]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/time.c
netfilter: nat: destroy nat mappings on module exit path only
[mirror_ubuntu-artful-kernel.git] / kernel / time / time.c
1 /*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10 /*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40
41 #include <linux/uaccess.h>
42 #include <asm/unistd.h>
43
44 #include <generated/timeconst.h>
45 #include "timekeeping.h"
46
47 /*
48 * The timezone where the local system is located. Used as a default by some
49 * programs who obtain this value by using gettimeofday.
50 */
51 struct timezone sys_tz;
52
53 EXPORT_SYMBOL(sys_tz);
54
55 #ifdef __ARCH_WANT_SYS_TIME
56
57 /*
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday(). Is this for backwards compatibility? If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
62 */
63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
64 {
65 time_t i = get_seconds();
66
67 if (tloc) {
68 if (put_user(i,tloc))
69 return -EFAULT;
70 }
71 force_successful_syscall_return();
72 return i;
73 }
74
75 /*
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday(). Is this for backwards compatibility? If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
80 */
81
82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83 {
84 struct timespec tv;
85 int err;
86
87 if (get_user(tv.tv_sec, tptr))
88 return -EFAULT;
89
90 tv.tv_nsec = 0;
91
92 err = security_settime(&tv, NULL);
93 if (err)
94 return err;
95
96 do_settimeofday(&tv);
97 return 0;
98 }
99
100 #endif /* __ARCH_WANT_SYS_TIME */
101
102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 struct timezone __user *, tz)
104 {
105 if (likely(tv != NULL)) {
106 struct timeval ktv;
107 do_gettimeofday(&ktv);
108 if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 return -EFAULT;
110 }
111 if (unlikely(tz != NULL)) {
112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 return -EFAULT;
114 }
115 return 0;
116 }
117
118 /*
119 * Indicates if there is an offset between the system clock and the hardware
120 * clock/persistent clock/rtc.
121 */
122 int persistent_clock_is_local;
123
124 /*
125 * Adjust the time obtained from the CMOS to be UTC time instead of
126 * local time.
127 *
128 * This is ugly, but preferable to the alternatives. Otherwise we
129 * would either need to write a program to do it in /etc/rc (and risk
130 * confusion if the program gets run more than once; it would also be
131 * hard to make the program warp the clock precisely n hours) or
132 * compile in the timezone information into the kernel. Bad, bad....
133 *
134 * - TYT, 1992-01-01
135 *
136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
137 * as real UNIX machines always do it. This avoids all headaches about
138 * daylight saving times and warping kernel clocks.
139 */
140 static inline void warp_clock(void)
141 {
142 if (sys_tz.tz_minuteswest != 0) {
143 struct timespec adjust;
144
145 persistent_clock_is_local = 1;
146 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 adjust.tv_nsec = 0;
148 timekeeping_inject_offset(&adjust);
149 }
150 }
151
152 /*
153 * In case for some reason the CMOS clock has not already been running
154 * in UTC, but in some local time: The first time we set the timezone,
155 * we will warp the clock so that it is ticking UTC time instead of
156 * local time. Presumably, if someone is setting the timezone then we
157 * are running in an environment where the programs understand about
158 * timezones. This should be done at boot time in the /etc/rc script,
159 * as soon as possible, so that the clock can be set right. Otherwise,
160 * various programs will get confused when the clock gets warped.
161 */
162
163 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
164 {
165 static int firsttime = 1;
166 int error = 0;
167
168 if (tv && !timespec64_valid(tv))
169 return -EINVAL;
170
171 error = security_settime64(tv, tz);
172 if (error)
173 return error;
174
175 if (tz) {
176 /* Verify we're witin the +-15 hrs range */
177 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
178 return -EINVAL;
179
180 sys_tz = *tz;
181 update_vsyscall_tz();
182 if (firsttime) {
183 firsttime = 0;
184 if (!tv)
185 warp_clock();
186 }
187 }
188 if (tv)
189 return do_settimeofday64(tv);
190 return 0;
191 }
192
193 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
194 struct timezone __user *, tz)
195 {
196 struct timespec64 new_ts;
197 struct timeval user_tv;
198 struct timezone new_tz;
199
200 if (tv) {
201 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
202 return -EFAULT;
203
204 if (!timeval_valid(&user_tv))
205 return -EINVAL;
206
207 new_ts.tv_sec = user_tv.tv_sec;
208 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
209 }
210 if (tz) {
211 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
212 return -EFAULT;
213 }
214
215 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
216 }
217
218 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
219 {
220 struct timex txc; /* Local copy of parameter */
221 int ret;
222
223 /* Copy the user data space into the kernel copy
224 * structure. But bear in mind that the structures
225 * may change
226 */
227 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
228 return -EFAULT;
229 ret = do_adjtimex(&txc);
230 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
231 }
232
233 /*
234 * Convert jiffies to milliseconds and back.
