]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/time/tick-sched.c
Merge tag 'media/v4.10-4' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[mirror_ubuntu-zesty-kernel.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/context_tracking.h>
26
27 #include <asm/irq_regs.h>
28
29 #include "tick-internal.h"
30
31 #include <trace/events/timer.h>
32
33 /*
34 * Per-CPU nohz control structure
35 */
36 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 return &per_cpu(tick_cpu_sched, cpu);
41 }
42
43 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
44 /*
45 * The time, when the last jiffy update happened. Protected by jiffies_lock.
46 */
47 static ktime_t last_jiffies_update;
48
49 /*
50 * Must be called with interrupts disabled !
51 */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 unsigned long ticks = 0;
55 ktime_t delta;
56
57 /*
58 * Do a quick check without holding jiffies_lock:
59 */
60 delta = ktime_sub(now, last_jiffies_update);
61 if (delta < tick_period)
62 return;
63
64 /* Reevaluate with jiffies_lock held */
65 write_seqlock(&jiffies_lock);
66
67 delta = ktime_sub(now, last_jiffies_update);
68 if (delta >= tick_period) {
69
70 delta = ktime_sub(delta, tick_period);
71 last_jiffies_update = ktime_add(last_jiffies_update,
72 tick_period);
73
74 /* Slow path for long timeouts */
75 if (unlikely(delta >= tick_period)) {
76 s64 incr = ktime_to_ns(tick_period);
77
78 ticks = ktime_divns(delta, incr);
79
80 last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 incr * ticks);
82 }
83 do_timer(++ticks);
84
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 } else {
88 write_sequnlock(&jiffies_lock);
89 return;
90 }
91 write_sequnlock(&jiffies_lock);
92 update_wall_time();
93 }
94
95 /*
96 * Initialize and return retrieve the jiffies update.
97 */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 ktime_t period;
101
102 write_seqlock(&jiffies_lock);
103 /* Did we start the jiffies update yet ? */
104 if (last_jiffies_update == 0)
105 last_jiffies_update = tick_next_period;
106 period = last_jiffies_update;
107 write_sequnlock(&jiffies_lock);
108 return period;
109 }
110
111
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 int cpu = smp_processor_id();
115
116 #ifdef CONFIG_NO_HZ_COMMON
117 /*
118 * Check if the do_timer duty was dropped. We don't care about
119 * concurrency: This happens only when the CPU in charge went
120 * into a long sleep. If two CPUs happen to assign themselves to
121 * this duty, then the jiffies update is still serialized by
122 * jiffies_lock.
123 */
124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 && !tick_nohz_full_cpu(cpu))
126 tick_do_timer_cpu = cpu;
127 #endif
128
129 /* Check, if the jiffies need an update */
130 if (tick_do_timer_cpu == cpu)
131 tick_do_update_jiffies64(now);
132 }
133
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 /*
138 * When we are idle and the tick is stopped, we have to touch
139 * the watchdog as we might not schedule for a really long
140 * time. This happens on complete idle SMP systems while
141 * waiting on the login prompt. We also increment the "start of
142 * idle" jiffy stamp so the idle accounting adjustment we do
143 * when we go busy again does not account too much ticks.
144 */
145 if (ts->tick_stopped) {
146 touch_softlockup_watchdog_sched();
147 if (is_idle_task(current))
148 ts->idle_jiffies++;
149 }
150 #endif
151 update_process_times(user_mode(regs));
152 profile_tick(CPU_PROFILING);
153 }
154 #endif
155
156 #ifdef CONFIG_NO_HZ_FULL
157 cpumask_var_t tick_nohz_full_mask;
158 cpumask_var_t housekeeping_mask;
159 bool tick_nohz_full_running;
160 static atomic_t tick_dep_mask;
161
162 static bool check_tick_dependency(atomic_t *dep)
163 {
164 int val = atomic_read(dep);
165
166 if (val & TICK_DEP_MASK_POSIX_TIMER) {
167 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
168 return true;
169 }
170
171 if (val & TICK_DEP_MASK_PERF_EVENTS) {
172 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
173 return true;
174 }
175
176 if (val & TICK_DEP_MASK_SCHED) {
177 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
178 return true;
179 }
180
181 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
182 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
183 return true;
184 }
185
186 return false;
187 }
188
189 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
190 {
191 WARN_ON_ONCE(!irqs_disabled());
192
193 if (unlikely(!cpu_online(cpu)))
194 return false;
195
196 if (check_tick_dependency(&tick_dep_mask))
197 return false;
198
199 if (check_tick_dependency(&ts->tick_dep_mask))
200 return false;
201
202 if (check_tick_dependency(&current->tick_dep_mask))
203 return false;
204
205 if (check_tick_dependency(&current->signal->tick_dep_mask))
206 return false;
207
208 return true;
209 }
210
211 static void nohz_full_kick_func(struct irq_work *work)
212 {
213 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
214 }
215
216 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
217 .func = nohz_full_kick_func,
218 };
219
220 /*
221 * Kick this CPU if it's full dynticks in order to force it to
222 * re-evaluate its dependency on the tick and restart it if necessary.
