full_mask);
385 return 1;
386 }
387 tick_nohz_full_running = true;
388
389 return 1;
390 }
391 __setup("nohz_full=", tick_nohz_full_setup);
392
393 static int tick_nohz_cpu_down(unsigned int cpu)
394 {
395 /*
396 * The boot CPU handles housekeeping duty (unbound timers,
397 * workqueues, timekeeping, ...) on behalf of full dynticks
398 * CPUs. It must remain online when nohz full is enabled.
399 */
400 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
401 return -EBUSY;
402 return 0;
403 }
404
405 static int tick_nohz_init_all(void)
406 {
407 int err = -1;
408
409 #ifdef CONFIG_NO_HZ_FULL_ALL
410 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
411 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
412 return err;
413 }
414 err = 0;
415 cpumask_setall(tick_nohz_full_mask);
416 tick_nohz_full_running = true;
417 #endif
418 return err;
419 }
420
421 void __init tick_nohz_init(void)
422 {
423 int cpu, ret;
424
425 if (!tick_nohz_full_running) {
426 if (tick_nohz_init_all() < 0)
427 return;
428 }
429
430 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
431 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
432 cpumask_clear(tick_nohz_full_mask);
433 tick_nohz_full_running = false;
434 return;
435 }
436
437 /*
438 * Full dynticks uses irq work to drive the tick rescheduling on safe
439 * locking contexts. But then we need irq work to raise its own
440 * interrupts to avoid circular dependency on the tick
441 */
442 if (!arch_irq_work_has_interrupt()) {
443 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
444 cpumask_clear(tick_nohz_full_mask);
445 cpumask_copy(housekeeping_mask, cpu_possible_mask);
446 tick_nohz_full_running = false;
447 return;
448 }
449
450 cpu = smp_processor_id();
451
452 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
453 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
454 cpu);
455 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
456 }
457
458 cpumask_andnot(housekeeping_mask,
459 cpu_possible_mask, tick_nohz_full_mask);
460
461 for_each_cpu(cpu, tick_nohz_full_mask)
462 context_tracking_cpu_set(cpu);
463
464 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
465 "kernel/nohz:predown", NULL,
466 tick_nohz_cpu_down);
467 WARN_ON(ret < 0);
468 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
469 cpumask_pr_args(tick_nohz_full_mask));
470
471 /*
472 * We need at least one CPU to handle housekeeping work such
473 * as timekeeping, unbound timers, workqueues, ...
474 */
475 WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
476 }
477 #endif
478
479 /*
480 * NOHZ - aka dynamic tick functionality
481 */
482 #ifdef CONFIG_NO_HZ_COMMON
483 /*
484 * NO HZ enabled ?
485 */
486 bool tick_nohz_enabled __read_mostly = true;
487 unsigned long tick_nohz_active __read_mostly;
488 /*
489 * Enable / Disable tickless mode
490 */
491 static int __init setup_tick_nohz(char *str)
492 {
493 return (kstrtobool(str, &tick_nohz_enabled) == 0);
494 }
495
496 __setup("nohz=", setup_tick_nohz);
497
498 int tick_nohz_tick_stopped(void)
499 {
500 return __this_cpu_read(tick_cpu_sched.tick_stopped);
501 }
502
503 /**
504 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
505 *
506 * Called from interrupt entry when the CPU was idle
507 *
508 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
509 * must be updated. Otherwise an interrupt handler could use a stale jiffy
510 * value. We do this unconditionally on any CPU, as we don't know whether the
511 * CPU, which has the update task assigned is in a long sleep.
