2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
27 #include <asm/irq_regs.h>
29 #include "tick-internal.h"
32 * Per cpu nohz control structure
34 DEFINE_PER_CPU(struct tick_sched
, tick_cpu_sched
);
37 * The time, when the last jiffy update happened. Protected by jiffies_lock.
39 static ktime_t last_jiffies_update
;
41 struct tick_sched
*tick_get_tick_sched(int cpu
)
43 return &per_cpu(tick_cpu_sched
, cpu
);
47 * Must be called with interrupts disabled !
49 static void tick_do_update_jiffies64(ktime_t now
)
51 unsigned long ticks
= 0;
55 * Do a quick check without holding jiffies_lock:
57 delta
= ktime_sub(now
, last_jiffies_update
);
58 if (delta
.tv64
< tick_period
.tv64
)
61 /* Reevalute with jiffies_lock held */
62 write_seqlock(&jiffies_lock
);
64 delta
= ktime_sub(now
, last_jiffies_update
);
65 if (delta
.tv64
>= tick_period
.tv64
) {
67 delta
= ktime_sub(delta
, tick_period
);
68 last_jiffies_update
= ktime_add(last_jiffies_update
,
71 /* Slow path for long timeouts */
72 if (unlikely(delta
.tv64
>= tick_period
.tv64
)) {
73 s64 incr
= ktime_to_ns(tick_period
);
75 ticks
= ktime_divns(delta
, incr
);
77 last_jiffies_update
= ktime_add_ns(last_jiffies_update
,
82 /* Keep the tick_next_period variable up to date */
83 tick_next_period
= ktime_add(last_jiffies_update
, tick_period
);
85 write_sequnlock(&jiffies_lock
);
89 * Initialize and return retrieve the jiffies update.
91 static ktime_t
tick_init_jiffy_update(void)
95 write_seqlock(&jiffies_lock
);
96 /* Did we start the jiffies update yet ? */
97 if (last_jiffies_update
.tv64
== 0)
98 last_jiffies_update
= tick_next_period
;
99 period
= last_jiffies_update
;
100 write_sequnlock(&jiffies_lock
);
105 static void tick_sched_do_timer(ktime_t now
)
107 int cpu
= smp_processor_id();
109 #ifdef CONFIG_NO_HZ_COMMON
111 * Check if the do_timer duty was dropped. We don't care about
112 * concurrency: This happens only when the cpu in charge went
113 * into a long sleep. If two cpus happen to assign themself to
114 * this duty, then the jiffies update is still serialized by
117 if (unlikely(tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
118 && !tick_nohz_full_cpu(cpu
))
119 tick_do_timer_cpu
= cpu
;
122 /* Check, if the jiffies need an update */
123 if (tick_do_timer_cpu
== cpu
)
124 tick_do_update_jiffies64(now
);
127 static void tick_sched_handle(struct tick_sched
*ts
, struct pt_regs
*regs
)
129 #ifdef CONFIG_NO_HZ_COMMON
131 * When we are idle and the tick is stopped, we have to touch
132 * the watchdog as we might not schedule for a really long
133 * time. This happens on complete idle SMP systems while
134 * waiting on the login prompt. We also increment the "start of
135 * idle" jiffy stamp so the idle accounting adjustment we do
136 * when we go busy again does not account too much ticks.
138 if (ts
->tick_stopped
) {
139 touch_softlockup_watchdog();
140 if (is_idle_task(current
))
144 update_process_times(user_mode(regs
));
145 profile_tick(CPU_PROFILING
);
148 #ifdef CONFIG_NO_HZ_FULL
149 static cpumask_var_t nohz_full_mask
;
150 bool have_nohz_full_mask
;
152 static bool can_stop_full_tick(void)
154 WARN_ON_ONCE(!irqs_disabled());
156 if (!sched_can_stop_tick())
159 if (!posix_cpu_timers_can_stop_tick(current
))
162 if (!perf_event_can_stop_tick())
165 /* sched_clock_tick() needs us? */
166 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
168 * TODO: kick full dynticks CPUs when
169 * sched_clock_stable is set.
