]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/tick-sched.c
Merge tag 'renesas-fixes2-for-v4.13' of https://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/sched/nohz.h>
26 #include <linux/module.h>
27 #include <linux/irq_work.h>
28 #include <linux/posix-timers.h>
29 #include <linux/context_tracking.h>
30
31 #include <asm/irq_regs.h>
32
33 #include "tick-internal.h"
34
35 #include <trace/events/timer.h>
36
37 /*
38 * Per-CPU nohz control structure
39 */
40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
41
42 struct tick_sched *tick_get_tick_sched(int cpu)
43 {
44 return &per_cpu(tick_cpu_sched, cpu);
45 }
46
47 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
48 /*
49 * The time, when the last jiffy update happened. Protected by jiffies_lock.
50 */
51 static ktime_t last_jiffies_update;
52
53 /*
54 * Must be called with interrupts disabled !
55 */
56 static void tick_do_update_jiffies64(ktime_t now)
57 {
58 unsigned long ticks = 0;
59 ktime_t delta;
60
61 /*
62 * Do a quick check without holding jiffies_lock:
63 */
64 delta = ktime_sub(now, last_jiffies_update);
65 if (delta < tick_period)
66 return;
67
68 /* Reevaluate with jiffies_lock held */
69 write_seqlock(&jiffies_lock);
70
71 delta = ktime_sub(now, last_jiffies_update);
72 if (delta >= tick_period) {
73
74 delta = ktime_sub(delta, tick_period);
75 last_jiffies_update = ktime_add(last_jiffies_update,
76 tick_period);
77
78 /* Slow path for long timeouts */
79 if (unlikely(delta >= tick_period)) {
80 s64 incr = ktime_to_ns(tick_period);
81
82 ticks = ktime_divns(delta, incr);
83
84 last_jiffies_update = ktime_add_ns(last_jiffies_update,
85 incr * ticks);
86 }
87 do_timer(++ticks);
88
89 /* Keep the tick_next_period variable up to date */
90 tick_next_period = ktime_add(last_jiffies_update, tick_period);
91 } else {
92 write_sequnlock(&jiffies_lock);
93 return;
94 }
95 write_sequnlock(&jiffies_lock);
96 update_wall_time();
97 }
98
99 /*
100 * Initialize and return retrieve the jiffies update.
101 */
102 static ktime_t tick_init_jiffy_update(void)
103 {
104 ktime_t period;
105
106 write_seqlock(&jiffies_lock);
107 /* Did we start the jiffies update yet ? */
108 if (last_jiffies_update == 0)
109 last_jiffies_update = tick_next_period;
110 period = last_jiffies_update;
111 write_sequnlock(&jiffies_lock);
112 return period;
113 }
114
115
116 static void tick_sched_do_timer(ktime_t now)
117 {
118 int cpu = smp_processor_id();
119
120 #ifdef CONFIG_NO_HZ_COMMON
121 /*
122 * Check if the do_timer duty was dropped. We don't care about
123 * concurrency: This happens only when the CPU in charge went
124 * into a long sleep. If two CPUs happen to assign themselves to
125 * this duty, then the jiffies update is still serialized by
126 * jiffies_lock.
127 */
128 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
129 && !tick_nohz_full_cpu(cpu))
130 tick_do_timer_cpu = cpu;
131 #endif
132
133 /* Check, if the jiffies need an update */
134 if (tick_do_timer_cpu == cpu)
135 tick_do_update_jiffies64(now);
136 }
137
138 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
139 {
140 #ifdef CONFIG_NO_HZ_COMMON
141 /*
142 * When we are idle and the tick is stopped, we have to touch
143 * the watchdog as we might not schedule for a really long
144 * time. This happens on complete idle SMP systems while
145 * waiting on the login prompt. We also increment the "start of
146 * idle" jiffy stamp so the idle accounting adjustment we do
147 * when we go busy again does not account too much ticks.
148 */
149 if (ts->tick_stopped) {
150 touch_softlockup_watchdog_sched();
151 if (is_idle_task(current))
152 ts->idle_jiffies++;
153 /*
154 * In case the current tick fired too early past its expected
155 * expiration, make sure we don't bypass the next clock reprogramming
156 * to the same deadline.