512 */
513 static void tick_nohz_update_jiffies(ktime_t now)
514 {
515 unsigned long flags;
516
517 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
518
519 local_irq_save(flags);
520 tick_do_update_jiffies64(now);
521 local_irq_restore(flags);
522
523 touch_softlockup_watchdog_sched();
524 }
525
526 /*
527 * Updates the per-CPU time idle statistics counters
528 */
529 static void
530 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
531 {
532 ktime_t delta;
533
534 if (ts->idle_active) {
535 delta = ktime_sub(now, ts->idle_entrytime);
536 if (nr_iowait_cpu(cpu) > 0)
537 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
538 else
539 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
540 ts->idle_entrytime = now;
541 }
542
543 if (last_update_time)
544 *last_update_time = ktime_to_us(now);
545
546 }
547
548 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
549 {
550 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
551 ts->idle_active = 0;
552
553 sched_clock_idle_wakeup_event(0);
554 }
555
556 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
557 {
558 ktime_t now = ktime_get();
559
560 ts->idle_entrytime = now;
561 ts->idle_active = 1;
562 sched_clock_idle_sleep_event();
563 return now;
564 }
565
566 /**
567 * get_cpu_idle_time_us - get the total idle time of a CPU
568 * @cpu: CPU number to query
569 * @last_update_time: variable to store update time in. Do not update
570 * counters if NULL.
571 *
572 * Return the cumulative idle time (since boot) for a given
573 * CPU, in microseconds.
574 *
575 * This time is measured via accounting rather than sampling,
576 * and is as accurate as ktime_get() is.
577 *
578 * This function returns -1 if NOHZ is not enabled.
579 */
580 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
581 {
582 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
583 ktime_t now, idle;
584
585 if (!tick_nohz_active)
586 return -1;
587
588 now = ktime_get();
589 if (last_update_time) {
590 update_ts_time_stats(cpu, ts, now, last_update_time);
591 idle = ts->idle_sleeptime;
592 } else {
593 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
594 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
595
596 idle = ktime_add(ts->idle_sleeptime, delta);
597 } else {
598 idle = ts->idle_sleeptime;
599 }
600 }
601
602 return ktime_to_us(idle);
603
604 }
605 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
606
607 /**
608 * get_cpu_iowait_time_us - get the total iowait time of a CPU
609 * @cpu: CPU number to query
610 * @last_update_time: variable to store update time in. Do not update
611 * counters if NULL.
612 *
613 * Return the cumulative iowait time (since boot) for a given
614 * CPU, in microseconds.
615 *
616 * This time is measured via accounting rather than sampling,
617 * and is as accurate as ktime_get() is.
618 *
619 * This function returns -1 if NOHZ is not enabled.
620 */
621 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
622 {
623 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
624 ktime_t now, iowait;
625
626 if (!tick_nohz_active)
627 return -1;
628
629 now = ktime_get();
630 if (last_update_time) {
631 update_ts_time_stats(cpu, ts, now, last_update_time);
632 iowait = ts->iowait_sleeptime;
633 } else {
634 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
635 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
636
637 iowait = ktime_add(ts->iowait_sleeptime, delta);
638 } else {
639 iowait = ts->iowait_sleeptime;
640 }
641 }
642
643 return ktime_to_us(iowait);
644 }
645 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
646
647 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
648 {
649 hrtimer_cancel(&ts->sched_timer);
650 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
651
652 /* Forward the time to expire in the future */
653 hrtimer_forward(&ts->sched_timer, now, tick_period);
654
655 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
656 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
657 else
658 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
659 }
660
661 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
662 ktime_t now, int cpu)
663 {
664 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
665 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
666 unsigned long seq, basejiff;
667 ktime_t tick;
668
669 /* Read jiffies and the time when jiffies were updated last */
670 do {
671 seq = read_seqbegin(&jiffies_lock);
672 basemono = last_jiffies_update;
673 basejiff = jiffies;
674 } while (read_seqretry(&jiffies_lock, seq));
675 ts->last_jiffies = basejiff;
676
677 if (rcu_needs_cpu(basemono, &next_rcu) ||
678 arch_needs_cpu() || irq_work_needs_cpu()) {
679 next_tick = basemono + TICK_NSEC;
680 } else {
681 /*
682 * Get the next pending timer. If high resolution
683 * timers are enabled this only takes the timer wheel
684 * timers into account. If high resolution timers are
685 * disabled this also looks at the next expiring
686 * hrtimer.
687 */
688 next_tmr = get_next_timer_interrupt(basejiff, basemono);
689 ts->next_timer = next_tmr;
690 /* Take the next rcu event into account */
691 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
692 }
693
694 /*
695 * If the tick is due in the next period, keep it ticking or
696 * force prod the timer.
