2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/sched/nohz.h>
26 #include <linux/module.h>
27 #include <linux/irq_work.h>
28 #include <linux/posix-timers.h>
29 #include <linux/context_tracking.h>
31 #include <asm/irq_regs.h>
33 #include "tick-internal.h"
35 #include <trace/events/timer.h>
38 * Per-CPU nohz control structure
40 static DEFINE_PER_CPU(struct tick_sched
, tick_cpu_sched
);
42 struct tick_sched
*tick_get_tick_sched(int cpu
)
44 return &per_cpu(tick_cpu_sched
, cpu
);
47 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
49 * The time, when the last jiffy update happened. Protected by jiffies_lock.
51 static ktime_t last_jiffies_update
;
54 * Must be called with interrupts disabled !
56 static void tick_do_update_jiffies64(ktime_t now
)
58 unsigned long ticks
= 0;
62 * Do a quick check without holding jiffies_lock:
64 delta
= ktime_sub(now
, last_jiffies_update
);
65 if (delta
< tick_period
)
68 /* Reevaluate with jiffies_lock held */
69 write_seqlock(&jiffies_lock
);
71 delta
= ktime_sub(now
, last_jiffies_update
);
72 if (delta
>= tick_period
) {
74 delta
= ktime_sub(delta
, tick_period
);
75 last_jiffies_update
= ktime_add(last_jiffies_update
,
78 /* Slow path for long timeouts */
79 if (unlikely(delta
>= tick_period
)) {
80 s64 incr
= ktime_to_ns(tick_period
);
82 ticks
= ktime_divns(delta
, incr
);
84 last_jiffies_update
= ktime_add_ns(last_jiffies_update
,
89 /* Keep the tick_next_period variable up to date */
90 tick_next_period
= ktime_add(last_jiffies_update
, tick_period
);
92 write_sequnlock(&jiffies_lock
);
95 write_sequnlock(&jiffies_lock
);
100 * Initialize and return retrieve the jiffies update.
102 static ktime_t
tick_init_jiffy_update(void)
106 write_seqlock(&jiffies_lock
);
107 /* Did we start the jiffies update yet ? */
108 if (last_jiffies_update
== 0)
109 last_jiffies_update
= tick_next_period
;
110 period
= last_jiffies_update
;
111 write_sequnlock(&jiffies_lock
);
116 static void tick_sched_do_timer(ktime_t now
)
118 int cpu
= smp_processor_id();
120 #ifdef CONFIG_NO_HZ_COMMON
122 * Check if the do_timer duty was dropped. We don't care about
123 * concurrency: This happens only when the CPU in charge went
124 * into a long sleep. If two CPUs happen to assign themselves to
125 * this duty, then the jiffies update is still serialized by
128 if (unlikely(tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
129 && !tick_nohz_full_cpu(cpu
))
130 tick_do_timer_cpu
= cpu
;
133 /* Check, if the jiffies need an update */
134 if (tick_do_timer_cpu
== cpu
)
135 tick_do_update_jiffies64(now
);
138 static void tick_sched_handle(struct tick_sched
*ts
, struct pt_regs
*regs
)
140 #ifdef CONFIG_NO_HZ_COMMON
142 * When we are idle and the tick is stopped, we have to touch
143 * the watchdog as we might not schedule for a really long
144 * time. This happens on complete idle SMP systems while
145 * waiting on the login prompt. We also increment the "start of
146 * idle" jiffy stamp so the idle accounting adjustment we do
147 * when we go busy again does not account too much ticks.
149 if (ts
->tick_stopped
) {
150 touch_softlockup_watchdog_sched();
151 if (is_idle_task(current
))
154 * In case the current tick fired too early past its expected
155 * expiration, make sure we don't bypass the next clock reprogramming
156 * to the same deadline.