157 */
158 ts->next_tick = 0;
159 }
160 #endif
161 update_process_times(user_mode(regs));
162 profile_tick(CPU_PROFILING);
163 }
164 #endif
165
166 #ifdef CONFIG_NO_HZ_FULL
167 cpumask_var_t tick_nohz_full_mask;
168 cpumask_var_t housekeeping_mask;
169 bool tick_nohz_full_running;
170 static atomic_t tick_dep_mask;
171
172 static bool check_tick_dependency(atomic_t *dep)
173 {
174 int val = atomic_read(dep);
175
176 if (val & TICK_DEP_MASK_POSIX_TIMER) {
177 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
178 return true;
179 }
180
181 if (val & TICK_DEP_MASK_PERF_EVENTS) {
182 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
183 return true;
184 }
185
186 if (val & TICK_DEP_MASK_SCHED) {
187 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
188 return true;
189 }
190
191 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
192 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
193 return true;
194 }
195
196 return false;
197 }
198
199 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
200 {
201 WARN_ON_ONCE(!irqs_disabled());
202
203 if (unlikely(!cpu_online(cpu)))
204 return false;
205
206 if (check_tick_dependency(&tick_dep_mask))
207 return false;
208
209 if (check_tick_dependency(&ts->tick_dep_mask))
210 return false;
211
212 if (check_tick_dependency(&current->tick_dep_mask))
213 return false;
214
215 if (check_tick_dependency(&current->signal->tick_dep_mask))
216 return false;
217
218 return true;
219 }
220
221 static void nohz_full_kick_func(struct irq_work *work)
222 {
223 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
224 }
225
226 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
227 .func = nohz_full_kick_func,
228 };
229
230 /*
231 * Kick this CPU if it's full dynticks in order to force it to
232 * re-evaluate its dependency on the tick and restart it if necessary.
233 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
234 * is NMI safe.
235 */
236 static void tick_nohz_full_kick(void)
237 {
238 if (!tick_nohz_full_cpu(smp_processor_id()))
239 return;
240
241 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
242 }
243
244 /*
245 * Kick the CPU if it's full dynticks in order to force it to
246 * re-evaluate its dependency on the tick and restart it if necessary.
247 */
248 void tick_nohz_full_kick_cpu(int cpu)
249 {
250 if (!tick_nohz_full_cpu(cpu))
251 return;
252
253 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
254 }
255
256 /*
257 * Kick all full dynticks CPUs in order to force these to re-evaluate
258 * their dependency on the tick and restart it if necessary.
259 */
260 static void tick_nohz_full_kick_all(void)
261 {
262 int cpu;
263
264 if (!tick_nohz_full_running)
265 return;
266
267 preempt_disable();
268 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
269 tick_nohz_full_kick_cpu(cpu);
270 preempt_enable();
271 }
272
273 static void tick_nohz_dep_set_all(atomic_t *dep,
274 enum tick_dep_bits bit)
275 {
276 int prev;
277
278 prev = atomic_fetch_or(BIT(bit), dep);
279 if (!prev)
280 tick_nohz_full_kick_all();
281 }
282
283 /*
284 * Set a global tick dependency. Used by perf events that rely on freq and
285 * by unstable clock.
286 */
287 void tick_nohz_dep_set(enum tick_dep_bits bit)
288 {
289 tick_nohz_dep_set_all(&tick_dep_mask, bit);
290 }
291
292 void tick_nohz_dep_clear(enum tick_dep_bits bit)
293 {
294 atomic_andnot(BIT(bit), &tick_dep_mask);
295 }
296
297 /*
298 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
299 * manage events throttling.
300 */
301 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
302 {
303 int prev;
304 struct tick_sched *ts;
305
306 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
307
308 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
309 if (!prev) {
310 preempt_disable();
311 /* Perf needs local kick that is NMI safe */
312 if (cpu == smp_processor_id()) {
313 tick_nohz_full_kick();
314 } else {
315 /* Remote irq work not NMI-safe */
316 if (!WARN_ON_ONCE(in_nmi()))
317 tick_nohz_full_kick_cpu(cpu);
318 }
319 preempt_enable();
320 }
321 }
322
323 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
324 {
325 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
326
327 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
328 }
329
330 /*
331 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
332 * per task timers.
333 */
334 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
335 {
336 /*
337 * We could optimize this with just kicking the target running the task
338 * if that noise matters for nohz full users.
339 */
340 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
341 }
342
343 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
344 {
345 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
346 }
347
348 /*
349 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
350 * per process timers.
351 */
352 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
353 {
354 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
355 }
356
357 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
358 {
359 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
360 }
361
362 /*
363 * Re-evaluate the need for the tick as we switch the current task.