171 if (!sched_clock_stable
)
178 static void tick_nohz_restart_sched_tick(struct tick_sched
*ts
, ktime_t now
);
181 * Re-evaluate the need for the tick on the current CPU
182 * and restart it if necessary.
184 void tick_nohz_full_check(void)
186 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
188 if (tick_nohz_full_cpu(smp_processor_id())) {
189 if (ts
->tick_stopped
&& !is_idle_task(current
)) {
190 if (!can_stop_full_tick())
191 tick_nohz_restart_sched_tick(ts
, ktime_get());
196 static void nohz_full_kick_work_func(struct irq_work
*work
)
198 tick_nohz_full_check();
201 static DEFINE_PER_CPU(struct irq_work
, nohz_full_kick_work
) = {
202 .func
= nohz_full_kick_work_func
,
206 * Kick the current CPU if it's full dynticks in order to force it to
207 * re-evaluate its dependency on the tick and restart it if necessary.
209 void tick_nohz_full_kick(void)
211 if (tick_nohz_full_cpu(smp_processor_id()))
212 irq_work_queue(&__get_cpu_var(nohz_full_kick_work
));
215 static void nohz_full_kick_ipi(void *info
)
217 tick_nohz_full_check();
221 * Kick all full dynticks CPUs in order to force these to re-evaluate
222 * their dependency on the tick and restart it if necessary.
224 void tick_nohz_full_kick_all(void)
226 if (!have_nohz_full_mask
)
230 smp_call_function_many(nohz_full_mask
,
231 nohz_full_kick_ipi
, NULL
, false);
235 int tick_nohz_full_cpu(int cpu
)
237 if (!have_nohz_full_mask
)
240 return cpumask_test_cpu(cpu
, nohz_full_mask
);
243 /* Parse the boot-time nohz CPU list from the kernel parameters. */
244 static int __init
tick_nohz_full_setup(char *str
)
248 alloc_bootmem_cpumask_var(&nohz_full_mask
);
249 if (cpulist_parse(str
, nohz_full_mask
) < 0) {
250 pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
254 cpu
= smp_processor_id();
255 if (cpumask_test_cpu(cpu
, nohz_full_mask
)) {
256 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu
);
257 cpumask_clear_cpu(cpu
, nohz_full_mask
);
259 have_nohz_full_mask
= true;
263 __setup("nohz_full=", tick_nohz_full_setup
);
265 static int __cpuinit
tick_nohz_cpu_down_callback(struct notifier_block
*nfb
,
266 unsigned long action
,
269 unsigned int cpu
= (unsigned long)hcpu
;
271 switch (action
& ~CPU_TASKS_FROZEN
) {
272 case CPU_DOWN_PREPARE
:
274 * If we handle the timekeeping duty for full dynticks CPUs,
275 * we can't safely shutdown that CPU.
277 if (have_nohz_full_mask
&& tick_do_timer_cpu
== cpu
)
285 * Worst case string length in chunks of CPU range seems 2 steps
286 * separations: 0,2,4,6,...
