]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/time.c
c42c2c3214fe7270168ba394d239d8a84aa985ed
[mirror_ubuntu-artful-kernel.git] / kernel / time / time.c
1 /*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10 /*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43
44 #include <generated/timeconst.h>
45 #include "timekeeping.h"
46
47 /*
48 * The timezone where the local system is located. Used as a default by some
49 * programs who obtain this value by using gettimeofday.
50 */
51 struct timezone sys_tz;
52
53 EXPORT_SYMBOL(sys_tz);
54
55 #ifdef __ARCH_WANT_SYS_TIME
56
57 /*
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday(). Is this for backwards compatibility? If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
62 */
63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
64 {
65 time_t i = get_seconds();
66
67 if (tloc) {
68 if (put_user(i,tloc))
69 return -EFAULT;
70 }
71 force_successful_syscall_return();
72 return i;
73 }
74
75 /*
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday(). Is this for backwards compatibility? If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
80 */
81
82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83 {
84 struct timespec tv;
85 int err;
86
87 if (get_user(tv.tv_sec, tptr))
88 return -EFAULT;
89
90 tv.tv_nsec = 0;
91
92 err = security_settime(&tv, NULL);
93 if (err)
94 return err;
95
96 do_settimeofday(&tv);
97 return 0;
98 }
99
100 #endif /* __ARCH_WANT_SYS_TIME */
101
102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 struct timezone __user *, tz)
104 {
105 if (likely(tv != NULL)) {
106 struct timeval ktv;
107 do_gettimeofday(&ktv);
108 if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 return -EFAULT;
110 }
111 if (unlikely(tz != NULL)) {
112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 return -EFAULT;
114 }
115 return 0;
116 }
117
118 /*
119 * Indicates if there is an offset between the system clock and the hardware
120 * clock/persistent clock/rtc.
121 */
122 int persistent_clock_is_local;
123
124 /*
125 * Adjust the time obtained from the CMOS to be UTC time instead of
126 * local time.
127 *
128 * This is ugly, but preferable to the alternatives. Otherwise we
129 * would either need to write a program to do it in /etc/rc (and risk
130 * confusion if the program gets run more than once; it would also be
131 * hard to make the program warp the clock precisely n hours) or
132 * compile in the timezone information into the kernel. Bad, bad....
133 *
134 * - TYT, 1992-01-01
135 *
136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
137 * as real UNIX machines always do it. This avoids all headaches about
138 * daylight saving times and warping kernel clocks.
139 */
140 static inline void warp_clock(void)
141 {
142 if (sys_tz.tz_minuteswest != 0) {
143 struct timespec adjust;
144
145 persistent_clock_is_local = 1;
146 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 adjust.tv_nsec = 0;
148 timekeeping_inject_offset(&adjust);
149 }
150 }
151
152 /*
153 * In case for some reason the CMOS clock has not already been running
154 * in UTC, but in some local time: The first time we set the timezone,
155 * we will warp the clock so that it is ticking UTC time instead of
156 * local time. Presumably, if someone is setting the timezone then we
157 * are running in an environment where the programs understand about
158 * timezones. This should be done at boot time in the /etc/rc script,
159 * as soon as possible, so that the clock can be set right. Otherwise,
160 * various programs will get confused when the clock gets warped.
161 */
162
163 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
164 {
165 static int firsttime = 1;
166 int error = 0;
167
168 if (tv && !timespec_valid(tv))
169 return -EINVAL;
170
171 error = security_settime(tv, tz);
172 if (error)
173 return error;
174
175 if (tz) {
176 sys_tz = *tz;
177 update_vsyscall_tz();
178 if (firsttime) {
179 firsttime = 0;
180 if (!tv)
181 warp_clock();
182 }
183 }
184 if (tv)
185 return do_settimeofday(tv);
186 return 0;
187 }
188
189 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
190 struct timezone __user *, tz)
191 {
192 struct timeval user_tv;
193 struct timespec new_ts;
194 struct timezone new_tz;
195
196 if (tv) {
197 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
198 return -EFAULT;
199
200 if (!timeval_valid(&user_tv))
201 return -EINVAL;
202
203 new_ts.tv_sec = user_tv.tv_sec;
204 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
205 }
206 if (tz) {
207 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
208 return -EFAULT;
209 }
210
211 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
212 }
213
214 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
215 {
216 struct timex txc; /* Local copy of parameter */
217 int ret;
218
219 /* Copy the user data space into the kernel copy
220 * structure. But bear in mind that the structures
221 * may change
222 */
223 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
224 return -EFAULT;
225 ret = do_adjtimex(&txc);
226 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
227 }
228
229 /**
230 * current_fs_time - Return FS time
231 * @sb: Superblock.