364 * It might need the tick due to per task/process properties:
365 * perf events, posix CPU timers, ...
366 */
367 void __tick_nohz_task_switch(void)
368 {
369 unsigned long flags;
370 struct tick_sched *ts;
371
372 local_irq_save(flags);
373
374 if (!tick_nohz_full_cpu(smp_processor_id()))
375 goto out;
376
377 ts = this_cpu_ptr(&tick_cpu_sched);
378
379 if (ts->tick_stopped) {
380 if (atomic_read(&current->tick_dep_mask) ||
381 atomic_read(&current->signal->tick_dep_mask))
382 tick_nohz_full_kick();
383 }
384 out:
385 local_irq_restore(flags);
386 }
387
388 /* Parse the boot-time nohz CPU list from the kernel parameters. */
389 static int __init tick_nohz_full_setup(char *str)
390 {
391 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
392 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
393 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
394 free_bootmem_cpumask_var(tick_nohz_full_mask);
395 return 1;
396 }
397 tick_nohz_full_running = true;
398
399 return 1;
400 }
401 __setup("nohz_full=", tick_nohz_full_setup);
402
403 static int tick_nohz_cpu_down(unsigned int cpu)
404 {
405 /*
406 * The boot CPU handles housekeeping duty (unbound timers,
407 * workqueues, timekeeping, ...) on behalf of full dynticks
408 * CPUs. It must remain online when nohz full is enabled.
409 */
410 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
411 return -EBUSY;
412 return 0;
413 }
414
415 static int tick_nohz_init_all(void)
416 {
417 int err = -1;
418
419 #ifdef CONFIG_NO_HZ_FULL_ALL
420 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
421 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
422 return err;
423 }
424 err = 0;
425 cpumask_setall(tick_nohz_full_mask);
426 tick_nohz_full_running = true;
427 #endif
428 return err;
429 }
430
431 void __init tick_nohz_init(void)
432 {
433 int cpu, ret;
434
435 if (!tick_nohz_full_running) {
436 if (tick_nohz_init_all() < 0)
437 return;
438 }
439
440 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
441 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
442 cpumask_clear(tick_nohz_full_mask);
443 tick_nohz_full_running = false;
444 return;
445 }
446
447 /*
448 * Full dynticks uses irq work to drive the tick rescheduling on safe
449 * locking contexts. But then we need irq work to raise its own
450 * interrupts to avoid circular dependency on the tick
451 */
452 if (!arch_irq_work_has_interrupt()) {
453 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
454 cpumask_clear(tick_nohz_full_mask);
455 cpumask_copy(housekeeping_mask, cpu_possible_mask);
456 tick_nohz_full_running = false;
457 return;
458 }
459
460 cpu = smp_processor_id();
461
462 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
463 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
464 cpu);
465 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
466 }
467
468 cpumask_andnot(housekeeping_mask,
469 cpu_possible_mask, tick_nohz_full_mask);
470
471 for_each_cpu(cpu, tick_nohz_full_mask)
472 context_tracking_cpu_set(cpu);
473
474 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
475 "kernel/nohz:predown", NULL,
476 tick_nohz_cpu_down);
477 WARN_ON(ret < 0);
478 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
479 cpumask_pr_args(tick_nohz_full_mask));
480
481 /*
482 * We need at least one CPU to handle housekeeping work such
483 * as timekeeping, unbound timers, workqueues, ...
484 */
485 WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
486 }
487 #endif
488
489 /*
490 * NOHZ - aka dynamic tick functionality
491 */
492 #ifdef CONFIG_NO_HZ_COMMON
493 /*
494 * NO HZ enabled ?
495 */
496 bool tick_nohz_enabled __read_mostly = true;
497 unsigned long tick_nohz_active __read_mostly;
498 /*
499 * Enable / Disable tickless mode
500 */
501 static int __init setup_tick_nohz(char *str)
502 {
503 return (kstrtobool(str, &tick_nohz_enabled) == 0);
504 }
505
506 __setup("nohz=", setup_tick_nohz);
507
508 int tick_nohz_tick_stopped(void)
509 {
510 return __this_cpu_read(tick_cpu_sched.tick_stopped);
511 }
512
513 /**
514 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
515 *
516 * Called from interrupt entry when the CPU was idle
517 *
518 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
519 * must be updated. Otherwise an interrupt handler could use a stale jiffy
520 * value. We do this unconditionally on any CPU, as we don't know whether the
521 * CPU, which has the update task assigned is in a long sleep.
