]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/time/tick-sched.c
Merge branch 'for-2.6.26' of git://git.kernel.dk/linux-2.6-block
[mirror_ubuntu-bionic-kernel.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23
24 #include <asm/irq_regs.h>
25
26 #include "tick-internal.h"
27
28 /*
29 * Per cpu nohz control structure
30 */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32
33 /*
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
35 */
36 static ktime_t last_jiffies_update;
37
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 return &per_cpu(tick_cpu_sched, cpu);
41 }
42
43 /*
44 * Must be called with interrupts disabled !
45 */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 unsigned long ticks = 0;
49 ktime_t delta;
50
51 /* Reevalute with xtime_lock held */
52 write_seqlock(&xtime_lock);
53
54 delta = ktime_sub(now, last_jiffies_update);
55 if (delta.tv64 >= tick_period.tv64) {
56
57 delta = ktime_sub(delta, tick_period);
58 last_jiffies_update = ktime_add(last_jiffies_update,
59 tick_period);
60
61 /* Slow path for long timeouts */
62 if (unlikely(delta.tv64 >= tick_period.tv64)) {
63 s64 incr = ktime_to_ns(tick_period);
64
65 ticks = ktime_divns(delta, incr);
66
67 last_jiffies_update = ktime_add_ns(last_jiffies_update,
68 incr * ticks);
69 }
70 do_timer(++ticks);
71 }
72 write_sequnlock(&xtime_lock);
73 }
74
75 /*
76 * Initialize and return retrieve the jiffies update.
77 */
78 static ktime_t tick_init_jiffy_update(void)
79 {
80 ktime_t period;
81
82 write_seqlock(&xtime_lock);
83 /* Did we start the jiffies update yet ? */
84 if (last_jiffies_update.tv64 == 0)
85 last_jiffies_update = tick_next_period;
86 period = last_jiffies_update;
87 write_sequnlock(&xtime_lock);
88 return period;
89 }
90
91 /*
92 * NOHZ - aka dynamic tick functionality
93 */
94 #ifdef CONFIG_NO_HZ
95 /*
96 * NO HZ enabled ?
97 */
98 static int tick_nohz_enabled __read_mostly = 1;
99
100 /*
101 * Enable / Disable tickless mode
102 */
103 static int __init setup_tick_nohz(char *str)
104 {
105 if (!strcmp(str, "off"))
106 tick_nohz_enabled = 0;
107 else if (!strcmp(str, "on"))
108 tick_nohz_enabled = 1;
109 else
110 return 0;
111 return 1;
112 }
113
114 __setup("nohz=", setup_tick_nohz);
115
116 /**
117 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
118 *
119 * Called from interrupt entry when the CPU was idle
120 *
121 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
122 * must be updated. Otherwise an interrupt handler could use a stale jiffy
123 * value. We do this unconditionally on any cpu, as we don't know whether the
124 * cpu, which has the update task assigned is in a long sleep.
125 */
126 void tick_nohz_update_jiffies(void)
127 {
128 int cpu = smp_processor_id();
129 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
130 unsigned long flags;
131 ktime_t now;
132
133 if (!ts->tick_stopped)
134 return;
135
136 touch_softlockup_watchdog();
137
138 cpu_clear(cpu, nohz_cpu_mask);
139 now = ktime_get();
140 ts->idle_waketime = now;
141
142 local_irq_save(flags);
143 tick_do_update_jiffies64(now);
144 local_irq_restore(flags);
145 }
146
147 void tick_nohz_stop_idle(int cpu)
148 {
149 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
150
151 if (ts->idle_active) {
152 ktime_t now, delta;
153 now = ktime_get();
154 delta = ktime_sub(now, ts->idle_entrytime);
155 ts->idle_lastupdate = now;
156 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
157 ts->idle_active = 0;
158 }
159 }
160
161 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
162 {
163 ktime_t now, delta;
164
165 now = ktime_get();
166 if (ts->idle_active) {
167 delta = ktime_sub(now, ts->idle_entrytime);
168 ts->idle_lastupdate = now;
169 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
170 }
171 ts->idle_entrytime = now;
172 ts->idle_active = 1;
173 return now;
174 }
175
176 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
177 {
178 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
179
180 *last_update_time = ktime_to_us(ts->idle_lastupdate);
181 return ktime_to_us(ts->idle_sleeptime);
182 }
183
184 /**
185 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
186 *
187 * When the next event is more than a tick into the future, stop the idle tick
188 * Called either from the idle loop or from irq_exit() when an idle period was
189 * just interrupted by an interrupt which did not cause a reschedule.