161 update_process_times(user_mode(regs
));
162 profile_tick(CPU_PROFILING
);
166 #ifdef CONFIG_NO_HZ_FULL
167 cpumask_var_t tick_nohz_full_mask
;
168 cpumask_var_t housekeeping_mask
;
169 bool tick_nohz_full_running
;
170 static atomic_t tick_dep_mask
;
172 static bool check_tick_dependency(atomic_t
*dep
)
174 int val
= atomic_read(dep
);
176 if (val
& TICK_DEP_MASK_POSIX_TIMER
) {
177 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER
);
181 if (val
& TICK_DEP_MASK_PERF_EVENTS
) {
182 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS
);
186 if (val
& TICK_DEP_MASK_SCHED
) {
187 trace_tick_stop(0, TICK_DEP_MASK_SCHED
);
191 if (val
& TICK_DEP_MASK_CLOCK_UNSTABLE
) {
192 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE
);
199 static bool can_stop_full_tick(int cpu
, struct tick_sched
*ts
)
201 WARN_ON_ONCE(!irqs_disabled());
203 if (unlikely(!cpu_online(cpu
)))
206 if (check_tick_dependency(&tick_dep_mask
))
209 if (check_tick_dependency(&ts
->tick_dep_mask
))
212 if (check_tick_dependency(¤t
->tick_dep_mask
))
215 if (check_tick_dependency(¤t
->signal
->tick_dep_mask
))
221 static void nohz_full_kick_func(struct irq_work
*work
)
223 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
226 static DEFINE_PER_CPU(struct irq_work
, nohz_full_kick_work
) = {
227 .func
= nohz_full_kick_func
,
231 * Kick this CPU if it's full dynticks in order to force it to
232 * re-evaluate its dependency on the tick and restart it if necessary.
233 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
236 static void tick_nohz_full_kick(void)
238 if (!tick_nohz_full_cpu(smp_processor_id()))
241 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work
));
245 * Kick the CPU if it's full dynticks in order to force it to
246 * re-evaluate its dependency on the tick and restart it if necessary.
248 void tick_nohz_full_kick_cpu(int cpu
)
250 if (!tick_nohz_full_cpu(cpu
))
253 irq_work_queue_on(&per_cpu(nohz_full_kick_work
, cpu
), cpu
);
257 * Kick all full dynticks CPUs in order to force these to re-evaluate
258 * their dependency on the tick and restart it if necessary.
260 static void tick_nohz_full_kick_all(void)
264 if (!tick_nohz_full_running
)
268 for_each_cpu_and(cpu
, tick_nohz_full_mask
, cpu_online_mask
)
269 tick_nohz_full_kick_cpu(cpu
);
273 static void tick_nohz_dep_set_all(atomic_t
*dep
,
274 enum tick_dep_bits bit
)
278 prev
= atomic_fetch_or(BIT(bit
), dep
);
280 tick_nohz_full_kick_all();
284 * Set a global tick dependency. Used by perf events that rely on freq and
287 void tick_nohz_dep_set(enum tick_dep_bits bit
)
289 tick_nohz_dep_set_all(&tick_dep_mask
, bit
);
292 void tick_nohz_dep_clear(enum tick_dep_bits bit
)
294 atomic_andnot(BIT(bit
), &tick_dep_mask
);
298 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
299 * manage events throttling.
301 void tick_nohz_dep_set_cpu(int cpu
, enum tick_dep_bits bit
)
304 struct tick_sched
*ts
;
306 ts
= per_cpu_ptr(&tick_cpu_sched
, cpu
);
308 prev
= atomic_fetch_or(BIT(bit
), &ts
->tick_dep_mask
);
311 /* Perf needs local kick that is NMI safe */
312 if (cpu
== smp_processor_id()) {
313 tick_nohz_full_kick();
315 /* Remote irq work not NMI-safe */
316 if (!WARN_ON_ONCE(in_nmi()))
317 tick_nohz_full_kick_cpu(cpu
);
323 void tick_nohz_dep_clear_cpu(int cpu
, enum tick_dep_bits bit
)
325 struct tick_sched
*ts
= per_cpu_ptr(&tick_cpu_sched
, cpu
);
327 atomic_andnot(BIT(bit
), &ts
->tick_dep_mask
);
331 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
334 void tick_nohz_dep_set_task(struct task_struct
*tsk
, enum tick_dep_bits bit
)
337 * We could optimize this with just kicking the target running the task
338 * if that noise matters for nohz full users.
340 tick_nohz_dep_set_all(&tsk
->tick_dep_mask
, bit
);
343 void tick_nohz_dep_clear_task(struct task_struct
*tsk
, enum tick_dep_bits bit
)
345 atomic_andnot(BIT(bit
), &tsk
->tick_dep_mask
);
349 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
350 * per process timers.