287 * This is NR_CPUS + sizeof('\0')
289 static char __initdata nohz_full_buf
[NR_CPUS
+ 1];
291 static int tick_nohz_init_all(void)
295 #ifdef CONFIG_NO_HZ_FULL_ALL
296 if (!alloc_cpumask_var(&nohz_full_mask
, GFP_KERNEL
)) {
297 pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
301 cpumask_setall(nohz_full_mask
);
302 cpumask_clear_cpu(smp_processor_id(), nohz_full_mask
);
303 have_nohz_full_mask
= true;
308 void __init
tick_nohz_init(void)
312 if (!have_nohz_full_mask
) {
313 if (tick_nohz_init_all() < 0)
317 cpu_notifier(tick_nohz_cpu_down_callback
, 0);
319 /* Make sure full dynticks CPU are also RCU nocbs */
320 for_each_cpu(cpu
, nohz_full_mask
) {
321 if (!rcu_is_nocb_cpu(cpu
)) {
322 pr_warning("NO_HZ: CPU %d is not RCU nocb: "
323 "cleared from nohz_full range", cpu
);
324 cpumask_clear_cpu(cpu
, nohz_full_mask
);
328 cpulist_scnprintf(nohz_full_buf
, sizeof(nohz_full_buf
), nohz_full_mask
);
329 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf
);
332 #define have_nohz_full_mask (0)
336 * NOHZ - aka dynamic tick functionality
338 #ifdef CONFIG_NO_HZ_COMMON
342 int tick_nohz_enabled __read_mostly
= 1;
345 * Enable / Disable tickless mode
347 static int __init
setup_tick_nohz(char *str
)
349 if (!strcmp(str
, "off"))
350 tick_nohz_enabled
= 0;
351 else if (!strcmp(str
, "on"))
352 tick_nohz_enabled
= 1;
358 __setup("nohz=", setup_tick_nohz
);
361 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
363 * Called from interrupt entry when the CPU was idle
365 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
366 * must be updated. Otherwise an interrupt handler could use a stale jiffy
367 * value. We do this unconditionally on any cpu, as we don't know whether the
368 * cpu, which has the update task assigned is in a long sleep.
370 static void tick_nohz_update_jiffies(ktime_t now
)
372 int cpu
= smp_processor_id();
373 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
376 ts
->idle_waketime
= now
;
378 local_irq_save(flags
);
379 tick_do_update_jiffies64(now
);
380 local_irq_restore(flags
);
382 touch_softlockup_watchdog();
386 * Updates the per cpu time idle statistics counters
389 update_ts_time_stats(int cpu
, struct tick_sched
*ts
, ktime_t now
, u64
*last_update_time
)
393 if (ts
->idle_active
) {
394 delta
= ktime_sub(now
, ts
->idle_entrytime
);
395 if (nr_iowait_cpu(cpu
) > 0)
396 ts
->iowait_sleeptime
= ktime_add(ts
->iowait_sleeptime
, delta
);
398 ts
->idle_sleeptime
= ktime_add(ts
->idle_sleeptime
, delta
);
399 ts
->idle_entrytime
= now
;
402 if (last_update_time
)
403 *last_update_time
= ktime_to_us(now
);
407 static void tick_nohz_stop_idle(int cpu
, ktime_t now
)
409 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
411 update_ts_time_stats(cpu
, ts
, now
, NULL
);
414 sched_clock_idle_wakeup_event(0);
417 static ktime_t
tick_nohz_start_idle(int cpu
, struct tick_sched
*ts
)
419 ktime_t now
= ktime_get();
421 ts
->idle_entrytime
= now
;
423 sched_clock_idle_sleep_event();
428 * get_cpu_idle_time_us - get the total idle time of a cpu
429 * @cpu: CPU number to query
430 * @last_update_time: variable to store update time in. Do not update
433 * Return the cummulative idle time (since boot) for a given
434 * CPU, in microseconds.
436 * This time is measured via accounting rather than sampling,
437 * and is as accurate as ktime_get() is.
439 * This function returns -1 if NOHZ is not enabled.
441 u64
get_cpu_idle_time_us(int cpu
, u64
*last_update_time
)
443 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
446 if (!tick_nohz_enabled
)
450 if (last_update_time
) {
451 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
452 idle
= ts
->idle_sleeptime
;
454 if (ts
->idle_active
&& !nr_iowait_cpu(cpu
)) {
455 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
457 idle
= ktime_add(ts
->idle_sleeptime
, delta
);
459 idle
= ts
->idle_sleeptime
;
463 return ktime_to_us(idle
);
466 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us
);
469 * get_cpu_iowait_time_us - get the total iowait time of a cpu
470 * @cpu: CPU number to query
471 * @last_update_time: variable to store update time in. Do not update
474 * Return the cummulative iowait time (since boot) for a given
475 * CPU, in microseconds.
