]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/time/time.c
Merge remote-tracking branches 'asoc/topic/samsung' and 'asoc/topic/wm8750' into...
[mirror_ubuntu-bionic-kernel.git] / kernel / time / time.c
1 /*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10 /*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43
44 #include "timeconst.h"
45 #include "timekeeping.h"
46
47 /*
48 * The timezone where the local system is located. Used as a default by some
49 * programs who obtain this value by using gettimeofday.
50 */
51 struct timezone sys_tz;
52
53 EXPORT_SYMBOL(sys_tz);
54
55 #ifdef __ARCH_WANT_SYS_TIME
56
57 /*
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday(). Is this for backwards compatibility? If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
62 */
63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
64 {
65 time_t i = get_seconds();
66
67 if (tloc) {
68 if (put_user(i,tloc))
69 return -EFAULT;
70 }
71 force_successful_syscall_return();
72 return i;
73 }
74
75 /*
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday(). Is this for backwards compatibility? If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
80 */
81
82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83 {
84 struct timespec tv;
85 int err;
86
87 if (get_user(tv.tv_sec, tptr))
88 return -EFAULT;
89
90 tv.tv_nsec = 0;
91
92 err = security_settime(&tv, NULL);
93 if (err)
94 return err;
95
96 do_settimeofday(&tv);
97 return 0;
98 }
99
100 #endif /* __ARCH_WANT_SYS_TIME */
101
102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 struct timezone __user *, tz)
104 {
105 if (likely(tv != NULL)) {
106 struct timeval ktv;
107 do_gettimeofday(&ktv);
108 if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 return -EFAULT;
110 }
111 if (unlikely(tz != NULL)) {
112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 return -EFAULT;
114 }
115 return 0;
116 }
117
118 /*
119 * Indicates if there is an offset between the system clock and the hardware
120 * clock/persistent clock/rtc.
121 */
122 int persistent_clock_is_local;
123
124 /*
125 * Adjust the time obtained from the CMOS to be UTC time instead of
126 * local time.
127 *
128 * This is ugly, but preferable to the alternatives. Otherwise we
129 * would either need to write a program to do it in /etc/rc (and risk
130 * confusion if the program gets run more than once; it would also be
131 * hard to make the program warp the clock precisely n hours) or
132 * compile in the timezone information into the kernel. Bad, bad....
133 *
134 * - TYT, 1992-01-01
135 *
136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
137 * as real UNIX machines always do it. This avoids all headaches about
138 * daylight saving times and warping kernel clocks.
139 */
140 static inline void warp_clock(void)
141 {
142 if (sys_tz.tz_minuteswest != 0) {
143 struct timespec adjust;
144
145 persistent_clock_is_local = 1;
146 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 adjust.tv_nsec = 0;
148 timekeeping_inject_offset(&adjust);
149 }
150 }
151
152 /*
153 * In case for some reason the CMOS clock has not already been running
154 * in UTC, but in some local time: The first time we set the timezone,
155 * we will warp the clock so that it is ticking UTC time instead of
156 * local time. Presumably, if someone is setting the timezone then we
157 * are running in an environment where the programs understand about
158 * timezones. This should be done at boot time in the /etc/rc script,
159 * as soon as possible, so that the clock can be set right. Otherwise,
160 * various programs will get confused when the clock gets warped.
161 */
162
163 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
164 {
165 static int firsttime = 1;
166 int error = 0;
167
168 if (tv && !timespec_valid(tv))
169 return -EINVAL;
170
171 error = security_settime(tv, tz);
172 if (error)
173 return error;
174
175 if (tz) {
176 sys_tz = *tz;
177 update_vsyscall_tz();
178 if (firsttime) {
179 firsttime = 0;
180 if (!tv)
181 warp_clock();
182 }
183 }
184 if (tv)
185 return do_settimeofday(tv);
186 return 0;
187 }
188
189 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
190 struct timezone __user *, tz)
191 {
192 struct timeval user_tv;
193 struct timespec new_ts;
194 struct timezone new_tz;
195
196 if (tv) {
197 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
198 return -EFAULT;
199 new_ts.tv_sec = user_tv.tv_sec;
200 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
201 }
202 if (tz) {
203 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
204 return -EFAULT;
205 }
206
207 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
208 }
209
210 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
211 {
212 struct timex txc; /* Local copy of parameter */
213 int ret;
214
215 /* Copy the user data space into the kernel copy
216 * structure. But bear in mind that the structures
217 * may change
218 */
219 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
220 return -EFAULT;
221 ret = do_adjtimex(&txc);
222 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
223 }
224
225 /**
226 * current_fs_time - Return FS time
227 * @sb: Superblock.