190 */
191 void tick_nohz_stop_sched_tick(void)
192 {
193 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
194 struct tick_sched *ts;
195 ktime_t last_update, expires, now;
196 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
197 int cpu;
198
199 local_irq_save(flags);
200
201 cpu = smp_processor_id();
202 ts = &per_cpu(tick_cpu_sched, cpu);
203 now = tick_nohz_start_idle(ts);
204
205 /*
206 * If this cpu is offline and it is the one which updates
207 * jiffies, then give up the assignment and let it be taken by
208 * the cpu which runs the tick timer next. If we don't drop
209 * this here the jiffies might be stale and do_timer() never
210 * invoked.
211 */
212 if (unlikely(!cpu_online(cpu))) {
213 if (cpu == tick_do_timer_cpu)
214 tick_do_timer_cpu = -1;
215 }
216
217 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
218 goto end;
219
220 if (need_resched())
221 goto end;
222
223 if (unlikely(local_softirq_pending())) {
224 static int ratelimit;
225
226 if (ratelimit < 10) {
227 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
228 local_softirq_pending());
229 ratelimit++;
230 }
231 }
232
233 ts->idle_calls++;
234 /* Read jiffies and the time when jiffies were updated last */
235 do {
236 seq = read_seqbegin(&xtime_lock);
237 last_update = last_jiffies_update;
238 last_jiffies = jiffies;
239 } while (read_seqretry(&xtime_lock, seq));
240
241 /* Get the next timer wheel timer */
242 next_jiffies = get_next_timer_interrupt(last_jiffies);
243 delta_jiffies = next_jiffies - last_jiffies;
244
245 if (rcu_needs_cpu(cpu))
246 delta_jiffies = 1;
247 /*
248 * Do not stop the tick, if we are only one off
249 * or if the cpu is required for rcu
250 */
251 if (!ts->tick_stopped && delta_jiffies == 1)
252 goto out;
253
254 /* Schedule the tick, if we are at least one jiffie off */
255 if ((long)delta_jiffies >= 1) {
256
257 if (delta_jiffies > 1)
258 cpu_set(cpu, nohz_cpu_mask);
259 /*
260 * nohz_stop_sched_tick can be called several times before
261 * the nohz_restart_sched_tick is called. This happens when
262 * interrupts arrive which do not cause a reschedule. In the
263 * first call we save the current tick time, so we can restart
264 * the scheduler tick in nohz_restart_sched_tick.
265 */
266 if (!ts->tick_stopped) {
267 if (select_nohz_load_balancer(1)) {
268 /*
269 * sched tick not stopped!
270 */
271 cpu_clear(cpu, nohz_cpu_mask);
272 goto out;
273 }
274
275 ts->idle_tick = ts->sched_timer.expires;
276 ts->tick_stopped = 1;
277 ts->idle_jiffies = last_jiffies;
278 rcu_enter_nohz();
279 }
280
281 /*
282 * If this cpu is the one which updates jiffies, then
283 * give up the assignment and let it be taken by the
284 * cpu which runs the tick timer next, which might be
285 * this cpu as well. If we don't drop this here the
286 * jiffies might be stale and do_timer() never
287 * invoked.