477 * This time is measured via accounting rather than sampling,
478 * and is as accurate as ktime_get() is.
480 * This function returns -1 if NOHZ is not enabled.
482 u64
get_cpu_iowait_time_us(int cpu
, u64
*last_update_time
)
484 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
487 if (!tick_nohz_enabled
)
491 if (last_update_time
) {
492 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
493 iowait
= ts
->iowait_sleeptime
;
495 if (ts
->idle_active
&& nr_iowait_cpu(cpu
) > 0) {
496 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
498 iowait
= ktime_add(ts
->iowait_sleeptime
, delta
);
500 iowait
= ts
->iowait_sleeptime
;
504 return ktime_to_us(iowait
);
506 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us
);
508 static ktime_t
tick_nohz_stop_sched_tick(struct tick_sched
*ts
,
509 ktime_t now
, int cpu
)
511 unsigned long seq
, last_jiffies
, next_jiffies
, delta_jiffies
;
512 ktime_t last_update
, expires
, ret
= { .tv64
= 0 };
513 unsigned long rcu_delta_jiffies
;
514 struct clock_event_device
*dev
= __get_cpu_var(tick_cpu_device
).evtdev
;
517 /* Read jiffies and the time when jiffies were updated last */
519 seq
= read_seqbegin(&jiffies_lock
);
520 last_update
= last_jiffies_update
;
521 last_jiffies
= jiffies
;
522 time_delta
= timekeeping_max_deferment();
523 } while (read_seqretry(&jiffies_lock
, seq
));
525 if (rcu_needs_cpu(cpu
, &rcu_delta_jiffies
) ||
526 arch_needs_cpu(cpu
) || irq_work_needs_cpu()) {
527 next_jiffies
= last_jiffies
+ 1;
530 /* Get the next timer wheel timer */
531 next_jiffies
= get_next_timer_interrupt(last_jiffies
);
532 delta_jiffies
= next_jiffies
- last_jiffies
;
533 if (rcu_delta_jiffies
< delta_jiffies
) {
534 next_jiffies
= last_jiffies
+ rcu_delta_jiffies
;
535 delta_jiffies
= rcu_delta_jiffies
;
539 * Do not stop the tick, if we are only one off
540 * or if the cpu is required for rcu
542 if (!ts
->tick_stopped
&& delta_jiffies
== 1)
545 /* Schedule the tick, if we are at least one jiffie off */
546 if ((long)delta_jiffies
>= 1) {
549 * If this cpu is the one which updates jiffies, then
550 * give up the assignment and let it be taken by the
551 * cpu which runs the tick timer next, which might be
552 * this cpu as well. If we don't drop this here the
553 * jiffies might be stale and do_timer() never
554 * invoked. Keep track of the fact that it was the one
555 * which had the do_timer() duty last. If this cpu is
556 * the one which had the do_timer() duty last, we
557 * limit the sleep time to the timekeeping
558 * max_deferement value which we retrieved
559 * above. Otherwise we can sleep as long as we want.
561 if (cpu
== tick_do_timer_cpu
) {
562 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
563 ts
->do_timer_last
= 1;
564 } else if (tick_do_timer_cpu
!= TICK_DO_TIMER_NONE
) {
565 time_delta
= KTIME_MAX
;
566 ts
->do_timer_last
= 0;
567 } else if (!ts
->do_timer_last
) {
568 time_delta
= KTIME_MAX
;
572 * calculate the expiry time for the next timer wheel
573 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
574 * that there is no timer pending or at least extremely
575 * far into the future (12 days for HZ=1000). In this
576 * case we set the expiry to the end of time.
578 if (likely(delta_jiffies
< NEXT_TIMER_MAX_DELTA
)) {
580 * Calculate the time delta for the next timer event.