352 void tick_nohz_dep_set_signal(struct signal_struct
*sig
, enum tick_dep_bits bit
)
354 tick_nohz_dep_set_all(&sig
->tick_dep_mask
, bit
);
357 void tick_nohz_dep_clear_signal(struct signal_struct
*sig
, enum tick_dep_bits bit
)
359 atomic_andnot(BIT(bit
), &sig
->tick_dep_mask
);
363 * Re-evaluate the need for the tick as we switch the current task.
364 * It might need the tick due to per task/process properties:
365 * perf events, posix CPU timers, ...
367 void __tick_nohz_task_switch(void)
370 struct tick_sched
*ts
;
372 local_irq_save(flags
);
374 if (!tick_nohz_full_cpu(smp_processor_id()))
377 ts
= this_cpu_ptr(&tick_cpu_sched
);
379 if (ts
->tick_stopped
) {
380 if (atomic_read(¤t
->tick_dep_mask
) ||
381 atomic_read(¤t
->signal
->tick_dep_mask
))
382 tick_nohz_full_kick();
385 local_irq_restore(flags
);
388 /* Parse the boot-time nohz CPU list from the kernel parameters. */
389 static int __init
tick_nohz_full_setup(char *str
)
391 alloc_bootmem_cpumask_var(&tick_nohz_full_mask
);
392 if (cpulist_parse(str
, tick_nohz_full_mask
) < 0) {
393 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
394 free_bootmem_cpumask_var(tick_nohz_full_mask
);
397 tick_nohz_full_running
= true;
401 __setup("nohz_full=", tick_nohz_full_setup
);
403 static int tick_nohz_cpu_down(unsigned int cpu
)
406 * The boot CPU handles housekeeping duty (unbound timers,
407 * workqueues, timekeeping, ...) on behalf of full dynticks
408 * CPUs. It must remain online when nohz full is enabled.
410 if (tick_nohz_full_running
&& tick_do_timer_cpu
== cpu
)
415 static int tick_nohz_init_all(void)
419 #ifdef CONFIG_NO_HZ_FULL_ALL
420 if (!alloc_cpumask_var(&tick_nohz_full_mask
, GFP_KERNEL
)) {
421 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
425 cpumask_setall(tick_nohz_full_mask
);
426 tick_nohz_full_running
= true;
431 void __init
tick_nohz_init(void)
435 if (!tick_nohz_full_running
) {
436 if (tick_nohz_init_all() < 0)
440 if (!alloc_cpumask_var(&housekeeping_mask
, GFP_KERNEL
)) {
441 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
442 cpumask_clear(tick_nohz_full_mask
);
443 tick_nohz_full_running
= false;
448 * Full dynticks uses irq work to drive the tick rescheduling on safe
449 * locking contexts. But then we need irq work to raise its own
450 * interrupts to avoid circular dependency on the tick
452 if (!arch_irq_work_has_interrupt()) {
453 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
454 cpumask_clear(tick_nohz_full_mask
);
455 cpumask_copy(housekeeping_mask
, cpu_possible_mask
);
456 tick_nohz_full_running
= false;
460 cpu
= smp_processor_id();
462 if (cpumask_test_cpu(cpu
, tick_nohz_full_mask
)) {
463 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
465 cpumask_clear_cpu(cpu
, tick_nohz_full_mask
);
468 cpumask_andnot(housekeeping_mask
,
469 cpu_possible_mask
, tick_nohz_full_mask
);
471 for_each_cpu(cpu
, tick_nohz_full_mask
)
472 context_tracking_cpu_set(cpu
);
474 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
475 "kernel/nohz:predown", NULL
,
478 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
479 cpumask_pr_args(tick_nohz_full_mask
));
482 * We need at least one CPU to handle housekeeping work such
483 * as timekeeping, unbound timers, workqueues, ...
485 WARN_ON_ONCE(cpumask_empty(housekeeping_mask
));
490 * NOHZ - aka dynamic tick functionality
492 #ifdef CONFIG_NO_HZ_COMMON
496 bool tick_nohz_enabled __read_mostly
= true;
497 unsigned long tick_nohz_active __read_mostly
;
499 * Enable / Disable tickless mode
501 static int __init
setup_tick_nohz(char *str
)
503 return (kstrtobool(str
, &tick_nohz_enabled
) == 0);
506 __setup("nohz=", setup_tick_nohz
);
508 int tick_nohz_tick_stopped(void)
510 return __this_cpu_read(tick_cpu_sched
.tick_stopped
);
514 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
516 * Called from interrupt entry when the CPU was idle
518 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
519 * must be updated. Otherwise an interrupt handler could use a stale jiffy
520 * value. We do this unconditionally on any CPU, as we don't know whether the
521 * CPU, which has the update task assigned is in a long sleep.