288 */
289 if (cpu == tick_do_timer_cpu)
290 tick_do_timer_cpu = -1;
291
292 ts->idle_sleeps++;
293
294 /*
295 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
296 * there is no timer pending or at least extremly far
297 * into the future (12 days for HZ=1000). In this case
298 * we simply stop the tick timer:
299 */
300 if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
301 ts->idle_expires.tv64 = KTIME_MAX;
302 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
303 hrtimer_cancel(&ts->sched_timer);
304 goto out;
305 }
306
307 /*
308 * calculate the expiry time for the next timer wheel
309 * timer
310 */
311 expires = ktime_add_ns(last_update, tick_period.tv64 *
312 delta_jiffies);
313 ts->idle_expires = expires;
314
315 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
316 hrtimer_start(&ts->sched_timer, expires,
317 HRTIMER_MODE_ABS);
318 /* Check, if the timer was already in the past */
319 if (hrtimer_active(&ts->sched_timer))
320 goto out;
321 } else if (!tick_program_event(expires, 0))
322 goto out;
323 /*
324 * We are past the event already. So we crossed a
325 * jiffie boundary. Update jiffies and raise the
326 * softirq.
327 */
328 tick_do_update_jiffies64(ktime_get());
329 cpu_clear(cpu, nohz_cpu_mask);
330 }
331 raise_softirq_irqoff(TIMER_SOFTIRQ);
332 out:
333 ts->next_jiffies = next_jiffies;
334 ts->last_jiffies = last_jiffies;
335 ts->sleep_length = ktime_sub(dev->next_event, now);
336 end:
337 local_irq_restore(flags);
338 }
339
340 /**
341 * tick_nohz_get_sleep_length - return the length of the current sleep
342 *
343 * Called from power state control code with interrupts disabled
344 */
345 ktime_t tick_nohz_get_sleep_length(void)
346 {
347 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
348
349 return ts->sleep_length;
350 }
351
352 /**
353 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
354 *
355 * Restart the idle tick when the CPU is woken up from idle
356 */
357 void tick_nohz_restart_sched_tick(void)
358 {
359 int cpu = smp_processor_id();
360 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
361 unsigned long ticks;
362 ktime_t now;
363
364 local_irq_disable();
365 tick_nohz_stop_idle(cpu);
366
367 if (!ts->tick_stopped) {
368 local_irq_enable();
369 return;
370 }
371
372 rcu_exit_nohz();
373
374 /* Update jiffies first */
375 select_nohz_load_balancer(0);
376 now = ktime_get();
377 tick_do_update_jiffies64(now);
378 cpu_clear(cpu, nohz_cpu_mask);
379
380 /*
381 * We stopped the tick in idle. Update process times would miss the
382 * time we slept as update_process_times does only a 1 tick
383 * accounting. Enforce that this is accounted to idle !
384 */
385 ticks = jiffies - ts->idle_jiffies;
386 /*
387 * We might be one off. Do not randomly account a huge number of ticks!
388 */
389 if (ticks && ticks < LONG_MAX) {
390 add_preempt_count(HARDIRQ_OFFSET);
391 account_system_time(current, HARDIRQ_OFFSET,
392 jiffies_to_cputime(ticks));
393 sub_preempt_count(HARDIRQ_OFFSET);
394 }
395
396 /*
397 * Cancel the scheduled timer and restore the tick
398 */
399 ts->tick_stopped = 0;
400 ts->idle_exittime = now;
401 hrtimer_cancel(&ts->sched_timer);
402 ts->sched_timer.expires = ts->idle_tick;
403
404 while (1) {
405 /* Forward the time to expire in the future */
406 hrtimer_forward(&ts->sched_timer, now, tick_period);
407
408 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
409 hrtimer_start(&ts->sched_timer,
410 ts->sched_timer.expires,
411 HRTIMER_MODE_ABS);
412 /* Check, if the timer was already in the past */
413 if (hrtimer_active(&ts->sched_timer))
414 break;
415 } else {
416 if (!tick_program_event(ts->sched_timer.expires, 0))
417 break;
418 }
419 /* Update jiffies and reread time */
420 tick_do_update_jiffies64(now);
421 now = ktime_get();
422 }
423 local_irq_enable();
424 }
425
426 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
427 {
428 hrtimer_forward(&ts->sched_timer, now, tick_period);
429 return tick_program_event(ts->sched_timer.expires, 0);
430 }
431
432 /*
433 * The nohz low res interrupt handler
434 */
435 static void tick_nohz_handler(struct clock_event_device *dev)
436 {
437 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
438 struct pt_regs *regs = get_irq_regs();
439 int cpu = smp_processor_id();
440 ktime_t now = ktime_get();
441
442 dev->next_event.tv64 = KTIME_MAX;
443
444 /*
445 * Check if the do_timer duty was dropped. We don't care about
446 * concurrency: This happens only when the cpu in charge went
447 * into a long sleep. If two cpus happen to assign themself to
448 * this duty, then the jiffies update is still serialized by
449 * xtime_lock.