581 * If the time delta exceeds the maximum time delta
582 * permitted by the current clocksource then adjust
583 * the time delta accordingly to ensure the
584 * clocksource does not wrap.
586 time_delta
= min_t(u64
, time_delta
,
587 tick_period
.tv64
* delta_jiffies
);
590 if (time_delta
< KTIME_MAX
)
591 expires
= ktime_add_ns(last_update
, time_delta
);
593 expires
.tv64
= KTIME_MAX
;
595 /* Skip reprogram of event if its not changed */
596 if (ts
->tick_stopped
&& ktime_equal(expires
, dev
->next_event
))
602 * nohz_stop_sched_tick can be called several times before
603 * the nohz_restart_sched_tick is called. This happens when
604 * interrupts arrive which do not cause a reschedule. In the
605 * first call we save the current tick time, so we can restart
606 * the scheduler tick in nohz_restart_sched_tick.
608 if (!ts
->tick_stopped
) {
609 nohz_balance_enter_idle(cpu
);
610 calc_load_enter_idle();
612 ts
->last_tick
= hrtimer_get_expires(&ts
->sched_timer
);
613 ts
->tick_stopped
= 1;
617 * If the expiration time == KTIME_MAX, then
618 * in this case we simply stop the tick timer.
620 if (unlikely(expires
.tv64
== KTIME_MAX
)) {
621 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
622 hrtimer_cancel(&ts
->sched_timer
);
626 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
) {
627 hrtimer_start(&ts
->sched_timer
, expires
,
628 HRTIMER_MODE_ABS_PINNED
);
629 /* Check, if the timer was already in the past */
630 if (hrtimer_active(&ts
->sched_timer
))
632 } else if (!tick_program_event(expires
, 0))
635 * We are past the event already. So we crossed a
636 * jiffie boundary. Update jiffies and raise the
639 tick_do_update_jiffies64(ktime_get());
641 raise_softirq_irqoff(TIMER_SOFTIRQ
);
643 ts
->next_jiffies
= next_jiffies
;
644 ts
->last_jiffies
= last_jiffies
;
645 ts
->sleep_length
= ktime_sub(dev
->next_event
, now
);
650 static void tick_nohz_full_stop_tick(struct tick_sched
*ts
)
652 #ifdef CONFIG_NO_HZ_FULL
653 int cpu
= smp_processor_id();
655 if (!tick_nohz_full_cpu(cpu
) || is_idle_task(current
))
658 if (!ts
->tick_stopped
&& ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)
661 if (!can_stop_full_tick())
664 tick_nohz_stop_sched_tick(ts
, ktime_get(), cpu
);
668 static bool can_stop_idle_tick(int cpu
, struct tick_sched
*ts
)
671 * If this cpu is offline and it is the one which updates
672 * jiffies, then give up the assignment and let it be taken by
673 * the cpu which runs the tick timer next. If we don't drop
674 * this here the jiffies might be stale and do_timer() never
677 if (unlikely(!cpu_online(cpu
))) {
678 if (cpu
== tick_do_timer_cpu
)
679 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
682 if (unlikely(ts
->nohz_mode
== NOHZ_MODE_INACTIVE
))
688 if (unlikely(local_softirq_pending() && cpu_online(cpu
))) {
689 static int ratelimit
;
691 if (ratelimit
< 10 &&
692 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK
)) {
693 printk(KERN_ERR
"NOHZ: local_softirq_pending %02x\n",
694 (unsigned int) local_softirq_pending());
700 if (have_nohz_full_mask
) {
702 * Keep the tick alive to guarantee timekeeping progression
703 * if there are full dynticks CPUs around
705 if (tick_do_timer_cpu
== cpu
)
708 * Boot safety: make sure the timekeeping duty has been
709 * assigned before entering dyntick-idle mode,
711 if (tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
718 static void __tick_nohz_idle_enter(struct tick_sched
*ts
)
720 ktime_t now
, expires
;
721 int cpu
= smp_processor_id();
723 now
= tick_nohz_start_idle(cpu
, ts
);
725 if (can_stop_idle_tick(cpu
, ts
)) {
726 int was_stopped
= ts
->tick_stopped
;
730 expires
= tick_nohz_stop_sched_tick(ts
, now
, cpu
);
731 if (expires
.tv64
> 0LL) {
733 ts
->idle_expires
= expires
;
736 if (!was_stopped
&& ts
->tick_stopped
)
737 ts
->idle_jiffies
= ts
->last_jiffies
;
742 * tick_nohz_idle_enter - stop the idle tick from the idle task
744 * When the next event is more than a tick into the future, stop the idle tick
745 * Called when we start the idle loop.