223 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
224 * is NMI safe.
225 */
226 static void tick_nohz_full_kick(void)
227 {
228 if (!tick_nohz_full_cpu(smp_processor_id()))
229 return;
230
231 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
232 }
233
234 /*
235 * Kick the CPU if it's full dynticks in order to force it to
236 * re-evaluate its dependency on the tick and restart it if necessary.
237 */
238 void tick_nohz_full_kick_cpu(int cpu)
239 {
240 if (!tick_nohz_full_cpu(cpu))
241 return;
242
243 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
244 }
245
246 /*
247 * Kick all full dynticks CPUs in order to force these to re-evaluate
248 * their dependency on the tick and restart it if necessary.
249 */
250 static void tick_nohz_full_kick_all(void)
251 {
252 int cpu;
253
254 if (!tick_nohz_full_running)
255 return;
256
257 preempt_disable();
258 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
259 tick_nohz_full_kick_cpu(cpu);
260 preempt_enable();
261 }
262
263 static void tick_nohz_dep_set_all(atomic_t *dep,
264 enum tick_dep_bits bit)
265 {
266 int prev;
267
268 prev = atomic_fetch_or(BIT(bit), dep);
269 if (!prev)
270 tick_nohz_full_kick_all();
271 }
272
273 /*
274 * Set a global tick dependency. Used by perf events that rely on freq and
275 * by unstable clock.
276 */
277 void tick_nohz_dep_set(enum tick_dep_bits bit)
278 {
279 tick_nohz_dep_set_all(&tick_dep_mask, bit);
280 }
281
282 void tick_nohz_dep_clear(enum tick_dep_bits bit)
283 {
284 atomic_andnot(BIT(bit), &tick_dep_mask);
285 }
286
287 /*
288 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
289 * manage events throttling.
290 */
291 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
292 {
293 int prev;
294 struct tick_sched *ts;
295
296 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
297
298 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
299 if (!prev) {
300 preempt_disable();
301 /* Perf needs local kick that is NMI safe */
302 if (cpu == smp_processor_id()) {
303 tick_nohz_full_kick();
304 } else {
305 /* Remote irq work not NMI-safe */
306 if (!WARN_ON_ONCE(in_nmi()))
307 tick_nohz_full_kick_cpu(cpu);
308 }
309 preempt_enable();
310 }
311 }
312
313 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
314 {
315 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
316
317 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
318 }
319
320 /*
321 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
322 * per task timers.
323 */
324 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
325 {
326 /*
327 * We could optimize this with just kicking the target running the task
328 * if that noise matters for nohz full users.
329 */
330 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
331 }
332
333 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
334 {
335 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
336 }
337
338 /*
339 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
340 * per process timers.
341 */
342 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
343 {
344 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
345 }
346
347 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
348 {
349 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
350 }
351
352 /*
353 * Re-evaluate the need for the tick as we switch the current task.
354 * It might need the tick due to per task/process properties:
355 * perf events, posix CPU timers, ...
