]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/time.c
Merge tag 'armsoc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-artful-kernel.git] / kernel / time / time.c
1 /*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10 /*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40
41 #include <linux/uaccess.h>
42 #include <linux/compat.h>
43 #include <asm/unistd.h>
44
45 #include <generated/timeconst.h>
46 #include "timekeeping.h"
47
48 /*
49 * The timezone where the local system is located. Used as a default by some
50 * programs who obtain this value by using gettimeofday.
51 */
52 struct timezone sys_tz;
53
54 EXPORT_SYMBOL(sys_tz);
55
56 #ifdef __ARCH_WANT_SYS_TIME
57
58 /*
59 * sys_time() can be implemented in user-level using
60 * sys_gettimeofday(). Is this for backwards compatibility? If so,
61 * why not move it into the appropriate arch directory (for those
62 * architectures that need it).
63 */
64 SYSCALL_DEFINE1(time, time_t __user *, tloc)
65 {
66 time_t i = get_seconds();
67
68 if (tloc) {
69 if (put_user(i,tloc))
70 return -EFAULT;
71 }
72 force_successful_syscall_return();
73 return i;
74 }
75
76 /*
77 * sys_stime() can be implemented in user-level using
78 * sys_settimeofday(). Is this for backwards compatibility? If so,
79 * why not move it into the appropriate arch directory (for those
80 * architectures that need it).
81 */
82
83 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
84 {
85 struct timespec tv;
86 int err;
87
88 if (get_user(tv.tv_sec, tptr))
89 return -EFAULT;
90
91 tv.tv_nsec = 0;
92
93 err = security_settime(&tv, NULL);
94 if (err)
95 return err;
96
97 do_settimeofday(&tv);
98 return 0;
99 }
100
101 #endif /* __ARCH_WANT_SYS_TIME */
102
103 #ifdef CONFIG_COMPAT
104 #ifdef __ARCH_WANT_COMPAT_SYS_TIME
105
106 /* compat_time_t is a 32 bit "long" and needs to get converted. */
107 COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
108 {
109 struct timeval tv;
110 compat_time_t i;
111
112 do_gettimeofday(&tv);
113 i = tv.tv_sec;
114
115 if (tloc) {
116 if (put_user(i,tloc))
117 return -EFAULT;
118 }
119 force_successful_syscall_return();
120 return i;
121 }
122
123 COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
124 {
125 struct timespec tv;
126 int err;
127
128 if (get_user(tv.tv_sec, tptr))
129 return -EFAULT;
130
131 tv.tv_nsec = 0;
132
133 err = security_settime(&tv, NULL);
134 if (err)
135 return err;
136
137 do_settimeofday(&tv);
138 return 0;
139 }
140
141 #endif /* __ARCH_WANT_COMPAT_SYS_TIME */
142 #endif
143
144 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
145 struct timezone __user *, tz)
146 {
147 if (likely(tv != NULL)) {
148 struct timeval ktv;
149 do_gettimeofday(&ktv);
150 if (copy_to_user(tv, &ktv, sizeof(ktv)))
151 return -EFAULT;
152 }
153 if (unlikely(tz != NULL)) {
154 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
155 return -EFAULT;
156 }
157 return 0;
158 }
159
160 /*
161 * Indicates if there is an offset between the system clock and the hardware
162 * clock/persistent clock/rtc.
163 */
164 int persistent_clock_is_local;
165
166 /*
167 * Adjust the time obtained from the CMOS to be UTC time instead of
168 * local time.
169 *
170 * This is ugly, but preferable to the alternatives. Otherwise we
171 * would either need to write a program to do it in /etc/rc (and risk
172 * confusion if the program gets run more than once; it would also be
173 * hard to make the program warp the clock precisely n hours) or
174 * compile in the timezone information into the kernel. Bad, bad....
175 *
176 * - TYT, 1992-01-01
177 *
178 * The best thing to do is to keep the CMOS clock in universal time (UTC)
179 * as real UNIX machines always do it. This avoids all headaches about
180 * daylight saving times and warping kernel clocks.