522 */
523 static void tick_nohz_update_jiffies(ktime_t now)
524 {
525 unsigned long flags;
526
527 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
528
529 local_irq_save(flags);
530 tick_do_update_jiffies64(now);
531 local_irq_restore(flags);
532
533 touch_softlockup_watchdog_sched();
534 }
535
536 /*
537 * Updates the per-CPU time idle statistics counters
538 */
539 static void
540 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
541 {
542 ktime_t delta;
543
544 if (ts->idle_active) {
545 delta = ktime_sub(now, ts->idle_entrytime);
546 if (nr_iowait_cpu(cpu) > 0)
547 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
548 else
549 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
550 ts->idle_entrytime = now;
551 }
552
553 if (last_update_time)
554 *last_update_time = ktime_to_us(now);
555
556 }
557
558 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
559 {
560 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
561 ts->idle_active = 0;
562
563 sched_clock_idle_wakeup_event();
564 }
565
566 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
567 {
568 ktime_t now = ktime_get();
569
570 ts->idle_entrytime = now;
571 ts->idle_active = 1;
572 sched_clock_idle_sleep_event();
573 return now;
574 }
575
576 /**
577 * get_cpu_idle_time_us - get the total idle time of a CPU
578 * @cpu: CPU number to query
579 * @last_update_time: variable to store update time in. Do not update
580 * counters if NULL.
581 *
582 * Return the cumulative idle time (since boot) for a given
583 * CPU, in microseconds.
584 *
585 * This time is measured via accounting rather than sampling,
586 * and is as accurate as ktime_get() is.
587 *
588 * This function returns -1 if NOHZ is not enabled.
589 */
590 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
591 {
592 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
593 ktime_t now, idle;
594
595 if (!tick_nohz_active)
596 return -1;
597
598 now = ktime_get();
599 if (last_update_time) {
600 update_ts_time_stats(cpu, ts, now, last_update_time);
601 idle = ts->idle_sleeptime;
602 } else {
603 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
604 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
605
606 idle = ktime_add(ts->idle_sleeptime, delta);
607 } else {
608 idle = ts->idle_sleeptime;
609 }
610 }
611
612 return ktime_to_us(idle);
613
614 }
615 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
616
617 /**
618 * get_cpu_iowait_time_us - get the total iowait time of a CPU
619 * @cpu: CPU number to query
620 * @last_update_time: variable to store update time in. Do not update
621 * counters if NULL.
622 *
623 * Return the cumulative iowait time (since boot) for a given
624 * CPU, in microseconds.
625 *
626 * This time is measured via accounting rather than sampling,
627 * and is as accurate as ktime_get() is.
628 *
629 * This function returns -1 if NOHZ is not enabled.
630 */
631 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
632 {
633 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
634 ktime_t now, iowait;
635
636 if (!tick_nohz_active)
637 return -1;
638
639 now = ktime_get();
640 if (last_update_time) {
641 update_ts_time_stats(cpu, ts, now, last_update_time);
642 iowait = ts->iowait_sleeptime;
643 } else {
644 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
645 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
646
647 iowait = ktime_add(ts->iowait_sleeptime, delta);
648 } else {
649 iowait = ts->iowait_sleeptime;
650 }
651 }
652
653 return ktime_to_us(iowait);
654 }
655 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
656
657 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
658 {
659 hrtimer_cancel(&ts->sched_timer);
660 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
661
662 /* Forward the time to expire in the future */
663 hrtimer_forward(&ts->sched_timer, now, tick_period);
664
665 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
666 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
667 else
668 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
669
670 /*
671 * Reset to make sure next tick stop doesn't get fooled by past
672 * cached clock deadline.
673 */
674 ts->next_tick = 0;
675 }
676
677 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
678 ktime_t now, int cpu)
679 {
680 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
681 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
682 unsigned long seq, basejiff;
683 ktime_t tick;
684
685 /* Read jiffies and the time when jiffies were updated last */
686 do {
687 seq = read_seqbegin(&jiffies_lock);
688 basemono = last_jiffies_update;
689 basejiff = jiffies;
690 } while (read_seqretry(&jiffies_lock, seq));
691 ts->last_jiffies = basejiff;
692
693 if (rcu_needs_cpu(basemono, &next_rcu) ||
694 arch_needs_cpu() || irq_work_needs_cpu()) {
695 next_tick = basemono + TICK_NSEC;
696 } else {
697 /*
698 * Get the next pending timer. If high resolution
699 * timers are enabled this only takes the timer wheel
700 * timers into account. If high resolution timers are
701 * disabled this also looks at the next expiring
702 * hrtimer.