232 *
233 * Return the current time truncated to the time granularity supported by
234 * the fs.
235 */
236 struct timespec current_fs_time(struct super_block *sb)
237 {
238 struct timespec now = current_kernel_time();
239 return timespec_trunc(now, sb->s_time_gran);
240 }
241 EXPORT_SYMBOL(current_fs_time);
242
243 /*
244 * Convert jiffies to milliseconds and back.
245 *
246 * Avoid unnecessary multiplications/divisions in the
247 * two most common HZ cases:
248 */
249 unsigned int jiffies_to_msecs(const unsigned long j)
250 {
251 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
252 return (MSEC_PER_SEC / HZ) * j;
253 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
254 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
255 #else
256 # if BITS_PER_LONG == 32
257 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
258 # else
259 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
260 # endif
261 #endif
262 }
263 EXPORT_SYMBOL(jiffies_to_msecs);
264
265 unsigned int jiffies_to_usecs(const unsigned long j)
266 {
267 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
268 return (USEC_PER_SEC / HZ) * j;
269 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
270 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
271 #else
272 # if BITS_PER_LONG == 32
273 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
274 # else
275 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
276 # endif
277 #endif
278 }
279 EXPORT_SYMBOL(jiffies_to_usecs);
280
281 /**
282 * timespec_trunc - Truncate timespec to a granularity
283 * @t: Timespec
284 * @gran: Granularity in ns.
285 *
286 * Truncate a timespec to a granularity. gran must be smaller than a second.
287 * Always rounds down.
288 *
289 * This function should be only used for timestamps returned by
290 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
291 * it doesn't handle the better resolution of the latter.
292 */
293 struct timespec timespec_trunc(struct timespec t, unsigned gran)
294 {
295 /*
296 * Division is pretty slow so avoid it for common cases.
297 * Currently current_kernel_time() never returns better than
298 * jiffies resolution. Exploit that.
299 */
300 if (gran <= jiffies_to_usecs(1) * 1000) {
301 /* nothing */
302 } else if (gran == 1000000000) {
303 t.tv_nsec = 0;
304 } else {
305 t.tv_nsec -= t.tv_nsec % gran;
306 }
307 return t;
308 }
309 EXPORT_SYMBOL(timespec_trunc);
310
311 /*
312 * mktime64 - Converts date to seconds.
313 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
314 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
315 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
316 *
317 * [For the Julian calendar (which was used in Russia before 1917,
318 * Britain & colonies before 1752, anywhere else before 1582,
319 * and is still in use by some communities) leave out the
320 * -year/100+year/400 terms, and add 10.]
321 *
322 * This algorithm was first published by Gauss (I think).
323 */
324 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
325 const unsigned int day, const unsigned int hour,
326 const unsigned int min, const unsigned int sec)
327 {
328 unsigned int mon = mon0, year = year0;
329
330 /* 1..12 -> 11,12,1..10 */
331 if (0 >= (int) (mon -= 2)) {
332 mon += 12; /* Puts Feb last since it has leap day */
333 year -= 1;
334 }
335
336 return ((((time64_t)
337 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
338 year*365 - 719499
339 )*24 + hour /* now have hours */
340 )*60 + min /* now have minutes */
341 )*60 + sec; /* finally seconds */
342 }
343 EXPORT_SYMBOL(mktime64);
344
345 /**
346 * set_normalized_timespec - set timespec sec and nsec parts and normalize
347 *
348 * @ts: pointer to timespec variable to be set
349 * @sec: seconds to set
350 * @nsec: nanoseconds to set
351 *
352 * Set seconds and nanoseconds field of a timespec variable and
353 * normalize to the timespec storage format
354 *
355 * Note: The tv_nsec part is always in the range of
356 * 0 <= tv_nsec < NSEC_PER_SEC
357 * For negative values only the tv_sec field is negative !