356 */
357 void __tick_nohz_task_switch(void)
358 {
359 unsigned long flags;
360 struct tick_sched *ts;
361
362 local_irq_save(flags);
363
364 if (!tick_nohz_full_cpu(smp_processor_id()))
365 goto out;
366
367 ts = this_cpu_ptr(&tick_cpu_sched);
368
369 if (ts->tick_stopped) {
370 if (atomic_read(&current->tick_dep_mask) ||
371 atomic_read(&current->signal->tick_dep_mask))
372 tick_nohz_full_kick();
373 }
374 out:
375 local_irq_restore(flags);
376 }
377
378 /* Parse the boot-time nohz CPU list from the kernel parameters. */
379 static int __init tick_nohz_full_setup(char *str)
380 {
381 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
382 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
383 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
384 free_bootmem_cpumask_var(tick_nohz_full_mask);
385 return 1;
386 }
387 tick_nohz_full_running = true;
388
389 return 1;
390 }
391 __setup("nohz_full=", tick_nohz_full_setup);
392
393 static int tick_nohz_cpu_down(unsigned int cpu)
394 {
395 /*
396 * The boot CPU handles housekeeping duty (unbound timers,
397 * workqueues, timekeeping, ...) on behalf of full dynticks
398 * CPUs. It must remain online when nohz full is enabled.
399 */
400 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
401 return -EBUSY;
402 return 0;
403 }
404
405 static int tick_nohz_init_all(void)
406 {
407 int err = -1;
408
409 #ifdef CONFIG_NO_HZ_FULL_ALL
410 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
411 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
412 return err;
413 }
414 err = 0;
415 cpumask_setall(tick_nohz_full_mask);
416 tick_nohz_full_running = true;
417 #endif
418 return err;
419 }
420
421 void __init tick_nohz_init(void)
422 {
423 int cpu, ret;
424
425 if (!tick_nohz_full_running) {
426 if (tick_nohz_init_all() < 0)
427 return;
428 }
429
430 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
431 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
432 cpumask_clear(tick_nohz_full_mask);
433 tick_nohz_full_running = false;
434 return;
435 }
436
437 /*
438 * Full dynticks uses irq work to drive the tick rescheduling on safe
439 * locking contexts. But then we need irq work to raise its own
440 * interrupts to avoid circular dependency on the tick
441 */
442 if (!arch_irq_work_has_interrupt()) {
443 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
444 cpumask_clear(tick_nohz_full_mask);
445 cpumask_copy(housekeeping_mask, cpu_possible_mask);
446 tick_nohz_full_running = false;
447 return;
448 }
449
450 cpu = smp_processor_id();
451
452 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
453 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
454 cpu);
455 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
456 }
457
458 cpumask_andnot(housekeeping_mask,
459 cpu_possible_mask, tick_nohz_full_mask);
460
461 for_each_cpu(cpu, tick_nohz_full_mask)
462 context_tracking_cpu_set(cpu);
463
464 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
465 "kernel/nohz:predown", NULL,
466 tick_nohz_cpu_down);
467 WARN_ON(ret < 0);
468 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
469 cpumask_pr_args(tick_nohz_full_mask));
470
471 /*
472 * We need at least one CPU to handle housekeeping work such
473 * as timekeeping, unbound timers, workqueues, ...
474 */
475 WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
476 }
477 #endif
478
479 /*
480 * NOHZ - aka dynamic tick functionality
481 */
482 #ifdef CONFIG_NO_HZ_COMMON
483 /*
484 * NO HZ enabled ?
485 */
486 bool tick_nohz_enabled __read_mostly = true;
487 unsigned long tick_nohz_active __read_mostly;
488 /*
489 * Enable / Disable tickless mode
490 */
491 static int __init setup_tick_nohz(char *str)
492 {
493 return (kstrtobool(str, &tick_nohz_enabled) == 0);
494 }
495
496 __setup("nohz=", setup_tick_nohz);
497
498 int tick_nohz_tick_stopped(void)
499 {
500 return __this_cpu_read(tick_cpu_sched.tick_stopped);
501 }
502
503 /**
504 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
505 *
506 * Called from interrupt entry when the CPU was idle
507 *
508 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
509 * must be updated. Otherwise an interrupt handler could use a stale jiffy
510 * value. We do this unconditionally on any CPU, as we don't know whether the
511 * CPU, which has the update task assigned is in a long sleep.