235 *
236 * Avoid unnecessary multiplications/divisions in the
237 * two most common HZ cases:
238 */
239 unsigned int jiffies_to_msecs(const unsigned long j)
240 {
241 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
242 return (MSEC_PER_SEC / HZ) * j;
243 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
244 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
245 #else
246 # if BITS_PER_LONG == 32
247 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
248 # else
249 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
250 # endif
251 #endif
252 }
253 EXPORT_SYMBOL(jiffies_to_msecs);
254
255 unsigned int jiffies_to_usecs(const unsigned long j)
256 {
257 /*
258 * Hz usually doesn't go much further MSEC_PER_SEC.
259 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
260 */
261 BUILD_BUG_ON(HZ > USEC_PER_SEC);
262
263 #if !(USEC_PER_SEC % HZ)
264 return (USEC_PER_SEC / HZ) * j;
265 #else
266 # if BITS_PER_LONG == 32
267 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
268 # else
269 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
270 # endif
271 #endif
272 }
273 EXPORT_SYMBOL(jiffies_to_usecs);
274
275 /**
276 * timespec_trunc - Truncate timespec to a granularity
277 * @t: Timespec
278 * @gran: Granularity in ns.
279 *
280 * Truncate a timespec to a granularity. Always rounds down. gran must
281 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
282 */
283 struct timespec timespec_trunc(struct timespec t, unsigned gran)
284 {
285 /* Avoid division in the common cases 1 ns and 1 s. */
286 if (gran == 1) {
287 /* nothing */
288 } else if (gran == NSEC_PER_SEC) {
289 t.tv_nsec = 0;
290 } else if (gran > 1 && gran < NSEC_PER_SEC) {
291 t.tv_nsec -= t.tv_nsec % gran;
292 } else {
293 WARN(1, "illegal file time granularity: %u", gran);
294 }
295 return t;
296 }
297 EXPORT_SYMBOL(timespec_trunc);
298
299 /*
300 * mktime64 - Converts date to seconds.
301 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
302 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
303 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
304 *
305 * [For the Julian calendar (which was used in Russia before 1917,
306 * Britain & colonies before 1752, anywhere else before 1582,
307 * and is still in use by some communities) leave out the
308 * -year/100+year/400 terms, and add 10.]
309 *
310 * This algorithm was first published by Gauss (I think).
311 *
312 * A leap second can be indicated by calling this function with sec as
313 * 60 (allowable under ISO 8601). The leap second is treated the same
314 * as the following second since they don't exist in UNIX time.
315 *
316 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
317 * tomorrow - (allowable under ISO 8601) is supported.
318 */
319 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
320 const unsigned int day, const unsigned int hour,
321 const unsigned int min, const unsigned int sec)
322 {
323 unsigned int mon = mon0, year = year0;
324
325 /* 1..12 -> 11,12,1..10 */
326 if (0 >= (int) (mon -= 2)) {
327 mon += 12; /* Puts Feb last since it has leap day */
328 year -= 1;
329 }
330
331 return ((((time64_t)
332 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
333 year*365 - 719499
334 )*24 + hour /* now have hours - midnight tomorrow handled here */
335 )*60 + min /* now have minutes */
336 )*60 + sec; /* finally seconds */
337 }
338 EXPORT_SYMBOL(mktime64);
339
340 /**
341 * set_normalized_timespec - set timespec sec and nsec parts and normalize
342 *
343 * @ts: pointer to timespec variable to be set
344 * @sec: seconds to set
345 * @nsec: nanoseconds to set
346 *
347 * Set seconds and nanoseconds field of a timespec variable and
348 * normalize to the timespec storage format
349 *
350 * Note: The tv_nsec part is always in the range of
351 * 0 <= tv_nsec < NSEC_PER_SEC
352 * For negative values only the tv_sec field is negative !