358 */
359 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
360 {
361 while (nsec >= NSEC_PER_SEC) {
362 /*
363 * The following asm() prevents the compiler from
364 * optimising this loop into a modulo operation. See
365 * also __iter_div_u64_rem() in include/linux/time.h
366 */
367 asm("" : "+rm"(nsec));
368 nsec -= NSEC_PER_SEC;
369 ++sec;
370 }
371 while (nsec < 0) {
372 asm("" : "+rm"(nsec));
373 nsec += NSEC_PER_SEC;
374 --sec;
375 }
376 ts->tv_sec = sec;
377 ts->tv_nsec = nsec;
378 }
379 EXPORT_SYMBOL(set_normalized_timespec);
380
381 /**
382 * ns_to_timespec - Convert nanoseconds to timespec
383 * @nsec: the nanoseconds value to be converted
384 *
385 * Returns the timespec representation of the nsec parameter.
386 */
387 struct timespec ns_to_timespec(const s64 nsec)
388 {
389 struct timespec ts;
390 s32 rem;
391
392 if (!nsec)
393 return (struct timespec) {0, 0};
394
395 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
396 if (unlikely(rem < 0)) {
397 ts.tv_sec--;
398 rem += NSEC_PER_SEC;
399 }
400 ts.tv_nsec = rem;
401
402 return ts;
403 }
404 EXPORT_SYMBOL(ns_to_timespec);
405
406 /**
407 * ns_to_timeval - Convert nanoseconds to timeval
408 * @nsec: the nanoseconds value to be converted
409 *
410 * Returns the timeval representation of the nsec parameter.
411 */
412 struct timeval ns_to_timeval(const s64 nsec)
413 {
414 struct timespec ts = ns_to_timespec(nsec);
415 struct timeval tv;
416
417 tv.tv_sec = ts.tv_sec;
418 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
419
420 return tv;
421 }
422 EXPORT_SYMBOL(ns_to_timeval);
423
424 #if BITS_PER_LONG == 32
425 /**
426 * set_normalized_timespec - set timespec sec and nsec parts and normalize
427 *
428 * @ts: pointer to timespec variable to be set
429 * @sec: seconds to set
430 * @nsec: nanoseconds to set
431 *
432 * Set seconds and nanoseconds field of a timespec variable and
433 * normalize to the timespec storage format
434 *
435 * Note: The tv_nsec part is always in the range of
436 * 0 <= tv_nsec < NSEC_PER_SEC
437 * For negative values only the tv_sec field is negative !
438 */
439 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
440 {
441 while (nsec >= NSEC_PER_SEC) {
442 /*
443 * The following asm() prevents the compiler from
444 * optimising this loop into a modulo operation. See
445 * also __iter_div_u64_rem() in include/linux/time.h
446 */
447 asm("" : "+rm"(nsec));
448 nsec -= NSEC_PER_SEC;
449 ++sec;
450 }
451 while (nsec < 0) {
452 asm("" : "+rm"(nsec));
453 nsec += NSEC_PER_SEC;
454 --sec;
455 }
456 ts->tv_sec = sec;
457 ts->tv_nsec = nsec;
458 }
459 EXPORT_SYMBOL(set_normalized_timespec64);
460
461 /**
462 * ns_to_timespec64 - Convert nanoseconds to timespec64
463 * @nsec: the nanoseconds value to be converted
464 *
465 * Returns the timespec64 representation of the nsec parameter.