181 */
182 static inline void warp_clock(void)
183 {
184 if (sys_tz.tz_minuteswest != 0) {
185 struct timespec adjust;
186
187 persistent_clock_is_local = 1;
188 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
189 adjust.tv_nsec = 0;
190 timekeeping_inject_offset(&adjust);
191 }
192 }
193
194 /*
195 * In case for some reason the CMOS clock has not already been running
196 * in UTC, but in some local time: The first time we set the timezone,
197 * we will warp the clock so that it is ticking UTC time instead of
198 * local time. Presumably, if someone is setting the timezone then we
199 * are running in an environment where the programs understand about
200 * timezones. This should be done at boot time in the /etc/rc script,
201 * as soon as possible, so that the clock can be set right. Otherwise,
202 * various programs will get confused when the clock gets warped.
203 */
204
205 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
206 {
207 static int firsttime = 1;
208 int error = 0;
209
210 if (tv && !timespec64_valid(tv))
211 return -EINVAL;
212
213 error = security_settime64(tv, tz);
214 if (error)
215 return error;
216
217 if (tz) {
218 /* Verify we're witin the +-15 hrs range */
219 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
220 return -EINVAL;
221
222 sys_tz = *tz;
223 update_vsyscall_tz();
224 if (firsttime) {
225 firsttime = 0;
226 if (!tv)
227 warp_clock();
228 }
229 }
230 if (tv)
231 return do_settimeofday64(tv);
232 return 0;
233 }
234
235 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
236 struct timezone __user *, tz)
237 {
238 struct timespec64 new_ts;
239 struct timeval user_tv;
240 struct timezone new_tz;
241
242 if (tv) {
243 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
244 return -EFAULT;
245
246 if (!timeval_valid(&user_tv))
247 return -EINVAL;
248
249 new_ts.tv_sec = user_tv.tv_sec;
250 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
251 }
252 if (tz) {
253 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
254 return -EFAULT;
255 }
256
257 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
258 }
259
260 #ifdef CONFIG_COMPAT
261 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
262 struct timezone __user *, tz)
263 {
264 if (tv) {
265 struct timeval ktv;
266
267 do_gettimeofday(&ktv);
268 if (compat_put_timeval(&ktv, tv))
269 return -EFAULT;
270 }
271 if (tz) {
272 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
273 return -EFAULT;
274 }
275
276 return 0;
277 }
278
279 COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
280 struct timezone __user *, tz)
281 {
282 struct timespec64 new_ts;
283 struct timeval user_tv;
284 struct timezone new_tz;
285
286 if (tv) {
287 if (compat_get_timeval(&user_tv, tv))
288 return -EFAULT;
289 new_ts.tv_sec = user_tv.tv_sec;
290 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
291 }
292 if (tz) {
293 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
294 return -EFAULT;
295 }
296
297 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
298 }
299 #endif
300
301 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
302 {
303 struct timex txc; /* Local copy of parameter */
304 int ret;
305
306 /* Copy the user data space into the kernel copy
307 * structure. But bear in mind that the structures
308 * may change
309 */
310 if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
311 return -EFAULT;
312 ret = do_adjtimex(&txc);
313 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
314 }
315
316 #ifdef CONFIG_COMPAT
317
318 COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
319 {
320 struct timex txc;
321 int err, ret;
322
323 err = compat_get_timex(&txc, utp);
324 if (err)
325 return err;
326
327 ret = do_adjtimex(&txc);
328
329 err = compat_put_timex(utp, &txc);
330 if (err)
331 return err;
332
333 return ret;
334 }
335 #endif
336
337 /*
338 * Convert jiffies to milliseconds and back.
339 *
340 * Avoid unnecessary multiplications/divisions in the
341 * two most common HZ cases:
342 */
343 unsigned int jiffies_to_msecs(const unsigned long j)
344 {
345 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
346 return (MSEC_PER_SEC / HZ) * j;
347 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
348 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
349 #else
350 # if BITS_PER_LONG == 32
351 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
352 # else
353 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
354 # endif
355 #endif
356 }
357 EXPORT_SYMBOL(jiffies_to_msecs);
358
359 unsigned int jiffies_to_usecs(const unsigned long j)
360 {
361 /*
362 * Hz usually doesn't go much further MSEC_PER_SEC.
363 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
364 */
365 BUILD_BUG_ON(HZ > USEC_PER_SEC);
366
367 #if !(USEC_PER_SEC % HZ)
368 return (USEC_PER_SEC / HZ) * j;
369 #else
370 # if BITS_PER_LONG == 32
371 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
372 # else
373 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
374 # endif
375 #endif
376 }
377 EXPORT_SYMBOL(jiffies_to_usecs);
378
379 /**
380 * timespec_trunc - Truncate timespec to a granularity
381 * @t: Timespec
382 * @gran: Granularity in ns.