512 */
513 static void tick_nohz_update_jiffies(ktime_t now)
514 {
515 unsigned long flags;
516
517 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
518
519 local_irq_save(flags);
520 tick_do_update_jiffies64(now);
521 local_irq_restore(flags);
522
523 touch_softlockup_watchdog_sched();
524 }
525
526 /*
527 * Updates the per-CPU time idle statistics counters
528 */
529 static void
530 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
531 {
532 ktime_t delta;
533
534 if (ts->idle_active) {
535 delta = ktime_sub(now, ts->idle_entrytime);
536 if (nr_iowait_cpu(cpu) > 0)
537 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
538 else
539 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
540 ts->idle_entrytime = now;
541 }
542
543 if (last_update_time)
544 *last_update_time = ktime_to_us(now);
545
546 }
547
548 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
549 {
550 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
551 ts->idle_active = 0;
552
553 sched_clock_idle_wakeup_event(0);
554 }
555
556 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
557 {
558 ktime_t now = ktime_get();
559
560 ts->idle_entrytime = now;
561 ts->idle_active = 1;
562 sched_clock_idle_sleep_event();
563 return now;
564 }
565
566 /**
567 * get_cpu_idle_time_us - get the total idle time of a CPU
568 * @cpu: CPU number to query
569 * @last_update_time: variable to store update time in. Do not update
570 * counters if NULL.
571 *
572 * Return the cumulative idle time (since boot) for a given
573 * CPU, in microseconds.
574 *
575 * This time is measured via accounting rather than sampling,
576 * and is as accurate as ktime_get() is.
577 *
578 * This function returns -1 if NOHZ is not enabled.
579 */
580 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
581 {
582 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
583 ktime_t now, idle;
584
585 if (!tick_nohz_active)
586 return -1;
587
588 now = ktime_get();
589 if (last_update_time) {
590 update_ts_time_stats(cpu, ts, now, last_update_time);
591 idle = ts->idle_sleeptime;
592 } else {
593 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
594 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
595
596 idle = ktime_add(ts->idle_sleeptime, delta);
597 } else {
598 idle = ts->idle_sleeptime;
599 }
600 }
601
602 return ktime_to_us(idle);
603
604 }
605 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
606
607 /**
608 * get_cpu_iowait_time_us - get the total iowait time of a CPU
609 * @cpu: CPU number to query
610 * @last_update_time: variable to store update time in. Do not update
611 * counters if NULL.
612 *
613 * Return the cumulative iowait time (since boot) for a given
614 * CPU, in microseconds.
615 *
616 * This time is measured via accounting rather than sampling,
617 * and is as accurate as ktime_get() is.
618 *
619 * This function returns -1 if NOHZ is not enabled.
620 */
621 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
622 {
623 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
624 ktime_t now, iowait;
625
626 if (!tick_nohz_active)
627 return -1;
628
629 now = ktime_get();
630 if (last_update_time) {
631 update_ts_time_stats(cpu, ts, now, last_update_time);
632 iowait = ts->iowait_sleeptime;
633 } else {
634 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
635 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
636
637 iowait = ktime_add(ts->iowait_sleeptime, delta);
638 } else {
639 iowait = ts->iowait_sleeptime;
640 }
641 }
642
643 return ktime_to_us(iowait);
644 }
645 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
646
647 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
648 {
649 hrtimer_cancel(&ts->sched_timer);
650 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
651
652 /* Forward the time to expire in the future */
653 hrtimer_forward(&ts->sched_timer, now, tick_period);
654
655 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
656 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
657 else
658 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
659 }
660
661 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
662 ktime_t now, int cpu)
663 {
664 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
665 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
666 unsigned long seq, basejiff;
667 ktime_t tick;
668
669 /* Read jiffies and the time when jiffies were updated last */
670 do {
671 seq = read_seqbegin(&jiffies_lock);
672 basemono = last_jiffies_update;
673 basejiff = jiffies;
674 } while (read_seqretry(&jiffies_lock, seq));
675 ts->last_jiffies = basejiff;
676
677 if (rcu_needs_cpu(basemono, &next_rcu) ||
678 arch_needs_cpu() || irq_work_needs_cpu()) {
679 next_tick = basemono + TICK_NSEC;
680 } else {
681 /*
682 * Get the next pending timer. If high resolution
683 * timers are enabled this only takes the timer wheel
684 * timers into account. If high resolution timers are
685 * disabled this also looks at the next expiring
686 * hrtimer.
687 */
688 next_tmr = get_next_timer_interrupt(basejiff, basemono);
689 ts->next_timer = next_tmr;
690 /* Take the next rcu event into account */
691 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
692 }
693
694 /*
695 * If the tick is due in the next period, keep it ticking or
696 * force prod the timer.
