]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/time/time.c
Merge tag 'armsoc-cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-eoan-kernel.git] / kernel / time / time.c
1 /*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10 /*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43
44 #include <generated/timeconst.h>
45 #include "timekeeping.h"
46
47 /*
48 * The timezone where the local system is located. Used as a default by some
49 * programs who obtain this value by using gettimeofday.
50 */
51 struct timezone sys_tz;
52
53 EXPORT_SYMBOL(sys_tz);
54
55 #ifdef __ARCH_WANT_SYS_TIME
56
57 /*
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday(). Is this for backwards compatibility? If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
62 */
63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
64 {
65 time_t i = get_seconds();
66
67 if (tloc) {
68 if (put_user(i,tloc))
69 return -EFAULT;
70 }
71 force_successful_syscall_return();
72 return i;
73 }
74
75 /*
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday(). Is this for backwards compatibility? If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
80 */
81
82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83 {
84 struct timespec tv;
85 int err;
86
87 if (get_user(tv.tv_sec, tptr))
88 return -EFAULT;
89
90 tv.tv_nsec = 0;
91
92 err = security_settime(&tv, NULL);
93 if (err)
94 return err;
95
96 do_settimeofday(&tv);
97 return 0;
98 }
99
100 #endif /* __ARCH_WANT_SYS_TIME */
101
102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 struct timezone __user *, tz)
104 {
105 if (likely(tv != NULL)) {
106 struct timeval ktv;
107 do_gettimeofday(&ktv);
108 if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 return -EFAULT;
110 }
111 if (unlikely(tz != NULL)) {
112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 return -EFAULT;
114 }
115 return 0;
116 }
117
118 /*
119 * Indicates if there is an offset between the system clock and the hardware
120 * clock/persistent clock/rtc.
121 */
122 int persistent_clock_is_local;
123
124 /*
125 * Adjust the time obtained from the CMOS to be UTC time instead of
126 * local time.
127 *
128 * This is ugly, but preferable to the alternatives. Otherwise we
129 * would either need to write a program to do it in /etc/rc (and risk
130 * confusion if the program gets run more than once; it would also be
131 * hard to make the program warp the clock precisely n hours) or
132 * compile in the timezone information into the kernel. Bad, bad....
133 *
134 * - TYT, 1992-01-01
135 *
136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
137 * as real UNIX machines always do it. This avoids all headaches about
138 * daylight saving times and warping kernel clocks.
139 */
140 static inline void warp_clock(void)
141 {
142 if (sys_tz.tz_minuteswest != 0) {
143 struct timespec adjust;
144
145 persistent_clock_is_local = 1;
146 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 adjust.tv_nsec = 0;
148 timekeeping_inject_offset(&adjust);
149 }
150 }
151
152 /*
153 * In case for some reason the CMOS clock has not already been running
154 * in UTC, but in some local time: The first time we set the timezone,
155 * we will warp the clock so that it is ticking UTC time instead of
156 * local time. Presumably, if someone is setting the timezone then we
157 * are running in an environment where the programs understand about
158 * timezones. This should be done at boot time in the /etc/rc script,
159 * as soon as possible, so that the clock can be set right. Otherwise,
160 * various programs will get confused when the clock gets warped.
161 */
162
163 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
164 {
165 static int firsttime = 1;
166 int error = 0;
167
168 if (tv && !timespec_valid(tv))
169 return -EINVAL;
170
171 error = security_settime(tv, tz);
172 if (error)
173 return error;
174
175 if (tz) {
176 /* Verify we're witin the +-15 hrs range */
177 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
178 return -EINVAL;
179
180 sys_tz = *tz;
181 update_vsyscall_tz();
182 if (firsttime) {
183 firsttime = 0;
184 if (!tv)
185 warp_clock();
186 }
187 }
188 if (tv)
189 return do_settimeofday(tv);
190 return 0;
191 }
192
193 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
194 struct timezone __user *, tz)
195 {
196 struct timeval user_tv;
197 struct timespec new_ts;
198 struct timezone new_tz;
199
200 if (tv) {
201 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
202 return -EFAULT;
203
204 if (!timeval_valid(&user_tv))
205 return -EINVAL;
206
207 new_ts.tv_sec = user_tv.tv_sec;
208 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
209 }
210 if (tz) {
211 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
212 return -EFAULT;
213 }
214
215 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
216 }
217
218 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
219 {
220 struct timex txc; /* Local copy of parameter */
221 int ret;
222
223 /* Copy the user data space into the kernel copy
224 * structure. But bear in mind that the structures
225 * may change
226 */
227 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
228 return -EFAULT;
229 ret = do_adjtimex(&txc);
230 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
231 }
232
233 /**
234 * current_fs_time - Return FS time
235 * @sb: Superblock.