383 *
384 * Truncate a timespec to a granularity. Always rounds down. gran must
385 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
386 */
387 struct timespec timespec_trunc(struct timespec t, unsigned gran)
388 {
389 /* Avoid division in the common cases 1 ns and 1 s. */
390 if (gran == 1) {
391 /* nothing */
392 } else if (gran == NSEC_PER_SEC) {
393 t.tv_nsec = 0;
394 } else if (gran > 1 && gran < NSEC_PER_SEC) {
395 t.tv_nsec -= t.tv_nsec % gran;
396 } else {
397 WARN(1, "illegal file time granularity: %u", gran);
398 }
399 return t;
400 }
401 EXPORT_SYMBOL(timespec_trunc);
402
403 /*
404 * mktime64 - Converts date to seconds.
405 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
406 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
407 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
408 *
409 * [For the Julian calendar (which was used in Russia before 1917,
410 * Britain & colonies before 1752, anywhere else before 1582,
411 * and is still in use by some communities) leave out the
412 * -year/100+year/400 terms, and add 10.]
413 *
414 * This algorithm was first published by Gauss (I think).
415 *
416 * A leap second can be indicated by calling this function with sec as
417 * 60 (allowable under ISO 8601). The leap second is treated the same
418 * as the following second since they don't exist in UNIX time.
419 *
420 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
421 * tomorrow - (allowable under ISO 8601) is supported.
422 */
423 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
424 const unsigned int day, const unsigned int hour,
425 const unsigned int min, const unsigned int sec)
426 {
427 unsigned int mon = mon0, year = year0;
428
429 /* 1..12 -> 11,12,1..10 */
430 if (0 >= (int) (mon -= 2)) {
431 mon += 12; /* Puts Feb last since it has leap day */
432 year -= 1;
433 }
434
435 return ((((time64_t)
436 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
437 year*365 - 719499
438 )*24 + hour /* now have hours - midnight tomorrow handled here */
439 )*60 + min /* now have minutes */
440 )*60 + sec; /* finally seconds */
441 }
442 EXPORT_SYMBOL(mktime64);
443
444 /**
445 * set_normalized_timespec - set timespec sec and nsec parts and normalize
446 *
447 * @ts: pointer to timespec variable to be set
448 * @sec: seconds to set
449 * @nsec: nanoseconds to set
450 *
451 * Set seconds and nanoseconds field of a timespec variable and
452 * normalize to the timespec storage format
453 *
454 * Note: The tv_nsec part is always in the range of
455 * 0 <= tv_nsec < NSEC_PER_SEC
456 * For negative values only the tv_sec field is negative !
457 */
458 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
459 {
460 while (nsec >= NSEC_PER_SEC) {
461 /*
462 * The following asm() prevents the compiler from
463 * optimising this loop into a modulo operation. See
464 * also __iter_div_u64_rem() in include/linux/time.h
465 */
466 asm("" : "+rm"(nsec));
467 nsec -= NSEC_PER_SEC;
468 ++sec;
469 }
470 while (nsec < 0) {
471 asm("" : "+rm"(nsec));
472 nsec += NSEC_PER_SEC;
473 --sec;
474 }
475 ts->tv_sec = sec;
476 ts->tv_nsec = nsec;
477 }
478 EXPORT_SYMBOL(set_normalized_timespec);
479
480 /**
481 * ns_to_timespec - Convert nanoseconds to timespec
482 * @nsec: the nanoseconds value to be converted
483 *
484 * Returns the timespec representation of the nsec parameter.
485 */
486 struct timespec ns_to_timespec(const s64 nsec)
487 {
488 struct timespec ts;
489 s32 rem;
490
491 if (!nsec)
492 return (struct timespec) {0, 0};
493
494 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
495 if (unlikely(rem < 0)) {
496 ts.tv_sec--;
497 rem += NSEC_PER_SEC;
498 }
499 ts.tv_nsec = rem;
500
501 return ts;
502 }
503 EXPORT_SYMBOL(ns_to_timespec);
504
505 /**
506 * ns_to_timeval - Convert nanoseconds to timeval
507 * @nsec: the nanoseconds value to be converted
508 *
509 * Returns the timeval representation of the nsec parameter.