697 */
698 delta = next_tick - basemono;
699 if (delta <= (u64)TICK_NSEC) {
700 tick = 0;
701
702 /*
703 * Tell the timer code that the base is not idle, i.e. undo
704 * the effect of get_next_timer_interrupt():
705 */
706 timer_clear_idle();
707 /*
708 * We've not stopped the tick yet, and there's a timer in the
709 * next period, so no point in stopping it either, bail.
710 */
711 if (!ts->tick_stopped)
712 goto out;
713
714 /*
715 * If, OTOH, we did stop it, but there's a pending (expired)
716 * timer reprogram the timer hardware to fire now.
717 *
718 * We will not restart the tick proper, just prod the timer
719 * hardware into firing an interrupt to process the pending
720 * timers. Just like tick_irq_exit() will not restart the tick
721 * for 'normal' interrupts.
722 *
723 * Only once we exit the idle loop will we re-enable the tick,
724 * see tick_nohz_idle_exit().
725 */
726 if (delta == 0) {
727 tick_nohz_restart(ts, now);
728 /*
729 * Make sure next tick stop doesn't get fooled by past
730 * clock deadline
731 */
732 ts->next_tick = 0;
733 goto out;
734 }
735 }
736
737 /*
738 * If this CPU is the one which updates jiffies, then give up
739 * the assignment and let it be taken by the CPU which runs
740 * the tick timer next, which might be this CPU as well. If we
741 * don't drop this here the jiffies might be stale and
742 * do_timer() never invoked. Keep track of the fact that it
743 * was the one which had the do_timer() duty last. If this CPU
744 * is the one which had the do_timer() duty last, we limit the
745 * sleep time to the timekeeping max_deferment value.
746 * Otherwise we can sleep as long as we want.
747 */
748 delta = timekeeping_max_deferment();
749 if (cpu == tick_do_timer_cpu) {
750 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
751 ts->do_timer_last = 1;
752 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
753 delta = KTIME_MAX;
754 ts->do_timer_last = 0;
755 } else if (!ts->do_timer_last) {
756 delta = KTIME_MAX;
757 }
758
759 #ifdef CONFIG_NO_HZ_FULL
760 /* Limit the tick delta to the maximum scheduler deferment */
761 if (!ts->inidle)
762 delta = min(delta, scheduler_tick_max_deferment());
763 #endif
764
765 /* Calculate the next expiry time */
766 if (delta < (KTIME_MAX - basemono))
767 expires = basemono + delta;
768 else
769 expires = KTIME_MAX;
770
771 expires = min_t(u64, expires, next_tick);
772 tick = expires;
773
774 /* Skip reprogram of event if its not changed */
775 if (ts->tick_stopped && (expires == ts->next_tick))
776 goto out;
777
778 /*
779 * nohz_stop_sched_tick can be called several times before
780 * the nohz_restart_sched_tick is called. This happens when
781 * interrupts arrive which do not cause a reschedule. In the
782 * first call we save the current tick time, so we can restart
783 * the scheduler tick in nohz_restart_sched_tick.
784 */
785 if (!ts->tick_stopped) {
786 nohz_balance_enter_idle(cpu);
787 calc_load_enter_idle();
788 cpu_load_update_nohz_start();
789
790 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
791 ts->tick_stopped = 1;
792 trace_tick_stop(1, TICK_DEP_MASK_NONE);
793 }
794
795 ts->next_tick = tick;
796
797 /*
798 * If the expiration time == KTIME_MAX, then we simply stop
799 * the tick timer.
800 */
801 if (unlikely(expires == KTIME_MAX)) {
802 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
803 hrtimer_cancel(&ts->sched_timer);
804 goto out;
805 }
806
807 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
808 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
809 else
810 tick_program_event(tick, 1);
811 out:
812 /*
813 * Update the estimated sleep length until the next timer
814 * (not only the tick).