236 *
237 * Return the current time truncated to the time granularity supported by
238 * the fs.
239 */
240 struct timespec current_fs_time(struct super_block *sb)
241 {
242 struct timespec now = current_kernel_time();
243 return timespec_trunc(now, sb->s_time_gran);
244 }
245 EXPORT_SYMBOL(current_fs_time);
246
247 /*
248 * Convert jiffies to milliseconds and back.
249 *
250 * Avoid unnecessary multiplications/divisions in the
251 * two most common HZ cases:
252 */
253 unsigned int jiffies_to_msecs(const unsigned long j)
254 {
255 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
256 return (MSEC_PER_SEC / HZ) * j;
257 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
258 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
259 #else
260 # if BITS_PER_LONG == 32
261 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
262 # else
263 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
264 # endif
265 #endif
266 }
267 EXPORT_SYMBOL(jiffies_to_msecs);
268
269 unsigned int jiffies_to_usecs(const unsigned long j)
270 {
271 /*
272 * Hz usually doesn't go much further MSEC_PER_SEC.
273 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
274 */
275 BUILD_BUG_ON(HZ > USEC_PER_SEC);
276
277 #if !(USEC_PER_SEC % HZ)
278 return (USEC_PER_SEC / HZ) * j;
279 #else
280 # if BITS_PER_LONG == 32
281 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
282 # else
283 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
284 # endif
285 #endif
286 }
287 EXPORT_SYMBOL(jiffies_to_usecs);
288
289 /**
290 * timespec_trunc - Truncate timespec to a granularity
291 * @t: Timespec
292 * @gran: Granularity in ns.
293 *
294 * Truncate a timespec to a granularity. gran must be smaller than a second.
295 * Always rounds down.
296 *
297 * This function should be only used for timestamps returned by
298 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
299 * it doesn't handle the better resolution of the latter.
300 */
301 struct timespec timespec_trunc(struct timespec t, unsigned gran)
302 {
303 /*
304 * Division is pretty slow so avoid it for common cases.
305 * Currently current_kernel_time() never returns better than
306 * jiffies resolution. Exploit that.
307 */
308 if (gran <= jiffies_to_usecs(1) * 1000) {
309 /* nothing */
310 } else if (gran == 1000000000) {
311 t.tv_nsec = 0;
312 } else {
313 t.tv_nsec -= t.tv_nsec % gran;
314 }
315 return t;
316 }
317 EXPORT_SYMBOL(timespec_trunc);
318
319 /*
320 * mktime64 - Converts date to seconds.
321 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
322 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
323 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
324 *
325 * [For the Julian calendar (which was used in Russia before 1917,
326 * Britain & colonies before 1752, anywhere else before 1582,
327 * and is still in use by some communities) leave out the
328 * -year/100+year/400 terms, and add 10.]
329 *
330 * This algorithm was first published by Gauss (I think).
331 */
332 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
333 const unsigned int day, const unsigned int hour,
334 const unsigned int min, const unsigned int sec)
335 {
336 unsigned int mon = mon0, year = year0;
337
338 /* 1..12 -> 11,12,1..10 */
339 if (0 >= (int) (mon -= 2)) {
340 mon += 12; /* Puts Feb last since it has leap day */
341 year -= 1;
342 }
343
344 return ((((time64_t)
345 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
346 year*365 - 719499
347 )*24 + hour /* now have hours */
348 )*60 + min /* now have minutes */
349 )*60 + sec; /* finally seconds */
350 }
351 EXPORT_SYMBOL(mktime64);
352
353 /**
354 * set_normalized_timespec - set timespec sec and nsec parts and normalize
355 *
356 * @ts: pointer to timespec variable to be set
357 * @sec: seconds to set
358 * @nsec: nanoseconds to set
359 *
360 * Set seconds and nanoseconds field of a timespec variable and
361 * normalize to the timespec storage format
362 *
363 * Note: The tv_nsec part is always in the range of
364 * 0 <= tv_nsec < NSEC_PER_SEC
365 * For negative values only the tv_sec field is negative !