228 *
229 * Return the current time truncated to the time granularity supported by
230 * the fs.
231 */
232 struct timespec current_fs_time(struct super_block *sb)
233 {
234 struct timespec now = current_kernel_time();
235 return timespec_trunc(now, sb->s_time_gran);
236 }
237 EXPORT_SYMBOL(current_fs_time);
238
239 /*
240 * Convert jiffies to milliseconds and back.
241 *
242 * Avoid unnecessary multiplications/divisions in the
243 * two most common HZ cases:
244 */
245 unsigned int jiffies_to_msecs(const unsigned long j)
246 {
247 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
248 return (MSEC_PER_SEC / HZ) * j;
249 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
250 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
251 #else
252 # if BITS_PER_LONG == 32
253 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
254 # else
255 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
256 # endif
257 #endif
258 }
259 EXPORT_SYMBOL(jiffies_to_msecs);
260
261 unsigned int jiffies_to_usecs(const unsigned long j)
262 {
263 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
264 return (USEC_PER_SEC / HZ) * j;
265 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
266 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
267 #else
268 # if BITS_PER_LONG == 32
269 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
270 # else
271 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
272 # endif
273 #endif
274 }
275 EXPORT_SYMBOL(jiffies_to_usecs);
276
277 /**
278 * timespec_trunc - Truncate timespec to a granularity
279 * @t: Timespec
280 * @gran: Granularity in ns.
281 *
282 * Truncate a timespec to a granularity. gran must be smaller than a second.
283 * Always rounds down.
284 *
285 * This function should be only used for timestamps returned by
286 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
287 * it doesn't handle the better resolution of the latter.
288 */
289 struct timespec timespec_trunc(struct timespec t, unsigned gran)
290 {
291 /*
292 * Division is pretty slow so avoid it for common cases.
293 * Currently current_kernel_time() never returns better than
294 * jiffies resolution. Exploit that.
295 */
296 if (gran <= jiffies_to_usecs(1) * 1000) {
297 /* nothing */
298 } else if (gran == 1000000000) {
299 t.tv_nsec = 0;
300 } else {
301 t.tv_nsec -= t.tv_nsec % gran;
302 }
303 return t;
304 }
305 EXPORT_SYMBOL(timespec_trunc);
306
307 /*
308 * mktime64 - Converts date to seconds.
309 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
310 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
311 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
312 *
313 * [For the Julian calendar (which was used in Russia before 1917,
314 * Britain & colonies before 1752, anywhere else before 1582,
315 * and is still in use by some communities) leave out the
316 * -year/100+year/400 terms, and add 10.]
317 *
318 * This algorithm was first published by Gauss (I think).
319 */
320 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
321 const unsigned int day, const unsigned int hour,
322 const unsigned int min, const unsigned int sec)
323 {
324 unsigned int mon = mon0, year = year0;
325
326 /* 1..12 -> 11,12,1..10 */
327 if (0 >= (int) (mon -= 2)) {
328 mon += 12; /* Puts Feb last since it has leap day */
329 year -= 1;
330 }
331
332 return ((((time64_t)
333 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
334 year*365 - 719499
335 )*24 + hour /* now have hours */
336 )*60 + min /* now have minutes */
337 )*60 + sec; /* finally seconds */
338 }
339 EXPORT_SYMBOL(mktime64);
340
341 /**
342 * set_normalized_timespec - set timespec sec and nsec parts and normalize
343 *
344 * @ts: pointer to timespec variable to be set
345 * @sec: seconds to set
346 * @nsec: nanoseconds to set
347 *
348 * Set seconds and nanoseconds field of a timespec variable and
349 * normalize to the timespec storage format
350 *
351 * Note: The tv_nsec part is always in the range of
352 * 0 <= tv_nsec < NSEC_PER_SEC
353 * For negative values only the tv_sec field is negative !