747 * The arch is responsible of calling:
749 * - rcu_idle_enter() after its last use of RCU before the CPU is put
751 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
753 void tick_nohz_idle_enter(void)
755 struct tick_sched
*ts
;
757 WARN_ON_ONCE(irqs_disabled());
760 * Update the idle state in the scheduler domain hierarchy
761 * when tick_nohz_stop_sched_tick() is called from the idle loop.
762 * State will be updated to busy during the first busy tick after
765 set_cpu_sd_state_idle();
769 ts
= &__get_cpu_var(tick_cpu_sched
);
771 * set ts->inidle unconditionally. even if the system did not
772 * switch to nohz mode the cpu frequency governers rely on the
773 * update of the idle time accounting in tick_nohz_start_idle().
776 __tick_nohz_idle_enter(ts
);
780 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter
);
783 * tick_nohz_irq_exit - update next tick event from interrupt exit
785 * When an interrupt fires while we are idle and it doesn't cause
786 * a reschedule, it may still add, modify or delete a timer, enqueue
787 * an RCU callback, etc...
788 * So we need to re-calculate and reprogram the next tick event.
790 void tick_nohz_irq_exit(void)
792 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
795 /* Cancel the timer because CPU already waken up from the C-states*/
796 menu_hrtimer_cancel();
797 __tick_nohz_idle_enter(ts
);
799 tick_nohz_full_stop_tick(ts
);
804 * tick_nohz_get_sleep_length - return the length of the current sleep
806 * Called from power state control code with interrupts disabled
808 ktime_t
tick_nohz_get_sleep_length(void)
810 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
812 return ts
->sleep_length
;
815 static void tick_nohz_restart(struct tick_sched
*ts
, ktime_t now
)
817 hrtimer_cancel(&ts
->sched_timer
);
818 hrtimer_set_expires(&ts
->sched_timer
, ts
->last_tick
);
821 /* Forward the time to expire in the future */
822 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
824 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
) {
825 hrtimer_start_expires(&ts
->sched_timer
,
826 HRTIMER_MODE_ABS_PINNED
);
827 /* Check, if the timer was already in the past */
828 if (hrtimer_active(&ts
->sched_timer
))
831 if (!tick_program_event(
832 hrtimer_get_expires(&ts
->sched_timer
), 0))
835 /* Reread time and update jiffies */
837 tick_do_update_jiffies64(now
);
841 static void tick_nohz_restart_sched_tick(struct tick_sched
*ts
, ktime_t now
)
843 /* Update jiffies first */
844 tick_do_update_jiffies64(now
);
845 update_cpu_load_nohz();
847 calc_load_exit_idle();
848 touch_softlockup_watchdog();
850 * Cancel the scheduled timer and restore the tick
852 ts
->tick_stopped
= 0;
853 ts
->idle_exittime
= now
;
855 tick_nohz_restart(ts
, now
);
858 static void tick_nohz_account_idle_ticks(struct tick_sched
*ts
)
860 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
863 if (vtime_accounting_enabled())
866 * We stopped the tick in idle. Update process times would miss the
867 * time we slept as update_process_times does only a 1 tick
868 * accounting. Enforce that this is accounted to idle !