366 */
367 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
368 {
369 while (nsec >= NSEC_PER_SEC) {
370 /*
371 * The following asm() prevents the compiler from
372 * optimising this loop into a modulo operation. See
373 * also __iter_div_u64_rem() in include/linux/time.h
374 */
375 asm("" : "+rm"(nsec));
376 nsec -= NSEC_PER_SEC;
377 ++sec;
378 }
379 while (nsec < 0) {
380 asm("" : "+rm"(nsec));
381 nsec += NSEC_PER_SEC;
382 --sec;
383 }
384 ts->tv_sec = sec;
385 ts->tv_nsec = nsec;
386 }
387 EXPORT_SYMBOL(set_normalized_timespec);
388
389 /**
390 * ns_to_timespec - Convert nanoseconds to timespec
391 * @nsec: the nanoseconds value to be converted
392 *
393 * Returns the timespec representation of the nsec parameter.
394 */
395 struct timespec ns_to_timespec(const s64 nsec)
396 {
397 struct timespec ts;
398 s32 rem;
399
400 if (!nsec)
401 return (struct timespec) {0, 0};
402
403 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
404 if (unlikely(rem < 0)) {
405 ts.tv_sec--;
406 rem += NSEC_PER_SEC;
407 }
408 ts.tv_nsec = rem;
409
410 return ts;
411 }
412 EXPORT_SYMBOL(ns_to_timespec);
413
414 /**
415 * ns_to_timeval - Convert nanoseconds to timeval
416 * @nsec: the nanoseconds value to be converted
417 *
418 * Returns the timeval representation of the nsec parameter.
419 */
420 struct timeval ns_to_timeval(const s64 nsec)
421 {
422 struct timespec ts = ns_to_timespec(nsec);
423 struct timeval tv;
424
425 tv.tv_sec = ts.tv_sec;
426 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
427
428 return tv;
429 }
430 EXPORT_SYMBOL(ns_to_timeval);
431
432 #if BITS_PER_LONG == 32
433 /**
434 * set_normalized_timespec - set timespec sec and nsec parts and normalize
435 *
436 * @ts: pointer to timespec variable to be set
437 * @sec: seconds to set
438 * @nsec: nanoseconds to set
439 *
440 * Set seconds and nanoseconds field of a timespec variable and
441 * normalize to the timespec storage format
442 *
443 * Note: The tv_nsec part is always in the range of
444 * 0 <= tv_nsec < NSEC_PER_SEC
445 * For negative values only the tv_sec field is negative !
446 */
447 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
448 {
449 while (nsec >= NSEC_PER_SEC) {
450 /*
451 * The following asm() prevents the compiler from
452 * optimising this loop into a modulo operation. See
453 * also __iter_div_u64_rem() in include/linux/time.h
454 */
455 asm("" : "+rm"(nsec));
456 nsec -= NSEC_PER_SEC;
457 ++sec;
458 }
459 while (nsec < 0) {
460 asm("" : "+rm"(nsec));
461 nsec += NSEC_PER_SEC;
462 --sec;
463 }
464 ts->tv_sec = sec;
465 ts->tv_nsec = nsec;
466 }
467 EXPORT_SYMBOL(set_normalized_timespec64);
468
469 /**
470 * ns_to_timespec64 - Convert nanoseconds to timespec64
471 * @nsec: the nanoseconds value to be converted
472 *
473 * Returns the timespec64 representation of the nsec parameter.