510 */
511 struct timeval ns_to_timeval(const s64 nsec)
512 {
513 struct timespec ts = ns_to_timespec(nsec);
514 struct timeval tv;
515
516 tv.tv_sec = ts.tv_sec;
517 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
518
519 return tv;
520 }
521 EXPORT_SYMBOL(ns_to_timeval);
522
523 #if BITS_PER_LONG == 32
524 /**
525 * set_normalized_timespec - set timespec sec and nsec parts and normalize
526 *
527 * @ts: pointer to timespec variable to be set
528 * @sec: seconds to set
529 * @nsec: nanoseconds to set
530 *
531 * Set seconds and nanoseconds field of a timespec variable and
532 * normalize to the timespec storage format
533 *
534 * Note: The tv_nsec part is always in the range of
535 * 0 <= tv_nsec < NSEC_PER_SEC
536 * For negative values only the tv_sec field is negative !
537 */
538 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
539 {
540 while (nsec >= NSEC_PER_SEC) {
541 /*
542 * The following asm() prevents the compiler from
543 * optimising this loop into a modulo operation. See
544 * also __iter_div_u64_rem() in include/linux/time.h
545 */
546 asm("" : "+rm"(nsec));
547 nsec -= NSEC_PER_SEC;
548 ++sec;
549 }
550 while (nsec < 0) {
551 asm("" : "+rm"(nsec));
552 nsec += NSEC_PER_SEC;
553 --sec;
554 }
555 ts->tv_sec = sec;
556 ts->tv_nsec = nsec;
557 }
558 EXPORT_SYMBOL(set_normalized_timespec64);
559
560 /**
561 * ns_to_timespec64 - Convert nanoseconds to timespec64
562 * @nsec: the nanoseconds value to be converted
563 *
564 * Returns the timespec64 representation of the nsec parameter.
565 */
566 struct timespec64 ns_to_timespec64(const s64 nsec)
567 {
568 struct timespec64 ts;
569 s32 rem;
570
571 if (!nsec)
572 return (struct timespec64) {0, 0};
573
574 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
575 if (unlikely(rem < 0)) {
576 ts.tv_sec--;
577 rem += NSEC_PER_SEC;
578 }
579 ts.tv_nsec = rem;
580
581 return ts;
582 }
583 EXPORT_SYMBOL(ns_to_timespec64);
584 #endif
585 /**
586 * msecs_to_jiffies: - convert milliseconds to jiffies
587 * @m: time in milliseconds
588 *
589 * conversion is done as follows:
590 *
591 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
592 *
593 * - 'too large' values [that would result in larger than
594 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
595 *
596 * - all other values are converted to jiffies by either multiplying
597 * the input value by a factor or dividing it with a factor and
598 * handling any 32-bit overflows.
599 * for the details see __msecs_to_jiffies()
600 *
601 * msecs_to_jiffies() checks for the passed in value being a constant
602 * via __builtin_constant_p() allowing gcc to eliminate most of the
603 * code, __msecs_to_jiffies() is called if the value passed does not
604 * allow constant folding and the actual conversion must be done at
605 * runtime.
606 * the _msecs_to_jiffies helpers are the HZ dependent conversion
607 * routines found in include/linux/jiffies.h
608 */
609 unsigned long __msecs_to_jiffies(const unsigned int m)
610 {
611 /*
612 * Negative value, means infinite timeout:
613 */
614 if ((int)m < 0)
615 return MAX_JIFFY_OFFSET;
616 return _msecs_to_jiffies(m);
617 }
618 EXPORT_SYMBOL(__msecs_to_jiffies);
619
620 unsigned long __usecs_to_jiffies(const unsigned int u)
621 {
622 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
623 return MAX_JIFFY_OFFSET;
624 return _usecs_to_jiffies(u);
625 }
626 EXPORT_SYMBOL(__usecs_to_jiffies);
627
628 /*
629 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
630 * that a remainder subtract here would not do the right thing as the
631 * resolution values don't fall on second boundries. I.e. the line:
632 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
633 * Note that due to the small error in the multiplier here, this
634 * rounding is incorrect for sufficiently large values of tv_nsec, but
635 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
636 * OK.
637 *
638 * Rather, we just shift the bits off the right.