466 */
467 struct timespec64 ns_to_timespec64(const s64 nsec)
468 {
469 struct timespec64 ts;
470 s32 rem;
471
472 if (!nsec)
473 return (struct timespec64) {0, 0};
474
475 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
476 if (unlikely(rem < 0)) {
477 ts.tv_sec--;
478 rem += NSEC_PER_SEC;
479 }
480 ts.tv_nsec = rem;
481
482 return ts;
483 }
484 EXPORT_SYMBOL(ns_to_timespec64);
485 #endif
486 /**
487 * msecs_to_jiffies: - convert milliseconds to jiffies
488 * @m: time in milliseconds
489 *
490 * conversion is done as follows:
491 *
492 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
493 *
494 * - 'too large' values [that would result in larger than
495 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
496 *
497 * - all other values are converted to jiffies by either multiplying
498 * the input value by a factor or dividing it with a factor and
499 * handling any 32-bit overflows.
500 * for the details see __msecs_to_jiffies()
501 *
502 * msecs_to_jiffies() checks for the passed in value being a constant
503 * via __builtin_constant_p() allowing gcc to eliminate most of the
504 * code, __msecs_to_jiffies() is called if the value passed does not
505 * allow constant folding and the actual conversion must be done at
506 * runtime.
507 * the _msecs_to_jiffies helpers are the HZ dependent conversion
508 * routines found in include/linux/jiffies.h
509 */
510 unsigned long __msecs_to_jiffies(const unsigned int m)
511 {
512 /*
513 * Negative value, means infinite timeout:
514 */
515 if ((int)m < 0)
516 return MAX_JIFFY_OFFSET;
517 return _msecs_to_jiffies(m);
518 }
519 EXPORT_SYMBOL(__msecs_to_jiffies);
520
521 unsigned long usecs_to_jiffies(const unsigned int u)
522 {
523 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
524 return MAX_JIFFY_OFFSET;
525 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
526 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
527 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
528 return u * (HZ / USEC_PER_SEC);
529 #else
530 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
531 >> USEC_TO_HZ_SHR32;
532 #endif
533 }
534 EXPORT_SYMBOL(usecs_to_jiffies);
535
536 /*
537 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
538 * that a remainder subtract here would not do the right thing as the
539 * resolution values don't fall on second boundries. I.e. the line:
540 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
541 * Note that due to the small error in the multiplier here, this
542 * rounding is incorrect for sufficiently large values of tv_nsec, but
543 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
544 * OK.
545 *
546 * Rather, we just shift the bits off the right.
547 *
548 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
549 * value to a scaled second value.
550 */
551 static unsigned long
552 __timespec_to_jiffies(unsigned long sec, long nsec)
553 {
554 nsec = nsec + TICK_NSEC - 1;
555
556 if (sec >= MAX_SEC_IN_JIFFIES){
557 sec = MAX_SEC_IN_JIFFIES;
558 nsec = 0;
559 }
560 return (((u64)sec * SEC_CONVERSION) +
561 (((u64)nsec * NSEC_CONVERSION) >>
562 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
563
564 }
565
566 unsigned long
567 timespec_to_jiffies(const struct timespec *value)
568 {
569 return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
570 }
571
572 EXPORT_SYMBOL(timespec_to_jiffies);
573
574 void
575 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
576 {
577 /*
578 * Convert jiffies to nanoseconds and separate with
579 * one divide.
580 */
581 u32 rem;
582 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
583 NSEC_PER_SEC, &rem);
584 value->tv_nsec = rem;
585 }
586 EXPORT_SYMBOL(jiffies_to_timespec);
587
588 /*
589 * We could use a similar algorithm to timespec_to_jiffies (with a
590 * different multiplier for usec instead of nsec). But this has a
591 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
592 * usec value, since it's not necessarily integral.
593 *
594 * We could instead round in the intermediate scaled representation
595 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
596 * perilous: the scaling introduces a small positive error, which
597 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
598 * units to the intermediate before shifting) leads to accidental
599 * overflow and overestimates.
600 *
601 * At the cost of one additional multiplication by a constant, just
602 * use the timespec implementation.
603 */
604 unsigned long
605 timeval_to_jiffies(const struct timeval *value)
606 {
607 return __timespec_to_jiffies(value->tv_sec,
608 value->tv_usec * NSEC_PER_USEC);
609 }
610 EXPORT_SYMBOL(timeval_to_jiffies);
611
612 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
613 {
614 /*
615 * Convert jiffies to nanoseconds and separate with
616 * one divide.