815 */
816 ts->sleep_length = ktime_sub(dev->next_event, now);
817 return tick;
818 }
819
820 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
821 {
822 /* Update jiffies first */
823 tick_do_update_jiffies64(now);
824 cpu_load_update_nohz_stop();
825
826 /*
827 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
828 * the clock forward checks in the enqueue path:
829 */
830 timer_clear_idle();
831
832 calc_load_exit_idle();
833 touch_softlockup_watchdog_sched();
834 /*
835 * Cancel the scheduled timer and restore the tick
836 */
837 ts->tick_stopped = 0;
838 ts->idle_exittime = now;
839
840 tick_nohz_restart(ts, now);
841 }
842
843 static void tick_nohz_full_update_tick(struct tick_sched *ts)
844 {
845 #ifdef CONFIG_NO_HZ_FULL
846 int cpu = smp_processor_id();
847
848 if (!tick_nohz_full_cpu(cpu))
849 return;
850
851 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
852 return;
853
854 if (can_stop_full_tick(cpu, ts))
855 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
856 else if (ts->tick_stopped)
857 tick_nohz_restart_sched_tick(ts, ktime_get());
858 #endif
859 }
860
861 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
862 {
863 /*
864 * If this CPU is offline and it is the one which updates
865 * jiffies, then give up the assignment and let it be taken by
866 * the CPU which runs the tick timer next. If we don't drop
867 * this here the jiffies might be stale and do_timer() never
868 * invoked.
869 */
870 if (unlikely(!cpu_online(cpu))) {
871 if (cpu == tick_do_timer_cpu)
872 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
873 return false;
874 }
875
876 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
877 ts->sleep_length = NSEC_PER_SEC / HZ;
878 return false;
879 }
880
881 if (need_resched())
882 return false;
883
884 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
885 static int ratelimit;
886
887 if (ratelimit < 10 &&
888 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
889 pr_warn("NOHZ: local_softirq_pending %02x\n",
890 (unsigned int) local_softirq_pending());
891 ratelimit++;
892 }
893 return false;
894 }
895
896 if (tick_nohz_full_enabled()) {
897 /*
898 * Keep the tick alive to guarantee timekeeping progression
899 * if there are full dynticks CPUs around
900 */
901 if (tick_do_timer_cpu == cpu)
902 return false;
903 /*
904 * Boot safety: make sure the timekeeping duty has been
905 * assigned before entering dyntick-idle mode,
906 */
907 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
908 return false;
909 }
910
911 return true;
912 }
913
914 static void __tick_nohz_idle_enter(struct tick_sched *ts)
915 {
916 ktime_t now, expires;
917 int cpu = smp_processor_id();
918
919 now = tick_nohz_start_idle(ts);
920
921 if (can_stop_idle_tick(cpu, ts)) {
922 int was_stopped = ts->tick_stopped;
923
924 ts->idle_calls++;
925
926 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
927 if (expires > 0LL) {
928 ts->idle_sleeps++;
929 ts->idle_expires = expires;
930 }
931
932 if (!was_stopped && ts->tick_stopped)
933 ts->idle_jiffies = ts->last_jiffies;
934 }
935 }
936
937 /**
938 * tick_nohz_idle_enter - stop the idle tick from the idle task
939 *
940 * When the next event is more than a tick into the future, stop the idle tick
941 * Called when we start the idle loop.
942 *
943 * The arch is responsible of calling:
944 *
945 * - rcu_idle_enter() after its last use of RCU before the CPU is put
946 * to sleep.
947 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
948 */
949 void tick_nohz_idle_enter(void)
950 {
951 struct tick_sched *ts;
952
953 WARN_ON_ONCE(irqs_disabled());
954
955 /*
956 * Update the idle state in the scheduler domain hierarchy
957 * when tick_nohz_stop_sched_tick() is called from the idle loop.
958 * State will be updated to busy during the first busy tick after
959 * exiting idle.
960 */
961 set_cpu_sd_state_idle();
962
963 local_irq_disable();
964
965 ts = this_cpu_ptr(&tick_cpu_sched);
966 ts->inidle = 1;
967 __tick_nohz_idle_enter(ts);
968
969 local_irq_enable();
970 }
971
972 /**
973 * tick_nohz_irq_exit - update next tick event from interrupt exit
974 *
975 * When an interrupt fires while we are idle and it doesn't cause
976 * a reschedule, it may still add, modify or delete a timer, enqueue
977 * an RCU callback, etc...
978 * So we need to re-calculate and reprogram the next tick event.