353 */
354 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
355 {
356 while (nsec >= NSEC_PER_SEC) {
357 /*
358 * The following asm() prevents the compiler from
359 * optimising this loop into a modulo operation. See
360 * also __iter_div_u64_rem() in include/linux/time.h
361 */
362 asm("" : "+rm"(nsec));
363 nsec -= NSEC_PER_SEC;
364 ++sec;
365 }
366 while (nsec < 0) {
367 asm("" : "+rm"(nsec));
368 nsec += NSEC_PER_SEC;
369 --sec;
370 }
371 ts->tv_sec = sec;
372 ts->tv_nsec = nsec;
373 }
374 EXPORT_SYMBOL(set_normalized_timespec);
375
376 /**
377 * ns_to_timespec - Convert nanoseconds to timespec
378 * @nsec: the nanoseconds value to be converted
379 *
380 * Returns the timespec representation of the nsec parameter.
381 */
382 struct timespec ns_to_timespec(const s64 nsec)
383 {
384 struct timespec ts;
385 s32 rem;
386
387 if (!nsec)
388 return (struct timespec) {0, 0};
389
390 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
391 if (unlikely(rem < 0)) {
392 ts.tv_sec--;
393 rem += NSEC_PER_SEC;
394 }
395 ts.tv_nsec = rem;
396
397 return ts;
398 }
399 EXPORT_SYMBOL(ns_to_timespec);
400
401 /**
402 * ns_to_timeval - Convert nanoseconds to timeval
403 * @nsec: the nanoseconds value to be converted
404 *
405 * Returns the timeval representation of the nsec parameter.
406 */
407 struct timeval ns_to_timeval(const s64 nsec)
408 {
409 struct timespec ts = ns_to_timespec(nsec);
410 struct timeval tv;
411
412 tv.tv_sec = ts.tv_sec;
413 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
414
415 return tv;
416 }
417 EXPORT_SYMBOL(ns_to_timeval);
418
419 #if BITS_PER_LONG == 32
420 /**
421 * set_normalized_timespec - set timespec sec and nsec parts and normalize
422 *
423 * @ts: pointer to timespec variable to be set
424 * @sec: seconds to set
425 * @nsec: nanoseconds to set
426 *
427 * Set seconds and nanoseconds field of a timespec variable and
428 * normalize to the timespec storage format
429 *
430 * Note: The tv_nsec part is always in the range of
431 * 0 <= tv_nsec < NSEC_PER_SEC
432 * For negative values only the tv_sec field is negative !
433 */
434 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
435 {
436 while (nsec >= NSEC_PER_SEC) {
437 /*
438 * The following asm() prevents the compiler from
439 * optimising this loop into a modulo operation. See
440 * also __iter_div_u64_rem() in include/linux/time.h
441 */
442 asm("" : "+rm"(nsec));
443 nsec -= NSEC_PER_SEC;
444 ++sec;
445 }
446 while (nsec < 0) {
447 asm("" : "+rm"(nsec));
448 nsec += NSEC_PER_SEC;
449 --sec;
450 }
451 ts->tv_sec = sec;
452 ts->tv_nsec = nsec;
453 }
454 EXPORT_SYMBOL(set_normalized_timespec64);
455
456 /**
457 * ns_to_timespec64 - Convert nanoseconds to timespec64
458 * @nsec: the nanoseconds value to be converted
459 *
460 * Returns the timespec64 representation of the nsec parameter.
461 */
462 struct timespec64 ns_to_timespec64(const s64 nsec)
463 {
464 struct timespec64 ts;
465 s32 rem;
466
467 if (!nsec)
468 return (struct timespec64) {0, 0};
469
470 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
471 if (unlikely(rem < 0)) {
472 ts.tv_sec--;
473 rem += NSEC_PER_SEC;
474 }
475 ts.tv_nsec = rem;
476
477 return ts;
478 }
479 EXPORT_SYMBOL(ns_to_timespec64);
480 #endif
481 /**
482 * msecs_to_jiffies: - convert milliseconds to jiffies
483 * @m: time in milliseconds
484 *
485 * conversion is done as follows:
486 *
487 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
488 *
489 * - 'too large' values [that would result in larger than
490 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
491 *
492 * - all other values are converted to jiffies by either multiplying
493 * the input value by a factor or dividing it with a factor and
494 * handling any 32-bit overflows.