523 static void tick_nohz_update_jiffies(ktime_t now
)
527 __this_cpu_write(tick_cpu_sched
.idle_waketime
, now
);
529 local_irq_save(flags
);
530 tick_do_update_jiffies64(now
);
531 local_irq_restore(flags
);
533 touch_softlockup_watchdog_sched();
537 * Updates the per-CPU time idle statistics counters
540 update_ts_time_stats(int cpu
, struct tick_sched
*ts
, ktime_t now
, u64
*last_update_time
)
544 if (ts
->idle_active
) {
545 delta
= ktime_sub(now
, ts
->idle_entrytime
);
546 if (nr_iowait_cpu(cpu
) > 0)
547 ts
->iowait_sleeptime
= ktime_add(ts
->iowait_sleeptime
, delta
);
549 ts
->idle_sleeptime
= ktime_add(ts
->idle_sleeptime
, delta
);
550 ts
->idle_entrytime
= now
;
553 if (last_update_time
)
554 *last_update_time
= ktime_to_us(now
);
558 static void tick_nohz_stop_idle(struct tick_sched
*ts
, ktime_t now
)
560 update_ts_time_stats(smp_processor_id(), ts
, now
, NULL
);
563 sched_clock_idle_wakeup_event();
566 static ktime_t
tick_nohz_start_idle(struct tick_sched
*ts
)
568 ktime_t now
= ktime_get();
570 ts
->idle_entrytime
= now
;
572 sched_clock_idle_sleep_event();
577 * get_cpu_idle_time_us - get the total idle time of a CPU
578 * @cpu: CPU number to query
579 * @last_update_time: variable to store update time in. Do not update
582 * Return the cumulative idle time (since boot) for a given
583 * CPU, in microseconds.
585 * This time is measured via accounting rather than sampling,
586 * and is as accurate as ktime_get() is.
588 * This function returns -1 if NOHZ is not enabled.
590 u64
get_cpu_idle_time_us(int cpu
, u64
*last_update_time
)
592 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
595 if (!tick_nohz_active
)
599 if (last_update_time
) {
600 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
601 idle
= ts
->idle_sleeptime
;
603 if (ts
->idle_active
&& !nr_iowait_cpu(cpu
)) {
604 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
606 idle
= ktime_add(ts
->idle_sleeptime
, delta
);
608 idle
= ts
->idle_sleeptime
;
612 return ktime_to_us(idle
);
615 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us
);
618 * get_cpu_iowait_time_us - get the total iowait time of a CPU
619 * @cpu: CPU number to query
620 * @last_update_time: variable to store update time in. Do not update
623 * Return the cumulative iowait time (since boot) for a given
624 * CPU, in microseconds.
626 * This time is measured via accounting rather than sampling,
627 * and is as accurate as ktime_get() is.
629 * This function returns -1 if NOHZ is not enabled.
631 u64
get_cpu_iowait_time_us(int cpu
, u64
*last_update_time
)
633 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
636 if (!tick_nohz_active
)
640 if (last_update_time
) {
641 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
642 iowait
= ts
->iowait_sleeptime
;
644 if (ts
->idle_active
&& nr_iowait_cpu(cpu
) > 0) {
645 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
647 iowait
= ktime_add(ts
->iowait_sleeptime
, delta
);
649 iowait
= ts
->iowait_sleeptime
;
653 return ktime_to_us(iowait
);
655 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us
);
657 static void tick_nohz_restart(struct tick_sched
*ts
, ktime_t now
)
659 hrtimer_cancel(&ts
->sched_timer
);
660 hrtimer_set_expires(&ts
->sched_timer
, ts
->last_tick
);
662 /* Forward the time to expire in the future */
663 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
665 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
666 hrtimer_start_expires(&ts
->sched_timer
, HRTIMER_MODE_ABS_PINNED
);
668 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
671 * Reset to make sure next tick stop doesn't get fooled by past
672 * cached clock deadline.