354 */
355 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
356 {
357 while (nsec >= NSEC_PER_SEC) {
358 /*
359 * The following asm() prevents the compiler from
360 * optimising this loop into a modulo operation. See
361 * also __iter_div_u64_rem() in include/linux/time.h
362 */
363 asm("" : "+rm"(nsec));
364 nsec -= NSEC_PER_SEC;
365 ++sec;
366 }
367 while (nsec < 0) {
368 asm("" : "+rm"(nsec));
369 nsec += NSEC_PER_SEC;
370 --sec;
371 }
372 ts->tv_sec = sec;
373 ts->tv_nsec = nsec;
374 }
375 EXPORT_SYMBOL(set_normalized_timespec);
376
377 /**
378 * ns_to_timespec - Convert nanoseconds to timespec
379 * @nsec: the nanoseconds value to be converted
380 *
381 * Returns the timespec representation of the nsec parameter.
382 */
383 struct timespec ns_to_timespec(const s64 nsec)
384 {
385 struct timespec ts;
386 s32 rem;
387
388 if (!nsec)
389 return (struct timespec) {0, 0};
390
391 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
392 if (unlikely(rem < 0)) {
393 ts.tv_sec--;
394 rem += NSEC_PER_SEC;
395 }
396 ts.tv_nsec = rem;
397
398 return ts;
399 }
400 EXPORT_SYMBOL(ns_to_timespec);
401
402 /**
403 * ns_to_timeval - Convert nanoseconds to timeval
404 * @nsec: the nanoseconds value to be converted
405 *
406 * Returns the timeval representation of the nsec parameter.
407 */
408 struct timeval ns_to_timeval(const s64 nsec)
409 {
410 struct timespec ts = ns_to_timespec(nsec);
411 struct timeval tv;
412
413 tv.tv_sec = ts.tv_sec;
414 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
415
416 return tv;
417 }
418 EXPORT_SYMBOL(ns_to_timeval);
419
420 #if BITS_PER_LONG == 32
421 /**
422 * set_normalized_timespec - set timespec sec and nsec parts and normalize
423 *
424 * @ts: pointer to timespec variable to be set
425 * @sec: seconds to set
426 * @nsec: nanoseconds to set
427 *
428 * Set seconds and nanoseconds field of a timespec variable and
429 * normalize to the timespec storage format
430 *
431 * Note: The tv_nsec part is always in the range of
432 * 0 <= tv_nsec < NSEC_PER_SEC
433 * For negative values only the tv_sec field is negative !
434 */
435 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
436 {
437 while (nsec >= NSEC_PER_SEC) {
438 /*
439 * The following asm() prevents the compiler from
440 * optimising this loop into a modulo operation. See
441 * also __iter_div_u64_rem() in include/linux/time.h
442 */
443 asm("" : "+rm"(nsec));
444 nsec -= NSEC_PER_SEC;
445 ++sec;
446 }
447 while (nsec < 0) {
448 asm("" : "+rm"(nsec));
449 nsec += NSEC_PER_SEC;
450 --sec;
451 }
452 ts->tv_sec = sec;
453 ts->tv_nsec = nsec;
454 }
455 EXPORT_SYMBOL(set_normalized_timespec64);
456
457 /**
458 * ns_to_timespec64 - Convert nanoseconds to timespec64
459 * @nsec: the nanoseconds value to be converted
460 *
461 * Returns the timespec64 representation of the nsec parameter.
462 */
463 struct timespec64 ns_to_timespec64(const s64 nsec)
464 {
465 struct timespec64 ts;
466 s32 rem;
467
468 if (!nsec)
469 return (struct timespec64) {0, 0};
470
471 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
472 if (unlikely(rem < 0)) {
473 ts.tv_sec--;
474 rem += NSEC_PER_SEC;
475 }
476 ts.tv_nsec = rem;
477
478 return ts;
479 }
480 EXPORT_SYMBOL(ns_to_timespec64);
481 #endif
482 /*
483 * When we convert to jiffies then we interpret incoming values
484 * the following way:
485 *
486 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
487 *
488 * - 'too large' values [that would result in larger than
489 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
490 *
491 * - all other values are converted to jiffies by either multiplying
492 * the input value by a factor or dividing it with a factor
493 *
494 * We must also be careful about 32-bit overflows.