703 */
704 next_tmr = get_next_timer_interrupt(basejiff, basemono);
705 ts->next_timer = next_tmr;
706 /* Take the next rcu event into account */
707 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
708 }
709
710 /*
711 * If the tick is due in the next period, keep it ticking or
712 * force prod the timer.
713 */
714 delta = next_tick - basemono;
715 if (delta <= (u64)TICK_NSEC) {
716 /*
717 * Tell the timer code that the base is not idle, i.e. undo
718 * the effect of get_next_timer_interrupt():
719 */
720 timer_clear_idle();
721 /*
722 * We've not stopped the tick yet, and there's a timer in the
723 * next period, so no point in stopping it either, bail.
724 */
725 if (!ts->tick_stopped) {
726 tick = 0;
727 goto out;
728 }
729 }
730
731 /*
732 * If this CPU is the one which updates jiffies, then give up
733 * the assignment and let it be taken by the CPU which runs
734 * the tick timer next, which might be this CPU as well. If we
735 * don't drop this here the jiffies might be stale and
736 * do_timer() never invoked. Keep track of the fact that it
737 * was the one which had the do_timer() duty last. If this CPU
738 * is the one which had the do_timer() duty last, we limit the
739 * sleep time to the timekeeping max_deferment value.
740 * Otherwise we can sleep as long as we want.
741 */
742 delta = timekeeping_max_deferment();
743 if (cpu == tick_do_timer_cpu) {
744 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
745 ts->do_timer_last = 1;
746 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
747 delta = KTIME_MAX;
748 ts->do_timer_last = 0;
749 } else if (!ts->do_timer_last) {
750 delta = KTIME_MAX;
751 }
752
753 #ifdef CONFIG_NO_HZ_FULL
754 /* Limit the tick delta to the maximum scheduler deferment */
755 if (!ts->inidle)
756 delta = min(delta, scheduler_tick_max_deferment());
757 #endif
758
759 /* Calculate the next expiry time */
760 if (delta < (KTIME_MAX - basemono))
761 expires = basemono + delta;
762 else
763 expires = KTIME_MAX;
764
765 expires = min_t(u64, expires, next_tick);
766 tick = expires;
767
768 /* Skip reprogram of event if its not changed */
769 if (ts->tick_stopped && (expires == ts->next_tick)) {
770 /* Sanity check: make sure clockevent is actually programmed */
771 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
772 goto out;
773
774 WARN_ON_ONCE(1);
775 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
776 basemono, ts->next_tick, dev->next_event,
777 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
778 }
779
780 /*
781 * nohz_stop_sched_tick can be called several times before
782 * the nohz_restart_sched_tick is called. This happens when
783 * interrupts arrive which do not cause a reschedule. In the
784 * first call we save the current tick time, so we can restart
785 * the scheduler tick in nohz_restart_sched_tick.
786 */
787 if (!ts->tick_stopped) {
788 calc_load_nohz_start();
789 cpu_load_update_nohz_start();
790
791 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
792 ts->tick_stopped = 1;
793 trace_tick_stop(1, TICK_DEP_MASK_NONE);
794 }
795
796 ts->next_tick = tick;
797
798 /*
799 * If the expiration time == KTIME_MAX, then we simply stop
800 * the tick timer.
801 */
802 if (unlikely(expires == KTIME_MAX)) {
803 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
804 hrtimer_cancel(&ts->sched_timer);
805 goto out;
806 }
807
808 hrtimer_set_expires(&ts->sched_timer, tick);
809
810 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
811 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
812 else
813 tick_program_event(tick, 1);
814 out:
815 /*
816 * Update the estimated sleep length until the next timer
817 * (not only the tick).