677 static ktime_t
tick_nohz_stop_sched_tick(struct tick_sched
*ts
,
678 ktime_t now
, int cpu
)
680 struct clock_event_device
*dev
= __this_cpu_read(tick_cpu_device
.evtdev
);
681 u64 basemono
, next_tick
, next_tmr
, next_rcu
, delta
, expires
;
682 unsigned long seq
, basejiff
;
685 /* Read jiffies and the time when jiffies were updated last */
687 seq
= read_seqbegin(&jiffies_lock
);
688 basemono
= last_jiffies_update
;
690 } while (read_seqretry(&jiffies_lock
, seq
));
691 ts
->last_jiffies
= basejiff
;
693 if (rcu_needs_cpu(basemono
, &next_rcu
) ||
694 arch_needs_cpu() || irq_work_needs_cpu()) {
695 next_tick
= basemono
+ TICK_NSEC
;
698 * Get the next pending timer. If high resolution
699 * timers are enabled this only takes the timer wheel
700 * timers into account. If high resolution timers are
701 * disabled this also looks at the next expiring
704 next_tmr
= get_next_timer_interrupt(basejiff
, basemono
);
705 ts
->next_timer
= next_tmr
;
706 /* Take the next rcu event into account */
707 next_tick
= next_rcu
< next_tmr
? next_rcu
: next_tmr
;
711 * If the tick is due in the next period, keep it ticking or
712 * force prod the timer.
714 delta
= next_tick
- basemono
;
715 if (delta
<= (u64
)TICK_NSEC
) {
717 * Tell the timer code that the base is not idle, i.e. undo
718 * the effect of get_next_timer_interrupt():
722 * We've not stopped the tick yet, and there's a timer in the
723 * next period, so no point in stopping it either, bail.
725 if (!ts
->tick_stopped
) {
732 * If this CPU is the one which updates jiffies, then give up
733 * the assignment and let it be taken by the CPU which runs
734 * the tick timer next, which might be this CPU as well. If we
735 * don't drop this here the jiffies might be stale and
736 * do_timer() never invoked. Keep track of the fact that it
737 * was the one which had the do_timer() duty last. If this CPU
738 * is the one which had the do_timer() duty last, we limit the
739 * sleep time to the timekeeping max_deferment value.
740 * Otherwise we can sleep as long as we want.
742 delta
= timekeeping_max_deferment();
743 if (cpu
== tick_do_timer_cpu
) {
744 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
745 ts
->do_timer_last
= 1;
746 } else if (tick_do_timer_cpu
!= TICK_DO_TIMER_NONE
) {
748 ts
->do_timer_last
= 0;
749 } else if (!ts
->do_timer_last
) {
753 #ifdef CONFIG_NO_HZ_FULL
754 /* Limit the tick delta to the maximum scheduler deferment */
756 delta
= min(delta
, scheduler_tick_max_deferment());
759 /* Calculate the next expiry time */
760 if (delta
< (KTIME_MAX
- basemono
))
761 expires
= basemono
+ delta
;
765 expires
= min_t(u64
, expires
, next_tick
);
768 /* Skip reprogram of event if its not changed */
769 if (ts
->tick_stopped
&& (expires
== ts
->next_tick
)) {
770 /* Sanity check: make sure clockevent is actually programmed */
771 if (tick
== KTIME_MAX
|| ts
->next_tick
== hrtimer_get_expires(&ts
->sched_timer
))
775 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
776 basemono
, ts
->next_tick
, dev
->next_event
,
777 hrtimer_active(&ts
->sched_timer
), hrtimer_get_expires(&ts
->sched_timer
));
781 * nohz_stop_sched_tick can be called several times before
782 * the nohz_restart_sched_tick is called. This happens when
783 * interrupts arrive which do not cause a reschedule. In the
784 * first call we save the current tick time, so we can restart
785 * the scheduler tick in nohz_restart_sched_tick.
