]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/time/time.c
time: Introduce timespec64_to_jiffies()/jiffies_to_timespec64()
[mirror_ubuntu-hirsute-kernel.git] / kernel / time / time.c
1 /*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10 /*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43
44 #include <generated/timeconst.h>
45 #include "timekeeping.h"
46
47 /*
48 * The timezone where the local system is located. Used as a default by some
49 * programs who obtain this value by using gettimeofday.
50 */
51 struct timezone sys_tz;
52
53 EXPORT_SYMBOL(sys_tz);
54
55 #ifdef __ARCH_WANT_SYS_TIME
56
57 /*
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday(). Is this for backwards compatibility? If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
62 */
63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
64 {
65 time_t i = get_seconds();
66
67 if (tloc) {
68 if (put_user(i,tloc))
69 return -EFAULT;
70 }
71 force_successful_syscall_return();
72 return i;
73 }
74
75 /*
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday(). Is this for backwards compatibility? If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
80 */
81
82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83 {
84 struct timespec tv;
85 int err;
86
87 if (get_user(tv.tv_sec, tptr))
88 return -EFAULT;
89
90 tv.tv_nsec = 0;
91
92 err = security_settime(&tv, NULL);
93 if (err)
94 return err;
95
96 do_settimeofday(&tv);
97 return 0;
98 }
99
100 #endif /* __ARCH_WANT_SYS_TIME */
101
102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 struct timezone __user *, tz)
104 {
105 if (likely(tv != NULL)) {
106 struct timeval ktv;
107 do_gettimeofday(&ktv);
108 if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 return -EFAULT;
110 }
111 if (unlikely(tz != NULL)) {
112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 return -EFAULT;
114 }
115 return 0;
116 }
117
118 /*
119 * Indicates if there is an offset between the system clock and the hardware
120 * clock/persistent clock/rtc.
121 */
122 int persistent_clock_is_local;
123
124 /*
125 * Adjust the time obtained from the CMOS to be UTC time instead of
126 * local time.
127 *
128 * This is ugly, but preferable to the alternatives. Otherwise we
129 * would either need to write a program to do it in /etc/rc (and risk
130 * confusion if the program gets run more than once; it would also be
131 * hard to make the program warp the clock precisely n hours) or
132 * compile in the timezone information into the kernel. Bad, bad....
133 *
134 * - TYT, 1992-01-01
135 *
136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
137 * as real UNIX machines always do it. This avoids all headaches about
138 * daylight saving times and warping kernel clocks.
139 */
140 static inline void warp_clock(void)
141 {
142 if (sys_tz.tz_minuteswest != 0) {
143 struct timespec adjust;
144
145 persistent_clock_is_local = 1;
146 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 adjust.tv_nsec = 0;
148 timekeeping_inject_offset(&adjust);
149 }
150 }
151
152 /*
153 * In case for some reason the CMOS clock has not already been running
154 * in UTC, but in some local time: The first time we set the timezone,
155 * we will warp the clock so that it is ticking UTC time instead of
156 * local time. Presumably, if someone is setting the timezone then we
157 * are running in an environment where the programs understand about
158 * timezones. This should be done at boot time in the /etc/rc script,
159 * as soon as possible, so that the clock can be set right. Otherwise,
160 * various programs will get confused when the clock gets warped.
161 */
162
163 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
164 {
165 static int firsttime = 1;
166 int error = 0;
167
168 if (tv && !timespec_valid(tv))
169 return -EINVAL;
170
171 error = security_settime(tv, tz);
172 if (error)
173 return error;
174
175 if (tz) {
176 /* Verify we're witin the +-15 hrs range */
177 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
178 return -EINVAL;
179
180 sys_tz = *tz;
181 update_vsyscall_tz();
182 if (firsttime) {
183 firsttime = 0;
184 if (!tv)
185 warp_clock();
186 }
187 }
188 if (tv)
189 return do_settimeofday(tv);
190 return 0;
191 }
192
193 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
194 struct timezone __user *, tz)
195 {
196 struct timeval user_tv;
197 struct timespec new_ts;
198 struct timezone new_tz;
199
200 if (tv) {
201 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
202 return -EFAULT;
203
204 if (!timeval_valid(&user_tv))
205 return -EINVAL;
206
207 new_ts.tv_sec = user_tv.tv_sec;
208 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
209 }
210 if (tz) {
211 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
212 return -EFAULT;
213 }
214
215 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
216 }
217
218 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
219 {
220 struct timex txc; /* Local copy of parameter */
221 int ret;
222
223 /* Copy the user data space into the kernel copy
224 * structure. But bear in mind that the structures
225 * may change
226 */
227 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
228 return -EFAULT;
229 ret = do_adjtimex(&txc);
230 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
231 }
232
233 /**
234 * current_fs_time - Return FS time
235 * @sb: Superblock.