495 * for the details see __msecs_to_jiffies()
496 *
497 * msecs_to_jiffies() checks for the passed in value being a constant
498 * via __builtin_constant_p() allowing gcc to eliminate most of the
499 * code, __msecs_to_jiffies() is called if the value passed does not
500 * allow constant folding and the actual conversion must be done at
501 * runtime.
502 * the _msecs_to_jiffies helpers are the HZ dependent conversion
503 * routines found in include/linux/jiffies.h
504 */
505 unsigned long __msecs_to_jiffies(const unsigned int m)
506 {
507 /*
508 * Negative value, means infinite timeout:
509 */
510 if ((int)m < 0)
511 return MAX_JIFFY_OFFSET;
512 return _msecs_to_jiffies(m);
513 }
514 EXPORT_SYMBOL(__msecs_to_jiffies);
515
516 unsigned long __usecs_to_jiffies(const unsigned int u)
517 {
518 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
519 return MAX_JIFFY_OFFSET;
520 return _usecs_to_jiffies(u);
521 }
522 EXPORT_SYMBOL(__usecs_to_jiffies);
523
524 /*
525 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
526 * that a remainder subtract here would not do the right thing as the
527 * resolution values don't fall on second boundries. I.e. the line:
528 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
529 * Note that due to the small error in the multiplier here, this
530 * rounding is incorrect for sufficiently large values of tv_nsec, but
531 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
532 * OK.
533 *
534 * Rather, we just shift the bits off the right.
535 *
536 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
537 * value to a scaled second value.
538 */
539 static unsigned long
540 __timespec64_to_jiffies(u64 sec, long nsec)
541 {
542 nsec = nsec + TICK_NSEC - 1;
543
544 if (sec >= MAX_SEC_IN_JIFFIES){
545 sec = MAX_SEC_IN_JIFFIES;
546 nsec = 0;
547 }
548 return ((sec * SEC_CONVERSION) +
549 (((u64)nsec * NSEC_CONVERSION) >>
550 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
551
552 }
553
554 static unsigned long
555 __timespec_to_jiffies(unsigned long sec, long nsec)
556 {
557 return __timespec64_to_jiffies((u64)sec, nsec);
558 }
559
560 unsigned long
561 timespec64_to_jiffies(const struct timespec64 *value)
562 {
563 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
564 }
565 EXPORT_SYMBOL(timespec64_to_jiffies);
566
567 void
568 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
569 {
570 /*
571 * Convert jiffies to nanoseconds and separate with
572 * one divide.
573 */
574 u32 rem;
575 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
576 NSEC_PER_SEC, &rem);
577 value->tv_nsec = rem;
578 }
579 EXPORT_SYMBOL(jiffies_to_timespec64);
580
581 /*
582 * We could use a similar algorithm to timespec_to_jiffies (with a
583 * different multiplier for usec instead of nsec). But this has a
584 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
585 * usec value, since it's not necessarily integral.
586 *
587 * We could instead round in the intermediate scaled representation
588 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
589 * perilous: the scaling introduces a small positive error, which
590 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
591 * units to the intermediate before shifting) leads to accidental
592 * overflow and overestimates.
593 *
594 * At the cost of one additional multiplication by a constant, just
595 * use the timespec implementation.
596 */
597 unsigned long
598 timeval_to_jiffies(const struct timeval *value)
599 {
600 return __timespec_to_jiffies(value->tv_sec,
601 value->tv_usec * NSEC_PER_USEC);
602 }
603 EXPORT_SYMBOL(timeval_to_jiffies);
604
605 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
606 {
607 /*
608 * Convert jiffies to nanoseconds and separate with
609 * one divide.
610 */
611 u32 rem;
612
613 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
614 NSEC_PER_SEC, &rem);
615 value->tv_usec = rem / NSEC_PER_USEC;
616 }
617 EXPORT_SYMBOL(jiffies_to_timeval);
618
619 /*
620 * Convert jiffies/jiffies_64 to clock_t and back.