474 */
475 struct timespec64 ns_to_timespec64(const s64 nsec)
476 {
477 struct timespec64 ts;
478 s32 rem;
479
480 if (!nsec)
481 return (struct timespec64) {0, 0};
482
483 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
484 if (unlikely(rem < 0)) {
485 ts.tv_sec--;
486 rem += NSEC_PER_SEC;
487 }
488 ts.tv_nsec = rem;
489
490 return ts;
491 }
492 EXPORT_SYMBOL(ns_to_timespec64);
493 #endif
494 /**
495 * msecs_to_jiffies: - convert milliseconds to jiffies
496 * @m: time in milliseconds
497 *
498 * conversion is done as follows:
499 *
500 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
501 *
502 * - 'too large' values [that would result in larger than
503 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
504 *
505 * - all other values are converted to jiffies by either multiplying
506 * the input value by a factor or dividing it with a factor and
507 * handling any 32-bit overflows.
508 * for the details see __msecs_to_jiffies()
509 *
510 * msecs_to_jiffies() checks for the passed in value being a constant
511 * via __builtin_constant_p() allowing gcc to eliminate most of the
512 * code, __msecs_to_jiffies() is called if the value passed does not
513 * allow constant folding and the actual conversion must be done at
514 * runtime.
515 * the _msecs_to_jiffies helpers are the HZ dependent conversion
516 * routines found in include/linux/jiffies.h
517 */
518 unsigned long __msecs_to_jiffies(const unsigned int m)
519 {
520 /*
521 * Negative value, means infinite timeout:
522 */
523 if ((int)m < 0)
524 return MAX_JIFFY_OFFSET;
525 return _msecs_to_jiffies(m);
526 }
527 EXPORT_SYMBOL(__msecs_to_jiffies);
528
529 unsigned long __usecs_to_jiffies(const unsigned int u)
530 {
531 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
532 return MAX_JIFFY_OFFSET;
533 return _usecs_to_jiffies(u);
534 }
535 EXPORT_SYMBOL(__usecs_to_jiffies);
536
537 /*
538 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
539 * that a remainder subtract here would not do the right thing as the
540 * resolution values don't fall on second boundries. I.e. the line:
541 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
542 * Note that due to the small error in the multiplier here, this
543 * rounding is incorrect for sufficiently large values of tv_nsec, but
544 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
545 * OK.
546 *
547 * Rather, we just shift the bits off the right.
548 *
549 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
550 * value to a scaled second value.
551 */
552 static unsigned long
553 __timespec_to_jiffies(unsigned long sec, long nsec)
554 {
555 nsec = nsec + TICK_NSEC - 1;
556
557 if (sec >= MAX_SEC_IN_JIFFIES){
558 sec = MAX_SEC_IN_JIFFIES;
559 nsec = 0;
560 }
561 return (((u64)sec * SEC_CONVERSION) +
562 (((u64)nsec * NSEC_CONVERSION) >>
563 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
564
565 }
566
567 unsigned long
568 timespec_to_jiffies(const struct timespec *value)
569 {
570 return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
571 }
572
573 EXPORT_SYMBOL(timespec_to_jiffies);
574
575 void
576 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
577 {
578 /*
579 * Convert jiffies to nanoseconds and separate with
580 * one divide.
581 */
582 u32 rem;
583 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
584 NSEC_PER_SEC, &rem);
585 value->tv_nsec = rem;
586 }
587 EXPORT_SYMBOL(jiffies_to_timespec);
588
589 /*
590 * We could use a similar algorithm to timespec_to_jiffies (with a
591 * different multiplier for usec instead of nsec). But this has a
592 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
593 * usec value, since it's not necessarily integral.
594 *
595 * We could instead round in the intermediate scaled representation
596 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
597 * perilous: the scaling introduces a small positive error, which
598 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
599 * units to the intermediate before shifting) leads to accidental
600 * overflow and overestimates.
601 *
602 * At the cost of one additional multiplication by a constant, just
603 * use the timespec implementation.
604 */
605 unsigned long
606 timeval_to_jiffies(const struct timeval *value)
607 {
608 return __timespec_to_jiffies(value->tv_sec,
609 value->tv_usec * NSEC_PER_USEC);
610 }
611 EXPORT_SYMBOL(timeval_to_jiffies);
612
613 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
614 {
615 /*
616 * Convert jiffies to nanoseconds and separate with
617 * one divide.