617 */
618 u32 rem;
619
620 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
621 NSEC_PER_SEC, &rem);
622 value->tv_usec = rem / NSEC_PER_USEC;
623 }
624 EXPORT_SYMBOL(jiffies_to_timeval);
625
626 /*
627 * Convert jiffies/jiffies_64 to clock_t and back.
628 */
629 clock_t jiffies_to_clock_t(unsigned long x)
630 {
631 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
632 # if HZ < USER_HZ
633 return x * (USER_HZ / HZ);
634 # else
635 return x / (HZ / USER_HZ);
636 # endif
637 #else
638 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
639 #endif
640 }
641 EXPORT_SYMBOL(jiffies_to_clock_t);
642
643 unsigned long clock_t_to_jiffies(unsigned long x)
644 {
645 #if (HZ % USER_HZ)==0
646 if (x >= ~0UL / (HZ / USER_HZ))
647 return ~0UL;
648 return x * (HZ / USER_HZ);
649 #else
650 /* Don't worry about loss of precision here .. */
651 if (x >= ~0UL / HZ * USER_HZ)
652 return ~0UL;
653
654 /* .. but do try to contain it here */
655 return div_u64((u64)x * HZ, USER_HZ);
656 #endif
657 }
658 EXPORT_SYMBOL(clock_t_to_jiffies);
659
660 u64 jiffies_64_to_clock_t(u64 x)
661 {
662 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
663 # if HZ < USER_HZ
664 x = div_u64(x * USER_HZ, HZ);
665 # elif HZ > USER_HZ
666 x = div_u64(x, HZ / USER_HZ);
667 # else
668 /* Nothing to do */
669 # endif
670 #else
671 /*
672 * There are better ways that don't overflow early,
673 * but even this doesn't overflow in hundreds of years
674 * in 64 bits, so..
675 */
676 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
677 #endif
678 return x;
679 }
680 EXPORT_SYMBOL(jiffies_64_to_clock_t);
681
682 u64 nsec_to_clock_t(u64 x)
683 {
684 #if (NSEC_PER_SEC % USER_HZ) == 0
685 return div_u64(x, NSEC_PER_SEC / USER_HZ);
686 #elif (USER_HZ % 512) == 0
687 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
688 #else
689 /*
690 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
691 * overflow after 64.99 years.
692 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
693 */
694 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
695 #endif
696 }
697
698 /**
699 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
700 *
701 * @n: nsecs in u64
702 *
703 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
704 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
705 * for scheduler, not for use in device drivers to calculate timeout value.
706 *
707 * note:
708 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
709 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
710 */
711 u64 nsecs_to_jiffies64(u64 n)
712 {
713 #if (NSEC_PER_SEC % HZ) == 0
714 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
715 return div_u64(n, NSEC_PER_SEC / HZ);
716 #elif (HZ % 512) == 0
717 /* overflow after 292 years if HZ = 1024 */
718 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
719 #else
720 /*
721 * Generic case - optimized for cases where HZ is a multiple of 3.
722 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
723 */
724 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
725 #endif
726 }
727 EXPORT_SYMBOL(nsecs_to_jiffies64);
728
729 /**
730 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
731 *
732 * @n: nsecs in u64
733 *
734 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
735 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
736 * for scheduler, not for use in device drivers to calculate timeout value.
737 *
738 * note:
739 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
740 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
741 */
742 unsigned long nsecs_to_jiffies(u64 n)
743 {
744 return (unsigned long)nsecs_to_jiffies64(n);
745 }
746 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
747
748 /*
749 * Add two timespec values and do a safety check for overflow.
750 * It's assumed that both values are valid (>= 0)
751 */
752 struct timespec timespec_add_safe(const struct timespec lhs,
753 const struct timespec rhs)
754 {
755 struct timespec res;
756
757 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
758 lhs.tv_nsec + rhs.tv_nsec);
759
760 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
761 res.tv_sec = TIME_T_MAX;
762
763 return res;
764 }