979 */
980 void tick_nohz_irq_exit(void)
981 {
982 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
983
984 if (ts->inidle)
985 __tick_nohz_idle_enter(ts);
986 else
987 tick_nohz_full_update_tick(ts);
988 }
989
990 /**
991 * tick_nohz_get_sleep_length - return the length of the current sleep
992 *
993 * Called from power state control code with interrupts disabled
994 */
995 ktime_t tick_nohz_get_sleep_length(void)
996 {
997 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
998
999 return ts->sleep_length;
1000 }
1001
1002 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1003 {
1004 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1005 unsigned long ticks;
1006
1007 if (vtime_accounting_cpu_enabled())
1008 return;
1009 /*
1010 * We stopped the tick in idle. Update process times would miss the
1011 * time we slept as update_process_times does only a 1 tick
1012 * accounting. Enforce that this is accounted to idle !
1013 */
1014 ticks = jiffies - ts->idle_jiffies;
1015 /*
1016 * We might be one off. Do not randomly account a huge number of ticks!
1017 */
1018 if (ticks && ticks < LONG_MAX)
1019 account_idle_ticks(ticks);
1020 #endif
1021 }
1022
1023 /**
1024 * tick_nohz_idle_exit - restart the idle tick from the idle task
1025 *
1026 * Restart the idle tick when the CPU is woken up from idle
1027 * This also exit the RCU extended quiescent state. The CPU
1028 * can use RCU again after this function is called.
1029 */
1030 void tick_nohz_idle_exit(void)
1031 {
1032 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1033 ktime_t now;
1034
1035 local_irq_disable();
1036
1037 WARN_ON_ONCE(!ts->inidle);
1038
1039 ts->inidle = 0;
1040
1041 if (ts->idle_active || ts->tick_stopped)
1042 now = ktime_get();
1043
1044 if (ts->idle_active)
1045 tick_nohz_stop_idle(ts, now);
1046
1047 if (ts->tick_stopped) {
1048 tick_nohz_restart_sched_tick(ts, now);
1049 tick_nohz_account_idle_ticks(ts);
1050 }
1051
1052 local_irq_enable();
1053 }
1054
1055 /*
1056 * The nohz low res interrupt handler
1057 */
1058 static void tick_nohz_handler(struct clock_event_device *dev)
1059 {
1060 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1061 struct pt_regs *regs = get_irq_regs();
1062 ktime_t now = ktime_get();
1063
1064 dev->next_event = KTIME_MAX;
1065
1066 tick_sched_do_timer(now);
1067 tick_sched_handle(ts, regs);
1068
1069 /* No need to reprogram if we are running tickless */
1070 if (unlikely(ts->tick_stopped))
1071 return;
1072
1073 hrtimer_forward(&ts->sched_timer, now, tick_period);
1074 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1075 }
1076
1077 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1078 {
1079 if (!tick_nohz_enabled)
1080 return;
1081 ts->nohz_mode = mode;
1082 /* One update is enough */
1083 if (!test_and_set_bit(0, &tick_nohz_active))
1084 timers_update_migration(true);
1085 }
1086
1087 /**
1088 * tick_nohz_switch_to_nohz - switch to nohz mode
1089 */
1090 static void tick_nohz_switch_to_nohz(void)
1091 {
1092 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1093 ktime_t next;
1094
1095 if (!tick_nohz_enabled)
1096 return;
1097
1098 if (tick_switch_to_oneshot(tick_nohz_handler))
1099 return;
1100
1101 /*
1102 * Recycle the hrtimer in ts, so we can share the
1103 * hrtimer_forward with the highres code.
1104 */
1105 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1106 /* Get the next period */
1107 next = tick_init_jiffy_update();
1108
1109 hrtimer_set_expires(&ts->sched_timer, next);
1110 hrtimer_forward_now(&ts->sched_timer, tick_period);
1111 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1112 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1113 }
1114
1115 static inline void tick_nohz_irq_enter(void)
1116 {
1117 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1118 ktime_t now;
1119
1120 if (!ts->idle_active && !ts->tick_stopped)
1121 return;
1122 now = ktime_get();
1123 if (ts->idle_active)
1124 tick_nohz_stop_idle(ts, now);
1125 if (ts->tick_stopped)
1126 tick_nohz_update_jiffies(now);
1127 }
1128
1129 #else
1130
1131 static inline void tick_nohz_switch_to_nohz(void) { }
1132 static inline void tick_nohz_irq_enter(void) { }
1133 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1134
1135 #endif /* CONFIG_NO_HZ_COMMON */
1136
1137 /*
1138 * Called from irq_enter to notify about the possible interruption of idle()
1139 */
1140 void tick_irq_enter(void)
1141 {
1142 tick_check_oneshot_broadcast_this_cpu();
1143 tick_nohz_irq_enter();
1144 }
1145
1146 /*
1147 * High resolution timer specific code
1148 */
1149 #ifdef CONFIG_HIGH_RES_TIMERS
1150 /*
1151 * We rearm the timer until we get disabled by the idle code.