618 */
619 u32 rem;
620
621 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
622 NSEC_PER_SEC, &rem);
623 value->tv_usec = rem / NSEC_PER_USEC;
624 }
625 EXPORT_SYMBOL(jiffies_to_timeval);
626
627 /*
628 * Convert jiffies/jiffies_64 to clock_t and back.
629 */
630 clock_t jiffies_to_clock_t(unsigned long x)
631 {
632 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
633 # if HZ < USER_HZ
634 return x * (USER_HZ / HZ);
635 # else
636 return x / (HZ / USER_HZ);
637 # endif
638 #else
639 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
640 #endif
641 }
642 EXPORT_SYMBOL(jiffies_to_clock_t);
643
644 unsigned long clock_t_to_jiffies(unsigned long x)
645 {
646 #if (HZ % USER_HZ)==0
647 if (x >= ~0UL / (HZ / USER_HZ))
648 return ~0UL;
649 return x * (HZ / USER_HZ);
650 #else
651 /* Don't worry about loss of precision here .. */
652 if (x >= ~0UL / HZ * USER_HZ)
653 return ~0UL;
654
655 /* .. but do try to contain it here */
656 return div_u64((u64)x * HZ, USER_HZ);
657 #endif
658 }
659 EXPORT_SYMBOL(clock_t_to_jiffies);
660
661 u64 jiffies_64_to_clock_t(u64 x)
662 {
663 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
664 # if HZ < USER_HZ
665 x = div_u64(x * USER_HZ, HZ);
666 # elif HZ > USER_HZ
667 x = div_u64(x, HZ / USER_HZ);
668 # else
669 /* Nothing to do */
670 # endif
671 #else
672 /*
673 * There are better ways that don't overflow early,
674 * but even this doesn't overflow in hundreds of years
675 * in 64 bits, so..
676 */
677 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
678 #endif
679 return x;
680 }
681 EXPORT_SYMBOL(jiffies_64_to_clock_t);
682
683 u64 nsec_to_clock_t(u64 x)
684 {
685 #if (NSEC_PER_SEC % USER_HZ) == 0
686 return div_u64(x, NSEC_PER_SEC / USER_HZ);
687 #elif (USER_HZ % 512) == 0
688 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
689 #else
690 /*
691 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
692 * overflow after 64.99 years.
693 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
694 */
695 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
696 #endif
697 }
698
699 /**
700 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
701 *
702 * @n: nsecs in u64
703 *
704 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
705 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
706 * for scheduler, not for use in device drivers to calculate timeout value.
707 *
708 * note:
709 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
710 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
711 */
712 u64 nsecs_to_jiffies64(u64 n)
713 {
714 #if (NSEC_PER_SEC % HZ) == 0
715 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
716 return div_u64(n, NSEC_PER_SEC / HZ);
717 #elif (HZ % 512) == 0
718 /* overflow after 292 years if HZ = 1024 */
719 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
720 #else
721 /*
722 * Generic case - optimized for cases where HZ is a multiple of 3.
723 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
724 */
725 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
726 #endif
727 }
728 EXPORT_SYMBOL(nsecs_to_jiffies64);
729
730 /**
731 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
732 *
733 * @n: nsecs in u64
734 *
735 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
736 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
737 * for scheduler, not for use in device drivers to calculate timeout value.
738 *
739 * note:
740 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
741 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
742 */
743 unsigned long nsecs_to_jiffies(u64 n)
744 {
745 return (unsigned long)nsecs_to_jiffies64(n);
746 }
747 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
748
749 /*
750 * Add two timespec values and do a safety check for overflow.
751 * It's assumed that both values are valid (>= 0)
752 */
753 struct timespec timespec_add_safe(const struct timespec lhs,
754 const struct timespec rhs)
755 {
756 struct timespec res;
757
758 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
759 lhs.tv_nsec + rhs.tv_nsec);
760
761 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
762 res.tv_sec = TIME_T_MAX;
763
764 return res;
765 }