697 */
698 delta = next_tick - basemono;
699 if (delta <= (u64)TICK_NSEC) {
700 tick = 0;
701
702 /*
703 * Tell the timer code that the base is not idle, i.e. undo
704 * the effect of get_next_timer_interrupt():
705 */
706 timer_clear_idle();
707 /*
708 * We've not stopped the tick yet, and there's a timer in the
709 * next period, so no point in stopping it either, bail.
710 */
711 if (!ts->tick_stopped)
712 goto out;
713
714 /*
715 * If, OTOH, we did stop it, but there's a pending (expired)
716 * timer reprogram the timer hardware to fire now.
717 *
718 * We will not restart the tick proper, just prod the timer
719 * hardware into firing an interrupt to process the pending
720 * timers. Just like tick_irq_exit() will not restart the tick
721 * for 'normal' interrupts.
722 *
723 * Only once we exit the idle loop will we re-enable the tick,
724 * see tick_nohz_idle_exit().
725 */
726 if (delta == 0) {
727 tick_nohz_restart(ts, now);
728 goto out;
729 }
730 }
731
732 /*
733 * If this CPU is the one which updates jiffies, then give up
734 * the assignment and let it be taken by the CPU which runs
735 * the tick timer next, which might be this CPU as well. If we
736 * don't drop this here the jiffies might be stale and
737 * do_timer() never invoked. Keep track of the fact that it
738 * was the one which had the do_timer() duty last. If this CPU
739 * is the one which had the do_timer() duty last, we limit the
740 * sleep time to the timekeeping max_deferment value.
741 * Otherwise we can sleep as long as we want.
742 */
743 delta = timekeeping_max_deferment();
744 if (cpu == tick_do_timer_cpu) {
745 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
746 ts->do_timer_last = 1;
747 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
748 delta = KTIME_MAX;
749 ts->do_timer_last = 0;
750 } else if (!ts->do_timer_last) {
751 delta = KTIME_MAX;
752 }
753
754 #ifdef CONFIG_NO_HZ_FULL
755 /* Limit the tick delta to the maximum scheduler deferment */
756 if (!ts->inidle)
757 delta = min(delta, scheduler_tick_max_deferment());
758 #endif
759
760 /* Calculate the next expiry time */
761 if (delta < (KTIME_MAX - basemono))
762 expires = basemono + delta;
763 else
764 expires = KTIME_MAX;
765
766 expires = min_t(u64, expires, next_tick);
767 tick = expires;
768
769 /* Skip reprogram of event if its not changed */
770 if (ts->tick_stopped && (expires == ts->next_tick))
771 goto out;
772
773 /*
774 * nohz_stop_sched_tick can be called several times before
775 * the nohz_restart_sched_tick is called. This happens when
776 * interrupts arrive which do not cause a reschedule. In the
777 * first call we save the current tick time, so we can restart
778 * the scheduler tick in nohz_restart_sched_tick.
779 */
780 if (!ts->tick_stopped) {
781 nohz_balance_enter_idle(cpu);
782 calc_load_enter_idle();
783 cpu_load_update_nohz_start();
784
785 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
786 ts->tick_stopped = 1;
787 trace_tick_stop(1, TICK_DEP_MASK_NONE);
788 }
789
790 ts->next_tick = tick;
791
792 /*
793 * If the expiration time == KTIME_MAX, then we simply stop
794 * the tick timer.
795 */
796 if (unlikely(expires == KTIME_MAX)) {
797 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
798 hrtimer_cancel(&ts->sched_timer);
799 goto out;
800 }
801
802 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
803 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
804 else
805 tick_program_event(tick, 1);
806 out:
807 /*
808 * Update the estimated sleep length until the next timer
809 * (not only the tick).