870 ticks
= jiffies
- ts
->idle_jiffies
;
872 * We might be one off. Do not randomly account a huge number of ticks!
874 if (ticks
&& ticks
< LONG_MAX
)
875 account_idle_ticks(ticks
);
880 * tick_nohz_idle_exit - restart the idle tick from the idle task
882 * Restart the idle tick when the CPU is woken up from idle
883 * This also exit the RCU extended quiescent state. The CPU
884 * can use RCU again after this function is called.
886 void tick_nohz_idle_exit(void)
888 int cpu
= smp_processor_id();
889 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
894 WARN_ON_ONCE(!ts
->inidle
);
898 /* Cancel the timer because CPU already waken up from the C-states*/
899 menu_hrtimer_cancel();
900 if (ts
->idle_active
|| ts
->tick_stopped
)
904 tick_nohz_stop_idle(cpu
, now
);
906 if (ts
->tick_stopped
) {
907 tick_nohz_restart_sched_tick(ts
, now
);
908 tick_nohz_account_idle_ticks(ts
);
913 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit
);
915 static int tick_nohz_reprogram(struct tick_sched
*ts
, ktime_t now
)
917 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
918 return tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 0);
922 * The nohz low res interrupt handler
924 static void tick_nohz_handler(struct clock_event_device
*dev
)
926 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
927 struct pt_regs
*regs
= get_irq_regs();
928 ktime_t now
= ktime_get();
930 dev
->next_event
.tv64
= KTIME_MAX
;
932 tick_sched_do_timer(now
);
933 tick_sched_handle(ts
, regs
);
935 while (tick_nohz_reprogram(ts
, now
)) {
937 tick_do_update_jiffies64(now
);
942 * tick_nohz_switch_to_nohz - switch to nohz mode
944 static void tick_nohz_switch_to_nohz(void)
946 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
949 if (!tick_nohz_enabled
)
953 if (tick_switch_to_oneshot(tick_nohz_handler
)) {
958 ts
->nohz_mode
= NOHZ_MODE_LOWRES
;
961 * Recycle the hrtimer in ts, so we can share the
962 * hrtimer_forward with the highres code.
964 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
965 /* Get the next period */
966 next
= tick_init_jiffy_update();
969 hrtimer_set_expires(&ts
->sched_timer
, next
);
970 if (!tick_program_event(next
, 0))
972 next
= ktime_add(next
, tick_period
);
978 * When NOHZ is enabled and the tick is stopped, we need to kick the
979 * tick timer from irq_enter() so that the jiffies update is kept
980 * alive during long running softirqs. That's ugly as hell, but
981 * correctness is key even if we need to fix the offending softirq in
984 * Note, this is different to tick_nohz_restart. We just kick the
985 * timer and do not touch the other magic bits which need to be done
988 static void tick_nohz_kick_tick(int cpu
, ktime_t now
)
991 /* Switch back to 2.6.27 behaviour */
993 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
997 * Do not touch the tick device, when the next expiry is either
998 * already reached or less/equal than the tick period.
1000 delta
= ktime_sub(hrtimer_get_expires(&ts
->sched_timer
), now
);
1001 if (delta
.tv64
<= tick_period
.tv64
)
1004 tick_nohz_restart(ts
, now
);
1008 static inline void tick_check_nohz(int cpu
)
1010 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
1013 if (!ts
->idle_active
&& !ts
->tick_stopped
)
1016 if (ts
->idle_active
)
1017 tick_nohz_stop_idle(cpu
, now
);
1018 if (ts
->tick_stopped
) {
1019 tick_nohz_update_jiffies(now
);
1020 tick_nohz_kick_tick(cpu
, now
);
1026 static inline void tick_nohz_switch_to_nohz(void) { }
1027 static inline void tick_check_nohz(int cpu
) { }
1029 #endif /* CONFIG_NO_HZ_COMMON */
1032 * Called from irq_enter to notify about the possible interruption of idle()
1034 void tick_check_idle(int cpu
)
1036 tick_check_oneshot_broadcast(cpu
);
1037 tick_check_nohz(cpu
);
1041 * High resolution timer specific code
1043 #ifdef CONFIG_HIGH_RES_TIMERS
1045 * We rearm the timer until we get disabled by the idle code.