236 *
237 * Return the current time truncated to the time granularity supported by
238 * the fs.
239 */
240 struct timespec current_fs_time(struct super_block *sb)
241 {
242 struct timespec now = current_kernel_time();
243 return timespec_trunc(now, sb->s_time_gran);
244 }
245 EXPORT_SYMBOL(current_fs_time);
246
247 /*
248 * Convert jiffies to milliseconds and back.
249 *
250 * Avoid unnecessary multiplications/divisions in the
251 * two most common HZ cases:
252 */
253 unsigned int jiffies_to_msecs(const unsigned long j)
254 {
255 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
256 return (MSEC_PER_SEC / HZ) * j;
257 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
258 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
259 #else
260 # if BITS_PER_LONG == 32
261 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
262 # else
263 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
264 # endif
265 #endif
266 }
267 EXPORT_SYMBOL(jiffies_to_msecs);
268
269 unsigned int jiffies_to_usecs(const unsigned long j)
270 {
271 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
272 return (USEC_PER_SEC / HZ) * j;
273 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
274 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
275 #else
276 # if BITS_PER_LONG == 32
277 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
278 # else
279 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
280 # endif
281 #endif
282 }
283 EXPORT_SYMBOL(jiffies_to_usecs);
284
285 /**
286 * timespec_trunc - Truncate timespec to a granularity
287 * @t: Timespec
288 * @gran: Granularity in ns.
289 *
290 * Truncate a timespec to a granularity. Always rounds down. gran must
291 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
292 */
293 struct timespec timespec_trunc(struct timespec t, unsigned gran)
294 {
295 /* Avoid division in the common cases 1 ns and 1 s. */
296 if (gran == 1) {
297 /* nothing */
298 } else if (gran == NSEC_PER_SEC) {
299 t.tv_nsec = 0;
300 } else if (gran > 1 && gran < NSEC_PER_SEC) {
301 t.tv_nsec -= t.tv_nsec % gran;
302 } else {
303 WARN(1, "illegal file time granularity: %u", gran);
304 }
305 return t;
306 }
307 EXPORT_SYMBOL(timespec_trunc);
308
309 /*
310 * mktime64 - Converts date to seconds.
311 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
312 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
313 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
314 *
315 * [For the Julian calendar (which was used in Russia before 1917,
316 * Britain & colonies before 1752, anywhere else before 1582,
317 * and is still in use by some communities) leave out the
318 * -year/100+year/400 terms, and add 10.]
319 *
320 * This algorithm was first published by Gauss (I think).
321 */
322 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
323 const unsigned int day, const unsigned int hour,
324 const unsigned int min, const unsigned int sec)
325 {
326 unsigned int mon = mon0, year = year0;
327
328 /* 1..12 -> 11,12,1..10 */
329 if (0 >= (int) (mon -= 2)) {
330 mon += 12; /* Puts Feb last since it has leap day */
331 year -= 1;
332 }
333
334 return ((((time64_t)
335 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
336 year*365 - 719499
337 )*24 + hour /* now have hours */
338 )*60 + min /* now have minutes */
339 )*60 + sec; /* finally seconds */
340 }
341 EXPORT_SYMBOL(mktime64);
342
343 /**
344 * set_normalized_timespec - set timespec sec and nsec parts and normalize
345 *
346 * @ts: pointer to timespec variable to be set
347 * @sec: seconds to set
348 * @nsec: nanoseconds to set
349 *
350 * Set seconds and nanoseconds field of a timespec variable and
351 * normalize to the timespec storage format
352 *
353 * Note: The tv_nsec part is always in the range of
354 * 0 <= tv_nsec < NSEC_PER_SEC
355 * For negative values only the tv_sec field is negative !