810 */
811 ts->sleep_length = ktime_sub(dev->next_event, now);
812 return tick;
813 }
814
815 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
816 {
817 /* Update jiffies first */
818 tick_do_update_jiffies64(now);
819 cpu_load_update_nohz_stop();
820
821 /*
822 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
823 * the clock forward checks in the enqueue path:
824 */
825 timer_clear_idle();
826
827 calc_load_exit_idle();
828 touch_softlockup_watchdog_sched();
829 /*
830 * Cancel the scheduled timer and restore the tick
831 */
832 ts->tick_stopped = 0;
833 ts->idle_exittime = now;
834
835 tick_nohz_restart(ts, now);
836 }
837
838 static void tick_nohz_full_update_tick(struct tick_sched *ts)
839 {
840 #ifdef CONFIG_NO_HZ_FULL
841 int cpu = smp_processor_id();
842
843 if (!tick_nohz_full_cpu(cpu))
844 return;
845
846 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
847 return;
848
849 if (can_stop_full_tick(cpu, ts))
850 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
851 else if (ts->tick_stopped)
852 tick_nohz_restart_sched_tick(ts, ktime_get());
853 #endif
854 }
855
856 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
857 {
858 /*
859 * If this CPU is offline and it is the one which updates
860 * jiffies, then give up the assignment and let it be taken by
861 * the CPU which runs the tick timer next. If we don't drop
862 * this here the jiffies might be stale and do_timer() never
863 * invoked.
864 */
865 if (unlikely(!cpu_online(cpu))) {
866 if (cpu == tick_do_timer_cpu)
867 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
868 return false;
869 }
870
871 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
872 ts->sleep_length = NSEC_PER_SEC / HZ;
873 return false;
874 }
875
876 if (need_resched())
877 return false;
878
879 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
880 static int ratelimit;
881
882 if (ratelimit < 10 &&
883 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
884 pr_warn("NOHZ: local_softirq_pending %02x\n",
885 (unsigned int) local_softirq_pending());
886 ratelimit++;
887 }
888 return false;
889 }
890
891 if (tick_nohz_full_enabled()) {
892 /*
893 * Keep the tick alive to guarantee timekeeping progression
894 * if there are full dynticks CPUs around
895 */
896 if (tick_do_timer_cpu == cpu)
897 return false;
898 /*
899 * Boot safety: make sure the timekeeping duty has been
900 * assigned before entering dyntick-idle mode,
901 */
902 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
903 return false;
904 }
905
906 return true;
907 }
908
909 static void __tick_nohz_idle_enter(struct tick_sched *ts)
910 {
911 ktime_t now, expires;
912 int cpu = smp_processor_id();
913
914 now = tick_nohz_start_idle(ts);
915
916 if (can_stop_idle_tick(cpu, ts)) {
917 int was_stopped = ts->tick_stopped;
918
919 ts->idle_calls++;
920
921 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
922 if (expires > 0LL) {
923 ts->idle_sleeps++;
924 ts->idle_expires = expires;
925 }
926
927 if (!was_stopped && ts->tick_stopped)
928 ts->idle_jiffies = ts->last_jiffies;
929 }
930 }
931
932 /**
933 * tick_nohz_idle_enter - stop the idle tick from the idle task
934 *
935 * When the next event is more than a tick into the future, stop the idle tick
936 * Called when we start the idle loop.
937 *
938 * The arch is responsible of calling:
939 *
940 * - rcu_idle_enter() after its last use of RCU before the CPU is put
941 * to sleep.
942 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
943 */
944 void tick_nohz_idle_enter(void)
945 {
946 struct tick_sched *ts;
947
948 WARN_ON_ONCE(irqs_disabled());
949
950 /*
951 * Update the idle state in the scheduler domain hierarchy
952 * when tick_nohz_stop_sched_tick() is called from the idle loop.
953 * State will be updated to busy during the first busy tick after
954 * exiting idle.
955 */
956 set_cpu_sd_state_idle();
957
958 local_irq_disable();
959
960 ts = this_cpu_ptr(&tick_cpu_sched);
961 ts->inidle = 1;
962 __tick_nohz_idle_enter(ts);
963
964 local_irq_enable();
965 }
966
967 /**
968 * tick_nohz_irq_exit - update next tick event from interrupt exit
969 *
970 * When an interrupt fires while we are idle and it doesn't cause
971 * a reschedule, it may still add, modify or delete a timer, enqueue
972 * an RCU callback, etc...
973 * So we need to re-calculate and reprogram the next tick event.