639 *
640 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
641 * value to a scaled second value.
642 */
643 static unsigned long
644 __timespec64_to_jiffies(u64 sec, long nsec)
645 {
646 nsec = nsec + TICK_NSEC - 1;
647
648 if (sec >= MAX_SEC_IN_JIFFIES){
649 sec = MAX_SEC_IN_JIFFIES;
650 nsec = 0;
651 }
652 return ((sec * SEC_CONVERSION) +
653 (((u64)nsec * NSEC_CONVERSION) >>
654 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
655
656 }
657
658 static unsigned long
659 __timespec_to_jiffies(unsigned long sec, long nsec)
660 {
661 return __timespec64_to_jiffies((u64)sec, nsec);
662 }
663
664 unsigned long
665 timespec64_to_jiffies(const struct timespec64 *value)
666 {
667 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
668 }
669 EXPORT_SYMBOL(timespec64_to_jiffies);
670
671 void
672 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
673 {
674 /*
675 * Convert jiffies to nanoseconds and separate with
676 * one divide.
677 */
678 u32 rem;
679 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
680 NSEC_PER_SEC, &rem);
681 value->tv_nsec = rem;
682 }
683 EXPORT_SYMBOL(jiffies_to_timespec64);
684
685 /*
686 * We could use a similar algorithm to timespec_to_jiffies (with a
687 * different multiplier for usec instead of nsec). But this has a
688 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
689 * usec value, since it's not necessarily integral.
690 *
691 * We could instead round in the intermediate scaled representation
692 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
693 * perilous: the scaling introduces a small positive error, which
694 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
695 * units to the intermediate before shifting) leads to accidental
696 * overflow and overestimates.
697 *
698 * At the cost of one additional multiplication by a constant, just
699 * use the timespec implementation.
700 */
701 unsigned long
702 timeval_to_jiffies(const struct timeval *value)
703 {
704 return __timespec_to_jiffies(value->tv_sec,
705 value->tv_usec * NSEC_PER_USEC);
706 }
707 EXPORT_SYMBOL(timeval_to_jiffies);
708
709 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
710 {
711 /*
712 * Convert jiffies to nanoseconds and separate with
713 * one divide.
714 */
715 u32 rem;
716
717 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
718 NSEC_PER_SEC, &rem);
719 value->tv_usec = rem / NSEC_PER_USEC;
720 }
721 EXPORT_SYMBOL(jiffies_to_timeval);
722
723 /*
724 * Convert jiffies/jiffies_64 to clock_t and back.
725 */
726 clock_t jiffies_to_clock_t(unsigned long x)
727 {
728 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
729 # if HZ < USER_HZ
730 return x * (USER_HZ / HZ);
731 # else
732 return x / (HZ / USER_HZ);
733 # endif
734 #else
735 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
736 #endif
737 }
738 EXPORT_SYMBOL(jiffies_to_clock_t);
739
740 unsigned long clock_t_to_jiffies(unsigned long x)
741 {
742 #if (HZ % USER_HZ)==0
743 if (x >= ~0UL / (HZ / USER_HZ))
744 return ~0UL;
745 return x * (HZ / USER_HZ);
746 #else
747 /* Don't worry about loss of precision here .. */
748 if (x >= ~0UL / HZ * USER_HZ)
749 return ~0UL;
750
751 /* .. but do try to contain it here */
752 return div_u64((u64)x * HZ, USER_HZ);
753 #endif
754 }
755 EXPORT_SYMBOL(clock_t_to_jiffies);
756
757 u64 jiffies_64_to_clock_t(u64 x)
758 {
759 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
760 # if HZ < USER_HZ
761 x = div_u64(x * USER_HZ, HZ);
762 # elif HZ > USER_HZ
763 x = div_u64(x, HZ / USER_HZ);
764 # else
765 /* Nothing to do */
766 # endif
767 #else
768 /*
769 * There are better ways that don't overflow early,
770 * but even this doesn't overflow in hundreds of years
771 * in 64 bits, so..
772 */
773 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
774 #endif
775 return x;
776 }
777 EXPORT_SYMBOL(jiffies_64_to_clock_t);
778
779 u64 nsec_to_clock_t(u64 x)
780 {
781 #if (NSEC_PER_SEC % USER_HZ) == 0
782 return div_u64(x, NSEC_PER_SEC / USER_HZ);
783 #elif (USER_HZ % 512) == 0
784 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
785 #else
786 /*
787 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
788 * overflow after 64.99 years.