495 */
496 unsigned long msecs_to_jiffies(const unsigned int m)
497 {
498 /*
499 * Negative value, means infinite timeout:
500 */
501 if ((int)m < 0)
502 return MAX_JIFFY_OFFSET;
503
504 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
505 /*
506 * HZ is equal to or smaller than 1000, and 1000 is a nice
507 * round multiple of HZ, divide with the factor between them,
508 * but round upwards:
509 */
510 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
511 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
512 /*
513 * HZ is larger than 1000, and HZ is a nice round multiple of
514 * 1000 - simply multiply with the factor between them.
515 *
516 * But first make sure the multiplication result cannot
517 * overflow:
518 */
519 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
520 return MAX_JIFFY_OFFSET;
521
522 return m * (HZ / MSEC_PER_SEC);
523 #else
524 /*
525 * Generic case - multiply, round and divide. But first
526 * check that if we are doing a net multiplication, that
527 * we wouldn't overflow:
528 */
529 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
530 return MAX_JIFFY_OFFSET;
531
532 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
533 >> MSEC_TO_HZ_SHR32;
534 #endif
535 }
536 EXPORT_SYMBOL(msecs_to_jiffies);
537
538 unsigned long usecs_to_jiffies(const unsigned int u)
539 {
540 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
541 return MAX_JIFFY_OFFSET;
542 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
543 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
544 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
545 return u * (HZ / USEC_PER_SEC);
546 #else
547 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
548 >> USEC_TO_HZ_SHR32;
549 #endif
550 }
551 EXPORT_SYMBOL(usecs_to_jiffies);
552
553 /*
554 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
555 * that a remainder subtract here would not do the right thing as the
556 * resolution values don't fall on second boundries. I.e. the line:
557 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
558 * Note that due to the small error in the multiplier here, this
559 * rounding is incorrect for sufficiently large values of tv_nsec, but
560 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
561 * OK.
562 *
563 * Rather, we just shift the bits off the right.
564 *
565 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
566 * value to a scaled second value.
567 */
568 static unsigned long
569 __timespec_to_jiffies(unsigned long sec, long nsec)
570 {
571 nsec = nsec + TICK_NSEC - 1;
572
573 if (sec >= MAX_SEC_IN_JIFFIES){
574 sec = MAX_SEC_IN_JIFFIES;
575 nsec = 0;
576 }
577 return (((u64)sec * SEC_CONVERSION) +
578 (((u64)nsec * NSEC_CONVERSION) >>
579 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
580
581 }
582
583 unsigned long
584 timespec_to_jiffies(const struct timespec *value)
585 {
586 return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
587 }
588
589 EXPORT_SYMBOL(timespec_to_jiffies);
590
591 void
592 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
593 {
594 /*
595 * Convert jiffies to nanoseconds and separate with
596 * one divide.
597 */
598 u32 rem;
599 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
600 NSEC_PER_SEC, &rem);
601 value->tv_nsec = rem;
602 }
603 EXPORT_SYMBOL(jiffies_to_timespec);
604
605 /*
606 * We could use a similar algorithm to timespec_to_jiffies (with a
607 * different multiplier for usec instead of nsec). But this has a
608 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
609 * usec value, since it's not necessarily integral.
610 *
611 * We could instead round in the intermediate scaled representation
612 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
613 * perilous: the scaling introduces a small positive error, which
614 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
615 * units to the intermediate before shifting) leads to accidental
616 * overflow and overestimates.
617 *
618 * At the cost of one additional multiplication by a constant, just
619 * use the timespec implementation.
620 */
621 unsigned long
622 timeval_to_jiffies(const struct timeval *value)
623 {
624 return __timespec_to_jiffies(value->tv_sec,
625 value->tv_usec * NSEC_PER_USEC);
626 }
627 EXPORT_SYMBOL(timeval_to_jiffies);
628
629 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
630 {
631 /*
632 * Convert jiffies to nanoseconds and separate with
633 * one divide.