974 */
975 void tick_nohz_irq_exit(void)
976 {
977 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
978
979 if (ts->inidle)
980 __tick_nohz_idle_enter(ts);
981 else
982 tick_nohz_full_update_tick(ts);
983 }
984
985 /**
986 * tick_nohz_get_sleep_length - return the length of the current sleep
987 *
988 * Called from power state control code with interrupts disabled
989 */
990 ktime_t tick_nohz_get_sleep_length(void)
991 {
992 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
993
994 return ts->sleep_length;
995 }
996
997 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
998 {
999 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1000 unsigned long ticks;
1001
1002 if (vtime_accounting_cpu_enabled())
1003 return;
1004 /*
1005 * We stopped the tick in idle. Update process times would miss the
1006 * time we slept as update_process_times does only a 1 tick
1007 * accounting. Enforce that this is accounted to idle !
1008 */
1009 ticks = jiffies - ts->idle_jiffies;
1010 /*
1011 * We might be one off. Do not randomly account a huge number of ticks!
1012 */
1013 if (ticks && ticks < LONG_MAX)
1014 account_idle_ticks(ticks);
1015 #endif
1016 }
1017
1018 /**
1019 * tick_nohz_idle_exit - restart the idle tick from the idle task
1020 *
1021 * Restart the idle tick when the CPU is woken up from idle
1022 * This also exit the RCU extended quiescent state. The CPU
1023 * can use RCU again after this function is called.
1024 */
1025 void tick_nohz_idle_exit(void)
1026 {
1027 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1028 ktime_t now;
1029
1030 local_irq_disable();
1031
1032 WARN_ON_ONCE(!ts->inidle);
1033
1034 ts->inidle = 0;
1035
1036 if (ts->idle_active || ts->tick_stopped)
1037 now = ktime_get();
1038
1039 if (ts->idle_active)
1040 tick_nohz_stop_idle(ts, now);
1041
1042 if (ts->tick_stopped) {
1043 tick_nohz_restart_sched_tick(ts, now);
1044 tick_nohz_account_idle_ticks(ts);
1045 }
1046
1047 local_irq_enable();
1048 }
1049
1050 /*
1051 * The nohz low res interrupt handler
1052 */
1053 static void tick_nohz_handler(struct clock_event_device *dev)
1054 {
1055 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1056 struct pt_regs *regs = get_irq_regs();
1057 ktime_t now = ktime_get();
1058
1059 dev->next_event = KTIME_MAX;
1060
1061 tick_sched_do_timer(now);
1062 tick_sched_handle(ts, regs);
1063
1064 /* No need to reprogram if we are running tickless */
1065 if (unlikely(ts->tick_stopped))
1066 return;
1067
1068 hrtimer_forward(&ts->sched_timer, now, tick_period);
1069 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1070 }
1071
1072 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1073 {
1074 if (!tick_nohz_enabled)
1075 return;
1076 ts->nohz_mode = mode;
1077 /* One update is enough */
1078 if (!test_and_set_bit(0, &tick_nohz_active))
1079 timers_update_migration(true);
1080 }
1081
1082 /**
1083 * tick_nohz_switch_to_nohz - switch to nohz mode
1084 */
1085 static void tick_nohz_switch_to_nohz(void)
1086 {
1087 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1088 ktime_t next;
1089
1090 if (!tick_nohz_enabled)
1091 return;
1092
1093 if (tick_switch_to_oneshot(tick_nohz_handler))
1094 return;
1095
1096 /*
1097 * Recycle the hrtimer in ts, so we can share the
1098 * hrtimer_forward with the highres code.
1099 */
1100 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1101 /* Get the next period */
1102 next = tick_init_jiffy_update();
1103
1104 hrtimer_set_expires(&ts->sched_timer, next);
1105 hrtimer_forward_now(&ts->sched_timer, tick_period);
1106 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1107 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1108 }
1109
1110 static inline void tick_nohz_irq_enter(void)
1111 {
1112 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1113 ktime_t now;
1114
1115 if (!ts->idle_active && !ts->tick_stopped)
1116 return;
1117 now = ktime_get();
1118 if (ts->idle_active)
1119 tick_nohz_stop_idle(ts, now);
1120 if (ts->tick_stopped)
1121 tick_nohz_update_jiffies(now);
1122 }
1123
1124 #else
1125
1126 static inline void tick_nohz_switch_to_nohz(void) { }
1127 static inline void tick_nohz_irq_enter(void) { }
1128 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1129
1130 #endif /* CONFIG_NO_HZ_COMMON */
1131
1132 /*
1133 * Called from irq_enter to notify about the possible interruption of idle()
1134 */
1135 void tick_irq_enter(void)
1136 {
1137 tick_check_oneshot_broadcast_this_cpu();
1138 tick_nohz_irq_enter();
1139 }
1140
1141 /*
1142 * High resolution timer specific code
1143 */
1144 #ifdef CONFIG_HIGH_RES_TIMERS
1145 /*
1146 * We rearm the timer until we get disabled by the idle code.