1046 * Called with interrupts disabled.
1048 static enum hrtimer_restart
tick_sched_timer(struct hrtimer
*timer
)
1050 struct tick_sched
*ts
=
1051 container_of(timer
, struct tick_sched
, sched_timer
);
1052 struct pt_regs
*regs
= get_irq_regs();
1053 ktime_t now
= ktime_get();
1055 tick_sched_do_timer(now
);
1058 * Do not call, when we are not in irq context and have
1059 * no valid regs pointer
1062 tick_sched_handle(ts
, regs
);
1064 hrtimer_forward(timer
, now
, tick_period
);
1066 return HRTIMER_RESTART
;
1069 static int sched_skew_tick
;
1071 static int __init
skew_tick(char *str
)
1073 get_option(&str
, &sched_skew_tick
);
1077 early_param("skew_tick", skew_tick
);
1080 * tick_setup_sched_timer - setup the tick emulation timer
1082 void tick_setup_sched_timer(void)
1084 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
1085 ktime_t now
= ktime_get();
1088 * Emulate tick processing via per-CPU hrtimers:
1090 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1091 ts
->sched_timer
.function
= tick_sched_timer
;
1093 /* Get the next period (per cpu) */
1094 hrtimer_set_expires(&ts
->sched_timer
, tick_init_jiffy_update());
1096 /* Offset the tick to avert jiffies_lock contention. */
1097 if (sched_skew_tick
) {
1098 u64 offset
= ktime_to_ns(tick_period
) >> 1;
1099 do_div(offset
, num_possible_cpus());
1100 offset
*= smp_processor_id();
1101 hrtimer_add_expires_ns(&ts
->sched_timer
, offset
);
1105 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
1106 hrtimer_start_expires(&ts
->sched_timer
,
1107 HRTIMER_MODE_ABS_PINNED
);
1108 /* Check, if the timer was already in the past */
1109 if (hrtimer_active(&ts
->sched_timer
))
1114 #ifdef CONFIG_NO_HZ_COMMON
1115 if (tick_nohz_enabled
)
1116 ts
->nohz_mode
= NOHZ_MODE_HIGHRES
;
1119 #endif /* HIGH_RES_TIMERS */
1121 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1122 void tick_cancel_sched_timer(int cpu
)
1124 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
1126 # ifdef CONFIG_HIGH_RES_TIMERS
1127 if (ts
->sched_timer
.base
)
1128 hrtimer_cancel(&ts
->sched_timer
);
1131 ts
->nohz_mode
= NOHZ_MODE_INACTIVE
;
1136 * Async notification about clocksource changes
1138 void tick_clock_notify(void)
1142 for_each_possible_cpu(cpu
)
1143 set_bit(0, &per_cpu(tick_cpu_sched
, cpu
).check_clocks
);
1147 * Async notification about clock event changes
1149 void tick_oneshot_notify(void)
1151 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
1153 set_bit(0, &ts
->check_clocks
);
1157 * Check, if a change happened, which makes oneshot possible.
1159 * Called cyclic from the hrtimer softirq (driven by the timer
1160 * softirq) allow_nohz signals, that we can switch into low-res nohz
1161 * mode, because high resolution timers are disabled (either compile
1164 int tick_check_oneshot_change(int allow_nohz
)
1166 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
1168 if (!test_and_clear_bit(0, &ts
->check_clocks
))
1171 if (ts
->nohz_mode
!= NOHZ_MODE_INACTIVE
)
1174 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1180 tick_nohz_switch_to_nohz();