450 */
451 if (unlikely(tick_do_timer_cpu == -1))
452 tick_do_timer_cpu = cpu;
453
454 /* Check, if the jiffies need an update */
455 if (tick_do_timer_cpu == cpu)
456 tick_do_update_jiffies64(now);
457
458 /*
459 * When we are idle and the tick is stopped, we have to touch
460 * the watchdog as we might not schedule for a really long
461 * time. This happens on complete idle SMP systems while
462 * waiting on the login prompt. We also increment the "start
463 * of idle" jiffy stamp so the idle accounting adjustment we
464 * do when we go busy again does not account too much ticks.
465 */
466 if (ts->tick_stopped) {
467 touch_softlockup_watchdog();
468 ts->idle_jiffies++;
469 }
470
471 update_process_times(user_mode(regs));
472 profile_tick(CPU_PROFILING);
473
474 /* Do not restart, when we are in the idle loop */
475 if (ts->tick_stopped)
476 return;
477
478 while (tick_nohz_reprogram(ts, now)) {
479 now = ktime_get();
480 tick_do_update_jiffies64(now);
481 }
482 }
483
484 /**
485 * tick_nohz_switch_to_nohz - switch to nohz mode
486 */
487 static void tick_nohz_switch_to_nohz(void)
488 {
489 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
490 ktime_t next;
491
492 if (!tick_nohz_enabled)
493 return;
494
495 local_irq_disable();
496 if (tick_switch_to_oneshot(tick_nohz_handler)) {
497 local_irq_enable();
498 return;
499 }
500
501 ts->nohz_mode = NOHZ_MODE_LOWRES;
502
503 /*
504 * Recycle the hrtimer in ts, so we can share the
505 * hrtimer_forward with the highres code.
506 */
507 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
508 /* Get the next period */
509 next = tick_init_jiffy_update();
510
511 for (;;) {
512 ts->sched_timer.expires = next;
513 if (!tick_program_event(next, 0))
514 break;
515 next = ktime_add(next, tick_period);
516 }
517 local_irq_enable();
518
519 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
520 smp_processor_id());
521 }
522
523 #else
524
525 static inline void tick_nohz_switch_to_nohz(void) { }
526
527 #endif /* NO_HZ */
528
529 /*
530 * High resolution timer specific code
531 */
532 #ifdef CONFIG_HIGH_RES_TIMERS
533 /*
534 * We rearm the timer until we get disabled by the idle code.
535 * Called with interrupts disabled and timer->base->cpu_base->lock held.
536 */
537 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
538 {
539 struct tick_sched *ts =
540 container_of(timer, struct tick_sched, sched_timer);
541 struct pt_regs *regs = get_irq_regs();
542 ktime_t now = ktime_get();
543 int cpu = smp_processor_id();
544
545 #ifdef CONFIG_NO_HZ
546 /*
547 * Check if the do_timer duty was dropped. We don't care about
548 * concurrency: This happens only when the cpu in charge went
549 * into a long sleep. If two cpus happen to assign themself to
550 * this duty, then the jiffies update is still serialized by
551 * xtime_lock.