1147 * Called with interrupts disabled.
1148 */
1149 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1150 {
1151 struct tick_sched *ts =
1152 container_of(timer, struct tick_sched, sched_timer);
1153 struct pt_regs *regs = get_irq_regs();
1154 ktime_t now = ktime_get();
1155
1156 tick_sched_do_timer(now);
1157
1158 /*
1159 * Do not call, when we are not in irq context and have
1160 * no valid regs pointer
1161 */
1162 if (regs)
1163 tick_sched_handle(ts, regs);
1164
1165 /* No need to reprogram if we are in idle or full dynticks mode */
1166 if (unlikely(ts->tick_stopped))
1167 return HRTIMER_NORESTART;
1168
1169 hrtimer_forward(timer, now, tick_period);
1170
1171 return HRTIMER_RESTART;
1172 }
1173
1174 static int sched_skew_tick;
1175
1176 static int __init skew_tick(char *str)
1177 {
1178 get_option(&str, &sched_skew_tick);
1179
1180 return 0;
1181 }
1182 early_param("skew_tick", skew_tick);
1183
1184 /**
1185 * tick_setup_sched_timer - setup the tick emulation timer
1186 */
1187 void tick_setup_sched_timer(void)
1188 {
1189 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1190 ktime_t now = ktime_get();
1191
1192 /*
1193 * Emulate tick processing via per-CPU hrtimers:
1194 */
1195 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1196 ts->sched_timer.function = tick_sched_timer;
1197
1198 /* Get the next period (per-CPU) */
1199 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1200
1201 /* Offset the tick to avert jiffies_lock contention. */
1202 if (sched_skew_tick) {
1203 u64 offset = ktime_to_ns(tick_period) >> 1;
1204 do_div(offset, num_possible_cpus());
1205 offset *= smp_processor_id();
1206 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1207 }
1208
1209 hrtimer_forward(&ts->sched_timer, now, tick_period);
1210 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1211 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1212 }
1213 #endif /* HIGH_RES_TIMERS */
1214
1215 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1216 void tick_cancel_sched_timer(int cpu)
1217 {
1218 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1219
1220 # ifdef CONFIG_HIGH_RES_TIMERS
1221 if (ts->sched_timer.base)
1222 hrtimer_cancel(&ts->sched_timer);
1223 # endif
1224
1225 memset(ts, 0, sizeof(*ts));
1226 }
1227 #endif
1228
1229 /**
1230 * Async notification about clocksource changes
1231 */
1232 void tick_clock_notify(void)
1233 {
1234 int cpu;
1235
1236 for_each_possible_cpu(cpu)
1237 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1238 }
1239
1240 /*
1241 * Async notification about clock event changes
1242 */
1243 void tick_oneshot_notify(void)
1244 {
1245 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1246
1247 set_bit(0, &ts->check_clocks);
1248 }
1249
1250 /**
1251 * Check, if a change happened, which makes oneshot possible.
1252 *
1253 * Called cyclic from the hrtimer softirq (driven by the timer
1254 * softirq) allow_nohz signals, that we can switch into low-res nohz
1255 * mode, because high resolution timers are disabled (either compile
1256 * or runtime). Called with interrupts disabled.
1257 */
1258 int tick_check_oneshot_change(int allow_nohz)
1259 {
1260 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1261
1262 if (!test_and_clear_bit(0, &ts->check_clocks))
1263 return 0;
1264
1265 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1266 return 0;
1267
1268 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1269 return 0;
1270
1271 if (!allow_nohz)
1272 return 1;
1273
1274 tick_nohz_switch_to_nohz();
1275 return 0;
1276 }