818 */
819 ts->sleep_length = ktime_sub(dev->next_event, now);
820 return tick;
821 }
822
823 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
824 {
825 /* Update jiffies first */
826 tick_do_update_jiffies64(now);
827 cpu_load_update_nohz_stop();
828
829 /*
830 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
831 * the clock forward checks in the enqueue path:
832 */
833 timer_clear_idle();
834
835 calc_load_nohz_stop();
836 touch_softlockup_watchdog_sched();
837 /*
838 * Cancel the scheduled timer and restore the tick
839 */
840 ts->tick_stopped = 0;
841 ts->idle_exittime = now;
842
843 tick_nohz_restart(ts, now);
844 }
845
846 static void tick_nohz_full_update_tick(struct tick_sched *ts)
847 {
848 #ifdef CONFIG_NO_HZ_FULL
849 int cpu = smp_processor_id();
850
851 if (!tick_nohz_full_cpu(cpu))
852 return;
853
854 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
855 return;
856
857 if (can_stop_full_tick(cpu, ts))
858 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
859 else if (ts->tick_stopped)
860 tick_nohz_restart_sched_tick(ts, ktime_get());
861 #endif
862 }
863
864 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
865 {
866 /*
867 * If this CPU is offline and it is the one which updates
868 * jiffies, then give up the assignment and let it be taken by
869 * the CPU which runs the tick timer next. If we don't drop
870 * this here the jiffies might be stale and do_timer() never
871 * invoked.
872 */
873 if (unlikely(!cpu_online(cpu))) {
874 if (cpu == tick_do_timer_cpu)
875 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
876 /*
877 * Make sure the CPU doesn't get fooled by obsolete tick
878 * deadline if it comes back online later.
879 */
880 ts->next_tick = 0;
881 return false;
882 }
883
884 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
885 ts->sleep_length = NSEC_PER_SEC / HZ;
886 return false;
887 }
888
889 if (need_resched())
890 return false;
891
892 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
893 static int ratelimit;
894
895 if (ratelimit < 10 &&
896 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
897 pr_warn("NOHZ: local_softirq_pending %02x\n",
898 (unsigned int) local_softirq_pending());
899 ratelimit++;
900 }
901 return false;
902 }
903
904 if (tick_nohz_full_enabled()) {
905 /*
906 * Keep the tick alive to guarantee timekeeping progression
907 * if there are full dynticks CPUs around
908 */
909 if (tick_do_timer_cpu == cpu)
910 return false;
911 /*
912 * Boot safety: make sure the timekeeping duty has been
913 * assigned before entering dyntick-idle mode,
914 */
915 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
916 return false;
917 }
918
919 return true;
920 }
921
922 static void __tick_nohz_idle_enter(struct tick_sched *ts)
923 {
924 ktime_t now, expires;
925 int cpu = smp_processor_id();
926
927 now = tick_nohz_start_idle(ts);
928
929 if (can_stop_idle_tick(cpu, ts)) {
930 int was_stopped = ts->tick_stopped;
931
932 ts->idle_calls++;
933
934 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
935 if (expires > 0LL) {
936 ts->idle_sleeps++;
937 ts->idle_expires = expires;
938 }
939
940 if (!was_stopped && ts->tick_stopped) {
941 ts->idle_jiffies = ts->last_jiffies;
942 nohz_balance_enter_idle(cpu);
943 }
944 }
945 }
946
947 /**
948 * tick_nohz_idle_enter - stop the idle tick from the idle task
949 *
950 * When the next event is more than a tick into the future, stop the idle tick
951 * Called when we start the idle loop.
952 *
953 * The arch is responsible of calling:
954 *
955 * - rcu_idle_enter() after its last use of RCU before the CPU is put
956 * to sleep.
957 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
958 */
959 void tick_nohz_idle_enter(void)
960 {
961 struct tick_sched *ts;
962
963 WARN_ON_ONCE(irqs_disabled());
964
965 /*
966 * Update the idle state in the scheduler domain hierarchy
967 * when tick_nohz_stop_sched_tick() is called from the idle loop.
968 * State will be updated to busy during the first busy tick after
969 * exiting idle.
970 */
971 set_cpu_sd_state_idle();
972
973 local_irq_disable();
974
975 ts = this_cpu_ptr(&tick_cpu_sched);
976 ts->inidle = 1;
977 __tick_nohz_idle_enter(ts);
978
979 local_irq_enable();
980 }
981
982 /**
983 * tick_nohz_irq_exit - update next tick event from interrupt exit
984 *
985 * When an interrupt fires while we are idle and it doesn't cause
986 * a reschedule, it may still add, modify or delete a timer, enqueue
987 * an RCU callback, etc...
988 * So we need to re-calculate and reprogram the next tick event.