552 */
553 if (unlikely(tick_do_timer_cpu == -1))
554 tick_do_timer_cpu = cpu;
555 #endif
556
557 /* Check, if the jiffies need an update */
558 if (tick_do_timer_cpu == cpu)
559 tick_do_update_jiffies64(now);
560
561 /*
562 * Do not call, when we are not in irq context and have
563 * no valid regs pointer
564 */
565 if (regs) {
566 /*
567 * When we are idle and the tick is stopped, we have to touch
568 * the watchdog as we might not schedule for a really long
569 * time. This happens on complete idle SMP systems while
570 * waiting on the login prompt. We also increment the "start of
571 * idle" jiffy stamp so the idle accounting adjustment we do
572 * when we go busy again does not account too much ticks.
573 */
574 if (ts->tick_stopped) {
575 touch_softlockup_watchdog();
576 ts->idle_jiffies++;
577 }
578 update_process_times(user_mode(regs));
579 profile_tick(CPU_PROFILING);
580 }
581
582 /* Do not restart, when we are in the idle loop */
583 if (ts->tick_stopped)
584 return HRTIMER_NORESTART;
585
586 hrtimer_forward(timer, now, tick_period);
587
588 return HRTIMER_RESTART;
589 }
590
591 /**
592 * tick_setup_sched_timer - setup the tick emulation timer
593 */
594 void tick_setup_sched_timer(void)
595 {
596 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
597 ktime_t now = ktime_get();
598 u64 offset;
599
600 /*
601 * Emulate tick processing via per-CPU hrtimers:
602 */
603 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
604 ts->sched_timer.function = tick_sched_timer;
605 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
606
607 /* Get the next period (per cpu) */
608 ts->sched_timer.expires = tick_init_jiffy_update();
609 offset = ktime_to_ns(tick_period) >> 1;
610 do_div(offset, num_possible_cpus());
611 offset *= smp_processor_id();
612 ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
613
614 for (;;) {
615 hrtimer_forward(&ts->sched_timer, now, tick_period);
616 hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
617 HRTIMER_MODE_ABS);
618 /* Check, if the timer was already in the past */
619 if (hrtimer_active(&ts->sched_timer))
620 break;
621 now = ktime_get();
622 }
623
624 #ifdef CONFIG_NO_HZ
625 if (tick_nohz_enabled)
626 ts->nohz_mode = NOHZ_MODE_HIGHRES;
627 #endif
628 }
629
630 void tick_cancel_sched_timer(int cpu)
631 {
632 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
633
634 if (ts->sched_timer.base)
635 hrtimer_cancel(&ts->sched_timer);
636
637 ts->nohz_mode = NOHZ_MODE_INACTIVE;
638 }
639 #endif /* HIGH_RES_TIMERS */
640
641 /**
642 * Async notification about clocksource changes
643 */
644 void tick_clock_notify(void)
645 {
646 int cpu;
647
648 for_each_possible_cpu(cpu)
649 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
650 }
651
652 /*
653 * Async notification about clock event changes
654 */
655 void tick_oneshot_notify(void)
656 {
657 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
658
659 set_bit(0, &ts->check_clocks);
660 }
661
662 /**
663 * Check, if a change happened, which makes oneshot possible.
664 *
665 * Called cyclic from the hrtimer softirq (driven by the timer
666 * softirq) allow_nohz signals, that we can switch into low-res nohz
667 * mode, because high resolution timers are disabled (either compile
668 * or runtime).
669 */
670 int tick_check_oneshot_change(int allow_nohz)
671 {
672 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
673
674 if (!test_and_clear_bit(0, &ts->check_clocks))
675 return 0;
676
677 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
678 return 0;
679
680 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
681 return 0;
682
683 if (!allow_nohz)
684 return 1;
685
686 tick_nohz_switch_to_nohz();
687 return 0;
688 }