621 */
622 clock_t jiffies_to_clock_t(unsigned long x)
623 {
624 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
625 # if HZ < USER_HZ
626 return x * (USER_HZ / HZ);
627 # else
628 return x / (HZ / USER_HZ);
629 # endif
630 #else
631 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
632 #endif
633 }
634 EXPORT_SYMBOL(jiffies_to_clock_t);
635
636 unsigned long clock_t_to_jiffies(unsigned long x)
637 {
638 #if (HZ % USER_HZ)==0
639 if (x >= ~0UL / (HZ / USER_HZ))
640 return ~0UL;
641 return x * (HZ / USER_HZ);
642 #else
643 /* Don't worry about loss of precision here .. */
644 if (x >= ~0UL / HZ * USER_HZ)
645 return ~0UL;
646
647 /* .. but do try to contain it here */
648 return div_u64((u64)x * HZ, USER_HZ);
649 #endif
650 }
651 EXPORT_SYMBOL(clock_t_to_jiffies);
652
653 u64 jiffies_64_to_clock_t(u64 x)
654 {
655 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
656 # if HZ < USER_HZ
657 x = div_u64(x * USER_HZ, HZ);
658 # elif HZ > USER_HZ
659 x = div_u64(x, HZ / USER_HZ);
660 # else
661 /* Nothing to do */
662 # endif
663 #else
664 /*
665 * There are better ways that don't overflow early,
666 * but even this doesn't overflow in hundreds of years
667 * in 64 bits, so..
668 */
669 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
670 #endif
671 return x;
672 }
673 EXPORT_SYMBOL(jiffies_64_to_clock_t);
674
675 u64 nsec_to_clock_t(u64 x)
676 {
677 #if (NSEC_PER_SEC % USER_HZ) == 0
678 return div_u64(x, NSEC_PER_SEC / USER_HZ);
679 #elif (USER_HZ % 512) == 0
680 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
681 #else
682 /*
683 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
684 * overflow after 64.99 years.
685 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
686 */
687 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
688 #endif
689 }
690
691 u64 jiffies64_to_nsecs(u64 j)
692 {
693 #if !(NSEC_PER_SEC % HZ)
694 return (NSEC_PER_SEC / HZ) * j;
695 # else
696 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
697 #endif
698 }
699 EXPORT_SYMBOL(jiffies64_to_nsecs);
700
701 /**
702 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
703 *
704 * @n: nsecs in u64
705 *
706 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
707 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
708 * for scheduler, not for use in device drivers to calculate timeout value.
709 *
710 * note:
711 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
712 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
713 */
714 u64 nsecs_to_jiffies64(u64 n)
715 {
716 #if (NSEC_PER_SEC % HZ) == 0
717 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
718 return div_u64(n, NSEC_PER_SEC / HZ);
719 #elif (HZ % 512) == 0
720 /* overflow after 292 years if HZ = 1024 */
721 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
722 #else
723 /*
724 * Generic case - optimized for cases where HZ is a multiple of 3.
725 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
726 */
727 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
728 #endif
729 }
730 EXPORT_SYMBOL(nsecs_to_jiffies64);
731
732 /**
733 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
734 *
735 * @n: nsecs in u64
736 *
737 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
738 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
739 * for scheduler, not for use in device drivers to calculate timeout value.
740 *
741 * note:
742 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
743 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
744 */
745 unsigned long nsecs_to_jiffies(u64 n)
746 {
747 return (unsigned long)nsecs_to_jiffies64(n);
748 }
749 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
750
751 /*
752 * Add two timespec values and do a safety check for overflow.
753 * It's assumed that both values are valid (>= 0)
754 */
755 struct timespec timespec_add_safe(const struct timespec lhs,
756 const struct timespec rhs)
757 {
758 struct timespec res;
759
760 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
761 lhs.tv_nsec + rhs.tv_nsec);
762
763 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
764 res.tv_sec = TIME_T_MAX;
765
766 return res;
767 }
768
769 /*
770 * Add two timespec64 values and do a safety check for overflow.
771 * It's assumed that both values are valid (>= 0).
772 * And, each timespec64 is in normalized form.
773 */
774 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
775 const struct timespec64 rhs)
776 {
777 struct timespec64 res;
778
779 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
780 lhs.tv_nsec + rhs.tv_nsec);
781
782 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
783 res.tv_sec = TIME64_MAX;
784 res.tv_nsec = 0;
785 }
786
787 return res;
788 }