989 */
990 void tick_nohz_irq_exit(void)
991 {
992 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
993
994 if (ts->inidle)
995 __tick_nohz_idle_enter(ts);
996 else
997 tick_nohz_full_update_tick(ts);
998 }
999
1000 /**
1001 * tick_nohz_get_sleep_length - return the length of the current sleep
1002 *
1003 * Called from power state control code with interrupts disabled
1004 */
1005 ktime_t tick_nohz_get_sleep_length(void)
1006 {
1007 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1008
1009 return ts->sleep_length;
1010 }
1011
1012 /**
1013 * tick_nohz_get_idle_calls - return the current idle calls counter value
1014 *
1015 * Called from the schedutil frequency scaling governor in scheduler context.
1016 */
1017 unsigned long tick_nohz_get_idle_calls(void)
1018 {
1019 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1020
1021 return ts->idle_calls;
1022 }
1023
1024 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1025 {
1026 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1027 unsigned long ticks;
1028
1029 if (vtime_accounting_cpu_enabled())
1030 return;
1031 /*
1032 * We stopped the tick in idle. Update process times would miss the
1033 * time we slept as update_process_times does only a 1 tick
1034 * accounting. Enforce that this is accounted to idle !
1035 */
1036 ticks = jiffies - ts->idle_jiffies;
1037 /*
1038 * We might be one off. Do not randomly account a huge number of ticks!
1039 */
1040 if (ticks && ticks < LONG_MAX)
1041 account_idle_ticks(ticks);
1042 #endif
1043 }
1044
1045 /**
1046 * tick_nohz_idle_exit - restart the idle tick from the idle task
1047 *
1048 * Restart the idle tick when the CPU is woken up from idle
1049 * This also exit the RCU extended quiescent state. The CPU
1050 * can use RCU again after this function is called.
1051 */
1052 void tick_nohz_idle_exit(void)
1053 {
1054 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1055 ktime_t now;
1056
1057 local_irq_disable();
1058
1059 WARN_ON_ONCE(!ts->inidle);
1060
1061 ts->inidle = 0;
1062
1063 if (ts->idle_active || ts->tick_stopped)
1064 now = ktime_get();
1065
1066 if (ts->idle_active)
1067 tick_nohz_stop_idle(ts, now);
1068
1069 if (ts->tick_stopped) {
1070 tick_nohz_restart_sched_tick(ts, now);
1071 tick_nohz_account_idle_ticks(ts);
1072 }
1073
1074 local_irq_enable();
1075 }
1076
1077 /*
1078 * The nohz low res interrupt handler
1079 */
1080 static void tick_nohz_handler(struct clock_event_device *dev)
1081 {
1082 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1083 struct pt_regs *regs = get_irq_regs();
1084 ktime_t now = ktime_get();
1085
1086 dev->next_event = KTIME_MAX;
1087
1088 tick_sched_do_timer(now);
1089 tick_sched_handle(ts, regs);
1090
1091 /* No need to reprogram if we are running tickless */
1092 if (unlikely(ts->tick_stopped))
1093 return;
1094
1095 hrtimer_forward(&ts->sched_timer, now, tick_period);
1096 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1097 }
1098
1099 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1100 {
1101 if (!tick_nohz_enabled)
1102 return;
1103 ts->nohz_mode = mode;
1104 /* One update is enough */
1105 if (!test_and_set_bit(0, &tick_nohz_active))
1106 timers_update_migration(true);
1107 }
1108
1109 /**
1110 * tick_nohz_switch_to_nohz - switch to nohz mode
1111 */
1112 static void tick_nohz_switch_to_nohz(void)
1113 {
1114 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1115 ktime_t next;
1116
1117 if (!tick_nohz_enabled)
1118 return;
1119
1120 if (tick_switch_to_oneshot(tick_nohz_handler))
1121 return;
1122
1123 /*
1124 * Recycle the hrtimer in ts, so we can share the
1125 * hrtimer_forward with the highres code.