787 if (!ts
->tick_stopped
) {
788 calc_load_nohz_start();
789 cpu_load_update_nohz_start();
791 ts
->last_tick
= hrtimer_get_expires(&ts
->sched_timer
);
792 ts
->tick_stopped
= 1;
793 trace_tick_stop(1, TICK_DEP_MASK_NONE
);
796 ts
->next_tick
= tick
;
799 * If the expiration time == KTIME_MAX, then we simply stop
802 if (unlikely(expires
== KTIME_MAX
)) {
803 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
804 hrtimer_cancel(&ts
->sched_timer
);
808 hrtimer_set_expires(&ts
->sched_timer
, tick
);
810 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
811 hrtimer_start_expires(&ts
->sched_timer
, HRTIMER_MODE_ABS_PINNED
);
813 tick_program_event(tick
, 1);
816 * Update the estimated sleep length until the next timer
817 * (not only the tick).
819 ts
->sleep_length
= ktime_sub(dev
->next_event
, now
);
823 static void tick_nohz_restart_sched_tick(struct tick_sched
*ts
, ktime_t now
)
825 /* Update jiffies first */
826 tick_do_update_jiffies64(now
);
827 cpu_load_update_nohz_stop();
830 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
831 * the clock forward checks in the enqueue path:
835 calc_load_nohz_stop();
836 touch_softlockup_watchdog_sched();
838 * Cancel the scheduled timer and restore the tick
840 ts
->tick_stopped
= 0;
841 ts
->idle_exittime
= now
;
843 tick_nohz_restart(ts
, now
);
846 static void tick_nohz_full_update_tick(struct tick_sched
*ts
)
848 #ifdef CONFIG_NO_HZ_FULL
849 int cpu
= smp_processor_id();
851 if (!tick_nohz_full_cpu(cpu
))
854 if (!ts
->tick_stopped
&& ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)
857 if (can_stop_full_tick(cpu
, ts
))
858 tick_nohz_stop_sched_tick(ts
, ktime_get(), cpu
);
859 else if (ts
->tick_stopped
)
860 tick_nohz_restart_sched_tick(ts
, ktime_get());
864 static bool can_stop_idle_tick(int cpu
, struct tick_sched
*ts
)
867 * If this CPU is offline and it is the one which updates
868 * jiffies, then give up the assignment and let it be taken by
869 * the CPU which runs the tick timer next. If we don't drop
870 * this here the jiffies might be stale and do_timer() never
873 if (unlikely(!cpu_online(cpu
))) {
874 if (cpu
== tick_do_timer_cpu
)
875 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
877 * Make sure the CPU doesn't get fooled by obsolete tick
878 * deadline if it comes back online later.
884 if (unlikely(ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)) {
885 ts
->sleep_length
= NSEC_PER_SEC
/ HZ
;
892 if (unlikely(local_softirq_pending() && cpu_online(cpu
))) {
893 static int ratelimit
;
895 if (ratelimit
< 10 &&
896 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK
)) {
897 pr_warn("NOHZ: local_softirq_pending %02x\n",
898 (unsigned int) local_softirq_pending());
904 if (tick_nohz_full_enabled()) {
906 * Keep the tick alive to guarantee timekeeping progression
907 * if there are full dynticks CPUs around
909 if (tick_do_timer_cpu
== cpu
)
912 * Boot safety: make sure the timekeeping duty has been
913 * assigned before entering dyntick-idle mode,
915 if (tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
922 static void __tick_nohz_idle_enter(struct tick_sched
*ts
)
924 ktime_t now
, expires
;
925 int cpu
= smp_processor_id();
927 now
= tick_nohz_start_idle(ts
);
929 if (can_stop_idle_tick(cpu
, ts
)) {
930 int was_stopped
= ts
->tick_stopped
;
934 expires
= tick_nohz_stop_sched_tick(ts
, now
, cpu
);
937 ts
->idle_expires
= expires
;
940 if (!was_stopped
&& ts
->tick_stopped
) {
941 ts
->idle_jiffies
= ts
->last_jiffies
;
942 nohz_balance_enter_idle(cpu
);
948 * tick_nohz_idle_enter - stop the idle tick from the idle task
950 * When the next event is more than a tick into the future, stop the idle tick
951 * Called when we start the idle loop.
953 * The arch is responsible of calling:
955 * - rcu_idle_enter() after its last use of RCU before the CPU is put
957 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
959 void tick_nohz_idle_enter(void)
961 struct tick_sched
*ts
;
963 WARN_ON_ONCE(irqs_disabled());
966 * Update the idle state in the scheduler domain hierarchy
967 * when tick_nohz_stop_sched_tick() is called from the idle loop.