1152 * Called with interrupts disabled.
1153 */
1154 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1155 {
1156 struct tick_sched *ts =
1157 container_of(timer, struct tick_sched, sched_timer);
1158 struct pt_regs *regs = get_irq_regs();
1159 ktime_t now = ktime_get();
1160
1161 tick_sched_do_timer(now);
1162
1163 /*
1164 * Do not call, when we are not in irq context and have
1165 * no valid regs pointer
1166 */
1167 if (regs)
1168 tick_sched_handle(ts, regs);
1169
1170 /* No need to reprogram if we are in idle or full dynticks mode */
1171 if (unlikely(ts->tick_stopped))
1172 return HRTIMER_NORESTART;
1173
1174 hrtimer_forward(timer, now, tick_period);
1175
1176 return HRTIMER_RESTART;
1177 }
1178
1179 static int sched_skew_tick;
1180
1181 static int __init skew_tick(char *str)
1182 {
1183 get_option(&str, &sched_skew_tick);
1184
1185 return 0;
1186 }
1187 early_param("skew_tick", skew_tick);
1188
1189 /**
1190 * tick_setup_sched_timer - setup the tick emulation timer
1191 */
1192 void tick_setup_sched_timer(void)
1193 {
1194 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1195 ktime_t now = ktime_get();
1196
1197 /*
1198 * Emulate tick processing via per-CPU hrtimers:
1199 */
1200 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1201 ts->sched_timer.function = tick_sched_timer;
1202
1203 /* Get the next period (per-CPU) */
1204 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1205
1206 /* Offset the tick to avert jiffies_lock contention. */
1207 if (sched_skew_tick) {
1208 u64 offset = ktime_to_ns(tick_period) >> 1;
1209 do_div(offset, num_possible_cpus());
1210 offset *= smp_processor_id();
1211 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1212 }
1213
1214 hrtimer_forward(&ts->sched_timer, now, tick_period);
1215 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1216 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1217 }
1218 #endif /* HIGH_RES_TIMERS */
1219
1220 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1221 void tick_cancel_sched_timer(int cpu)
1222 {
1223 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1224
1225 # ifdef CONFIG_HIGH_RES_TIMERS
1226 if (ts->sched_timer.base)
1227 hrtimer_cancel(&ts->sched_timer);
1228 # endif
1229
1230 memset(ts, 0, sizeof(*ts));
1231 }
1232 #endif
1233
1234 /**
1235 * Async notification about clocksource changes
1236 */
1237 void tick_clock_notify(void)
1238 {
1239 int cpu;
1240
1241 for_each_possible_cpu(cpu)
1242 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1243 }
1244
1245 /*
1246 * Async notification about clock event changes
1247 */
1248 void tick_oneshot_notify(void)
1249 {
1250 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1251
1252 set_bit(0, &ts->check_clocks);
1253 }
1254
1255 /**
1256 * Check, if a change happened, which makes oneshot possible.
1257 *
1258 * Called cyclic from the hrtimer softirq (driven by the timer
1259 * softirq) allow_nohz signals, that we can switch into low-res nohz
1260 * mode, because high resolution timers are disabled (either compile
1261 * or runtime). Called with interrupts disabled.
1262 */
1263 int tick_check_oneshot_change(int allow_nohz)
1264 {
1265 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1266
1267 if (!test_and_clear_bit(0, &ts->check_clocks))
1268 return 0;
1269
1270 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1271 return 0;
1272
1273 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1274 return 0;
1275
1276 if (!allow_nohz)
1277 return 1;
1278
1279 tick_nohz_switch_to_nohz();
1280 return 0;
1281 }