1126 */
1127 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1128 /* Get the next period */
1129 next = tick_init_jiffy_update();
1130
1131 hrtimer_set_expires(&ts->sched_timer, next);
1132 hrtimer_forward_now(&ts->sched_timer, tick_period);
1133 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1134 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1135 }
1136
1137 static inline void tick_nohz_irq_enter(void)
1138 {
1139 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1140 ktime_t now;
1141
1142 if (!ts->idle_active && !ts->tick_stopped)
1143 return;
1144 now = ktime_get();
1145 if (ts->idle_active)
1146 tick_nohz_stop_idle(ts, now);
1147 if (ts->tick_stopped)
1148 tick_nohz_update_jiffies(now);
1149 }
1150
1151 #else
1152
1153 static inline void tick_nohz_switch_to_nohz(void) { }
1154 static inline void tick_nohz_irq_enter(void) { }
1155 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1156
1157 #endif /* CONFIG_NO_HZ_COMMON */
1158
1159 /*
1160 * Called from irq_enter to notify about the possible interruption of idle()
1161 */
1162 void tick_irq_enter(void)
1163 {
1164 tick_check_oneshot_broadcast_this_cpu();
1165 tick_nohz_irq_enter();
1166 }
1167
1168 /*
1169 * High resolution timer specific code
1170 */
1171 #ifdef CONFIG_HIGH_RES_TIMERS
1172 /*
1173 * We rearm the timer until we get disabled by the idle code.
1174 * Called with interrupts disabled.
1175 */
1176 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1177 {
1178 struct tick_sched *ts =
1179 container_of(timer, struct tick_sched, sched_timer);
1180 struct pt_regs *regs = get_irq_regs();
1181 ktime_t now = ktime_get();
1182
1183 tick_sched_do_timer(now);
1184
1185 /*
1186 * Do not call, when we are not in irq context and have
1187 * no valid regs pointer
1188 */
1189 if (regs)
1190 tick_sched_handle(ts, regs);
1191 else
1192 ts->next_tick = 0;
1193
1194 /* No need to reprogram if we are in idle or full dynticks mode */
1195 if (unlikely(ts->tick_stopped))
1196 return HRTIMER_NORESTART;
1197
1198 hrtimer_forward(timer, now, tick_period);
1199
1200 return HRTIMER_RESTART;
1201 }
1202
1203 static int sched_skew_tick;
1204
1205 static int __init skew_tick(char *str)
1206 {
1207 get_option(&str, &sched_skew_tick);
1208
1209 return 0;
1210 }
1211 early_param("skew_tick", skew_tick);
1212
1213 /**
1214 * tick_setup_sched_timer - setup the tick emulation timer
1215 */
1216 void tick_setup_sched_timer(void)
1217 {
1218 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1219 ktime_t now = ktime_get();
1220
1221 /*
1222 * Emulate tick processing via per-CPU hrtimers:
1223 */
1224 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1225 ts->sched_timer.function = tick_sched_timer;
1226
1227 /* Get the next period (per-CPU) */
1228 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1229
1230 /* Offset the tick to avert jiffies_lock contention. */
1231 if (sched_skew_tick) {
1232 u64 offset = ktime_to_ns(tick_period) >> 1;
1233 do_div(offset, num_possible_cpus());
1234 offset *= smp_processor_id();
1235 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1236 }
1237
1238 hrtimer_forward(&ts->sched_timer, now, tick_period);
1239 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1240 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1241 }
1242 #endif /* HIGH_RES_TIMERS */
1243
1244 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1245 void tick_cancel_sched_timer(int cpu)
1246 {
1247 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1248
1249 # ifdef CONFIG_HIGH_RES_TIMERS
1250 if (ts->sched_timer.base)
1251 hrtimer_cancel(&ts->sched_timer);
1252 # endif
1253
1254 memset(ts, 0, sizeof(*ts));
1255 }
1256 #endif
1257
1258 /**
1259 * Async notification about clocksource changes
1260 */
1261 void tick_clock_notify(void)
1262 {
1263 int cpu;
1264
1265 for_each_possible_cpu(cpu)
1266 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1267 }
1268
1269 /*
1270 * Async notification about clock event changes
1271 */
1272 void tick_oneshot_notify(void)
1273 {
1274 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1275
1276 set_bit(0, &ts->check_clocks);
1277 }
1278
1279 /**
1280 * Check, if a change happened, which makes oneshot possible.
1281 *
1282 * Called cyclic from the hrtimer softirq (driven by the timer
1283 * softirq) allow_nohz signals, that we can switch into low-res nohz
1284 * mode, because high resolution timers are disabled (either compile
1285 * or runtime). Called with interrupts disabled.
1286 */
1287 int tick_check_oneshot_change(int allow_nohz)
1288 {
1289 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1290
1291 if (!test_and_clear_bit(0, &ts->check_clocks))
1292 return 0;
1293
1294 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1295 return 0;
1296
1297 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1298 return 0;
1299
1300 if (!allow_nohz)
1301 return 1;
1302
1303 tick_nohz_switch_to_nohz();
1304 return 0;
1305 }