968 * State will be updated to busy during the first busy tick after
971 set_cpu_sd_state_idle();
975 ts
= this_cpu_ptr(&tick_cpu_sched
);
977 __tick_nohz_idle_enter(ts
);
983 * tick_nohz_irq_exit - update next tick event from interrupt exit
985 * When an interrupt fires while we are idle and it doesn't cause
986 * a reschedule, it may still add, modify or delete a timer, enqueue
987 * an RCU callback, etc...
988 * So we need to re-calculate and reprogram the next tick event.
990 void tick_nohz_irq_exit(void)
992 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
995 __tick_nohz_idle_enter(ts
);
997 tick_nohz_full_update_tick(ts
);
1001 * tick_nohz_get_sleep_length - return the length of the current sleep
1003 * Called from power state control code with interrupts disabled
1005 ktime_t
tick_nohz_get_sleep_length(void)
1007 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1009 return ts
->sleep_length
;
1013 * tick_nohz_get_idle_calls - return the current idle calls counter value
1015 * Called from the schedutil frequency scaling governor in scheduler context.
1017 unsigned long tick_nohz_get_idle_calls(void)
1019 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1021 return ts
->idle_calls
;
1024 static void tick_nohz_account_idle_ticks(struct tick_sched
*ts
)
1026 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1027 unsigned long ticks
;
1029 if (vtime_accounting_cpu_enabled())
1032 * We stopped the tick in idle. Update process times would miss the
1033 * time we slept as update_process_times does only a 1 tick
1034 * accounting. Enforce that this is accounted to idle !
1036 ticks
= jiffies
- ts
->idle_jiffies
;
1038 * We might be one off. Do not randomly account a huge number of ticks!
1040 if (ticks
&& ticks
< LONG_MAX
)
1041 account_idle_ticks(ticks
);
1046 * tick_nohz_idle_exit - restart the idle tick from the idle task
1048 * Restart the idle tick when the CPU is woken up from idle
1049 * This also exit the RCU extended quiescent state. The CPU
1050 * can use RCU again after this function is called.
1052 void tick_nohz_idle_exit(void)
1054 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1057 local_irq_disable();
1059 WARN_ON_ONCE(!ts
->inidle
);
1063 if (ts
->idle_active
|| ts
->tick_stopped
)
1066 if (ts
->idle_active
)
1067 tick_nohz_stop_idle(ts
, now
);
1069 if (ts
->tick_stopped
) {
1070 tick_nohz_restart_sched_tick(ts
, now
);
1071 tick_nohz_account_idle_ticks(ts
);
1078 * The nohz low res interrupt handler
1080 static void tick_nohz_handler(struct clock_event_device
*dev
)
1082 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1083 struct pt_regs
*regs
= get_irq_regs();
1084 ktime_t now
= ktime_get();
1086 dev
->next_event
= KTIME_MAX
;
1088 tick_sched_do_timer(now
);
1089 tick_sched_handle(ts
, regs
);
1091 /* No need to reprogram if we are running tickless */
1092 if (unlikely(ts
->tick_stopped
))
1095 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
1096 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
1099 static inline void tick_nohz_activate(struct tick_sched
*ts
, int mode
)
1101 if (!tick_nohz_enabled
)
1103 ts
->nohz_mode
= mode
;
1104 /* One update is enough */
1105 if (!test_and_set_bit(0, &tick_nohz_active
))
1106 timers_update_migration(true);
1110 * tick_nohz_switch_to_nohz - switch to nohz mode
1112 static void tick_nohz_switch_to_nohz(void)
1114 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1117 if (!tick_nohz_enabled
)
1120 if (tick_switch_to_oneshot(tick_nohz_handler
))
1124 * Recycle the hrtimer in ts, so we can share the
1125 * hrtimer_forward with the highres code.