789 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
790 */
791 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
792 #endif
793 }
794
795 u64 jiffies64_to_nsecs(u64 j)
796 {
797 #if !(NSEC_PER_SEC % HZ)
798 return (NSEC_PER_SEC / HZ) * j;
799 # else
800 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
801 #endif
802 }
803 EXPORT_SYMBOL(jiffies64_to_nsecs);
804
805 /**
806 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
807 *
808 * @n: nsecs in u64
809 *
810 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
811 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
812 * for scheduler, not for use in device drivers to calculate timeout value.
813 *
814 * note:
815 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
816 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
817 */
818 u64 nsecs_to_jiffies64(u64 n)
819 {
820 #if (NSEC_PER_SEC % HZ) == 0
821 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
822 return div_u64(n, NSEC_PER_SEC / HZ);
823 #elif (HZ % 512) == 0
824 /* overflow after 292 years if HZ = 1024 */
825 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
826 #else
827 /*
828 * Generic case - optimized for cases where HZ is a multiple of 3.
829 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
830 */
831 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
832 #endif
833 }
834 EXPORT_SYMBOL(nsecs_to_jiffies64);
835
836 /**
837 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
838 *
839 * @n: nsecs in u64
840 *
841 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
842 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
843 * for scheduler, not for use in device drivers to calculate timeout value.
844 *
845 * note:
846 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
847 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
848 */
849 unsigned long nsecs_to_jiffies(u64 n)
850 {
851 return (unsigned long)nsecs_to_jiffies64(n);
852 }
853 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
854
855 /*
856 * Add two timespec values and do a safety check for overflow.
857 * It's assumed that both values are valid (>= 0)
858 */
859 struct timespec timespec_add_safe(const struct timespec lhs,
860 const struct timespec rhs)
861 {
862 struct timespec res;
863
864 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
865 lhs.tv_nsec + rhs.tv_nsec);
866
867 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
868 res.tv_sec = TIME_T_MAX;
869
870 return res;
871 }
872
873 /*
874 * Add two timespec64 values and do a safety check for overflow.
875 * It's assumed that both values are valid (>= 0).
876 * And, each timespec64 is in normalized form.
877 */
878 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
879 const struct timespec64 rhs)
880 {
881 struct timespec64 res;
882
883 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
884 lhs.tv_nsec + rhs.tv_nsec);
885
886 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
887 res.tv_sec = TIME64_MAX;
888 res.tv_nsec = 0;
889 }
890
891 return res;
892 }
893
894 int get_timespec64(struct timespec64 *ts,
895 const struct timespec __user *uts)
896 {
897 struct timespec kts;
898 int ret;
899
900 ret = copy_from_user(&kts, uts, sizeof(kts));
901 if (ret)
902 return -EFAULT;
903
904 ts->tv_sec = kts.tv_sec;
905 ts->tv_nsec = kts.tv_nsec;
906
907 return 0;
908 }
909 EXPORT_SYMBOL_GPL(get_timespec64);
910
911 int put_timespec64(const struct timespec64 *ts,
912 struct timespec __user *uts)
913 {
914 struct timespec kts = {
915 .tv_sec = ts->tv_sec,
916 .tv_nsec = ts->tv_nsec
917 };
918 return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
919 }
920 EXPORT_SYMBOL_GPL(put_timespec64);
921
922 int get_itimerspec64(struct itimerspec64 *it,
923 const struct itimerspec __user *uit)
924 {
925 int ret;
926
927 ret = get_timespec64(&it->it_interval, &uit->it_interval);
928 if (ret)
929 return ret;
930
931 ret = get_timespec64(&it->it_value, &uit->it_value);
932
933 return ret;
934 }
935 EXPORT_SYMBOL_GPL(get_itimerspec64);
936
937 int put_itimerspec64(const struct itimerspec64 *it,
938 struct itimerspec __user *uit)
939 {
940 int ret;
941
942 ret = put_timespec64(&it->it_interval, &uit->it_interval);
943 if (ret)
944 return ret;
945
946 ret = put_timespec64(&it->it_value, &uit->it_value);
947
948 return ret;
949 }
950 EXPORT_SYMBOL_GPL(put_itimerspec64);