634 */
635 u32 rem;
636
637 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
638 NSEC_PER_SEC, &rem);
639 value->tv_usec = rem / NSEC_PER_USEC;
640 }
641 EXPORT_SYMBOL(jiffies_to_timeval);
642
643 /*
644 * Convert jiffies/jiffies_64 to clock_t and back.
645 */
646 clock_t jiffies_to_clock_t(unsigned long x)
647 {
648 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
649 # if HZ < USER_HZ
650 return x * (USER_HZ / HZ);
651 # else
652 return x / (HZ / USER_HZ);
653 # endif
654 #else
655 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
656 #endif
657 }
658 EXPORT_SYMBOL(jiffies_to_clock_t);
659
660 unsigned long clock_t_to_jiffies(unsigned long x)
661 {
662 #if (HZ % USER_HZ)==0
663 if (x >= ~0UL / (HZ / USER_HZ))
664 return ~0UL;
665 return x * (HZ / USER_HZ);
666 #else
667 /* Don't worry about loss of precision here .. */
668 if (x >= ~0UL / HZ * USER_HZ)
669 return ~0UL;
670
671 /* .. but do try to contain it here */
672 return div_u64((u64)x * HZ, USER_HZ);
673 #endif
674 }
675 EXPORT_SYMBOL(clock_t_to_jiffies);
676
677 u64 jiffies_64_to_clock_t(u64 x)
678 {
679 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
680 # if HZ < USER_HZ
681 x = div_u64(x * USER_HZ, HZ);
682 # elif HZ > USER_HZ
683 x = div_u64(x, HZ / USER_HZ);
684 # else
685 /* Nothing to do */
686 # endif
687 #else
688 /*
689 * There are better ways that don't overflow early,
690 * but even this doesn't overflow in hundreds of years
691 * in 64 bits, so..
692 */
693 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
694 #endif
695 return x;
696 }
697 EXPORT_SYMBOL(jiffies_64_to_clock_t);
698
699 u64 nsec_to_clock_t(u64 x)
700 {
701 #if (NSEC_PER_SEC % USER_HZ) == 0
702 return div_u64(x, NSEC_PER_SEC / USER_HZ);
703 #elif (USER_HZ % 512) == 0
704 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
705 #else
706 /*
707 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
708 * overflow after 64.99 years.
709 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
710 */
711 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
712 #endif
713 }
714
715 /**
716 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
717 *
718 * @n: nsecs in u64
719 *
720 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
721 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
722 * for scheduler, not for use in device drivers to calculate timeout value.
723 *
724 * note:
725 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
726 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
727 */
728 u64 nsecs_to_jiffies64(u64 n)
729 {
730 #if (NSEC_PER_SEC % HZ) == 0
731 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
732 return div_u64(n, NSEC_PER_SEC / HZ);
733 #elif (HZ % 512) == 0
734 /* overflow after 292 years if HZ = 1024 */
735 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
736 #else
737 /*
738 * Generic case - optimized for cases where HZ is a multiple of 3.
739 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
740 */
741 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
742 #endif
743 }
744 EXPORT_SYMBOL(nsecs_to_jiffies64);
745
746 /**
747 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
748 *
749 * @n: nsecs in u64
750 *
751 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
752 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
753 * for scheduler, not for use in device drivers to calculate timeout value.
754 *
755 * note:
756 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
757 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
758 */
759 unsigned long nsecs_to_jiffies(u64 n)
760 {
761 return (unsigned long)nsecs_to_jiffies64(n);
762 }
763 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
764
765 /*
766 * Add two timespec values and do a safety check for overflow.
767 * It's assumed that both values are valid (>= 0)
768 */
769 struct timespec timespec_add_safe(const struct timespec lhs,
770 const struct timespec rhs)
771 {
772 struct timespec res;
773
774 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
775 lhs.tv_nsec + rhs.tv_nsec);
776
777 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
778 res.tv_sec = TIME_T_MAX;
779
780 return res;
781 }