1127 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1128 /* Get the next period */
1129 next
= tick_init_jiffy_update();
1131 hrtimer_set_expires(&ts
->sched_timer
, next
);
1132 hrtimer_forward_now(&ts
->sched_timer
, tick_period
);
1133 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
1134 tick_nohz_activate(ts
, NOHZ_MODE_LOWRES
);
1137 static inline void tick_nohz_irq_enter(void)
1139 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1142 if (!ts
->idle_active
&& !ts
->tick_stopped
)
1145 if (ts
->idle_active
)
1146 tick_nohz_stop_idle(ts
, now
);
1147 if (ts
->tick_stopped
)
1148 tick_nohz_update_jiffies(now
);
1153 static inline void tick_nohz_switch_to_nohz(void) { }
1154 static inline void tick_nohz_irq_enter(void) { }
1155 static inline void tick_nohz_activate(struct tick_sched
*ts
, int mode
) { }
1157 #endif /* CONFIG_NO_HZ_COMMON */
1160 * Called from irq_enter to notify about the possible interruption of idle()
1162 void tick_irq_enter(void)
1164 tick_check_oneshot_broadcast_this_cpu();
1165 tick_nohz_irq_enter();
1169 * High resolution timer specific code
1171 #ifdef CONFIG_HIGH_RES_TIMERS
1173 * We rearm the timer until we get disabled by the idle code.
1174 * Called with interrupts disabled.
1176 static enum hrtimer_restart
tick_sched_timer(struct hrtimer
*timer
)
1178 struct tick_sched
*ts
=
1179 container_of(timer
, struct tick_sched
, sched_timer
);
1180 struct pt_regs
*regs
= get_irq_regs();
1181 ktime_t now
= ktime_get();
1183 tick_sched_do_timer(now
);
1186 * Do not call, when we are not in irq context and have
1187 * no valid regs pointer
1190 tick_sched_handle(ts
, regs
);
1194 /* No need to reprogram if we are in idle or full dynticks mode */
1195 if (unlikely(ts
->tick_stopped
))
1196 return HRTIMER_NORESTART
;
1198 hrtimer_forward(timer
, now
, tick_period
);
1200 return HRTIMER_RESTART
;
1203 static int sched_skew_tick
;
1205 static int __init
skew_tick(char *str
)
1207 get_option(&str
, &sched_skew_tick
);
1211 early_param("skew_tick", skew_tick
);
1214 * tick_setup_sched_timer - setup the tick emulation timer
1216 void tick_setup_sched_timer(void)
1218 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1219 ktime_t now
= ktime_get();
1222 * Emulate tick processing via per-CPU hrtimers:
1224 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1225 ts
->sched_timer
.function
= tick_sched_timer
;
1227 /* Get the next period (per-CPU) */
1228 hrtimer_set_expires(&ts
->sched_timer
, tick_init_jiffy_update());
1230 /* Offset the tick to avert jiffies_lock contention. */
1231 if (sched_skew_tick
) {
1232 u64 offset
= ktime_to_ns(tick_period
) >> 1;
1233 do_div(offset
, num_possible_cpus());
1234 offset
*= smp_processor_id();
1235 hrtimer_add_expires_ns(&ts
->sched_timer
, offset
);
1238 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
1239 hrtimer_start_expires(&ts
->sched_timer
, HRTIMER_MODE_ABS_PINNED
);
1240 tick_nohz_activate(ts
, NOHZ_MODE_HIGHRES
);
1242 #endif /* HIGH_RES_TIMERS */
1244 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1245 void tick_cancel_sched_timer(int cpu
)
1247 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
1249 # ifdef CONFIG_HIGH_RES_TIMERS
1250 if (ts
->sched_timer
.base
)
1251 hrtimer_cancel(&ts
->sched_timer
);
1254 memset(ts
, 0, sizeof(*ts
));
1259 * Async notification about clocksource changes
1261 void tick_clock_notify(void)
1265 for_each_possible_cpu(cpu
)
1266 set_bit(0, &per_cpu(tick_cpu_sched
, cpu
).check_clocks
);
1270 * Async notification about clock event changes
1272 void tick_oneshot_notify(void)
1274 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1276 set_bit(0, &ts
->check_clocks
);
1280 * Check, if a change happened, which makes oneshot possible.
1282 * Called cyclic from the hrtimer softirq (driven by the timer
1283 * softirq) allow_nohz signals, that we can switch into low-res nohz
1284 * mode, because high resolution timers are disabled (either compile
1285 * or runtime). Called with interrupts disabled.
1287 int tick_check_oneshot_change(int allow_nohz
)
1289 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1291 if (!test_and_clear_bit(0, &ts
->check_clocks
))
1294 if (ts
->nohz_mode
!= NOHZ_MODE_INACTIVE
)
1297 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1303 tick_nohz_switch_to_nohz();