356 */
357 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
358 {
359 while (nsec >= NSEC_PER_SEC) {
360 /*
361 * The following asm() prevents the compiler from
362 * optimising this loop into a modulo operation. See
363 * also __iter_div_u64_rem() in include/linux/time.h
364 */
365 asm("" : "+rm"(nsec));
366 nsec -= NSEC_PER_SEC;
367 ++sec;
368 }
369 while (nsec < 0) {
370 asm("" : "+rm"(nsec));
371 nsec += NSEC_PER_SEC;
372 --sec;
373 }
374 ts->tv_sec = sec;
375 ts->tv_nsec = nsec;
376 }
377 EXPORT_SYMBOL(set_normalized_timespec);
378
379 /**
380 * ns_to_timespec - Convert nanoseconds to timespec
381 * @nsec: the nanoseconds value to be converted
382 *
383 * Returns the timespec representation of the nsec parameter.
384 */
385 struct timespec ns_to_timespec(const s64 nsec)
386 {
387 struct timespec ts;
388 s32 rem;
389
390 if (!nsec)
391 return (struct timespec) {0, 0};
392
393 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
394 if (unlikely(rem < 0)) {
395 ts.tv_sec--;
396 rem += NSEC_PER_SEC;
397 }
398 ts.tv_nsec = rem;
399
400 return ts;
401 }
402 EXPORT_SYMBOL(ns_to_timespec);
403
404 /**
405 * ns_to_timeval - Convert nanoseconds to timeval
406 * @nsec: the nanoseconds value to be converted
407 *
408 * Returns the timeval representation of the nsec parameter.
409 */
410 struct timeval ns_to_timeval(const s64 nsec)
411 {
412 struct timespec ts = ns_to_timespec(nsec);
413 struct timeval tv;
414
415 tv.tv_sec = ts.tv_sec;
416 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
417
418 return tv;
419 }
420 EXPORT_SYMBOL(ns_to_timeval);
421
422 #if BITS_PER_LONG == 32
423 /**
424 * set_normalized_timespec - set timespec sec and nsec parts and normalize
425 *
426 * @ts: pointer to timespec variable to be set
427 * @sec: seconds to set
428 * @nsec: nanoseconds to set
429 *
430 * Set seconds and nanoseconds field of a timespec variable and
431 * normalize to the timespec storage format
432 *
433 * Note: The tv_nsec part is always in the range of
434 * 0 <= tv_nsec < NSEC_PER_SEC
435 * For negative values only the tv_sec field is negative !
436 */
437 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
438 {
439 while (nsec >= NSEC_PER_SEC) {
440 /*
441 * The following asm() prevents the compiler from
442 * optimising this loop into a modulo operation. See
443 * also __iter_div_u64_rem() in include/linux/time.h
444 */
445 asm("" : "+rm"(nsec));
446 nsec -= NSEC_PER_SEC;
447 ++sec;
448 }
449 while (nsec < 0) {
450 asm("" : "+rm"(nsec));
451 nsec += NSEC_PER_SEC;
452 --sec;
453 }
454 ts->tv_sec = sec;
455 ts->tv_nsec = nsec;
456 }
457 EXPORT_SYMBOL(set_normalized_timespec64);
458
459 /**
460 * ns_to_timespec64 - Convert nanoseconds to timespec64
461 * @nsec: the nanoseconds value to be converted
462 *
463 * Returns the timespec64 representation of the nsec parameter.
464 */
465 struct timespec64 ns_to_timespec64(const s64 nsec)
466 {
467 struct timespec64 ts;
468 s32 rem;
469
470 if (!nsec)
471 return (struct timespec64) {0, 0};
472
473 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
474 if (unlikely(rem < 0)) {
475 ts.tv_sec--;
476 rem += NSEC_PER_SEC;
477 }
478 ts.tv_nsec = rem;
479
480 return ts;
481 }
482 EXPORT_SYMBOL(ns_to_timespec64);
483 #endif
484 /**
485 * msecs_to_jiffies: - convert milliseconds to jiffies
486 * @m: time in milliseconds
487 *
488 * conversion is done as follows:
489 *
490 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
491 *
492 * - 'too large' values [that would result in larger than
493 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
494 *
495 * - all other values are converted to jiffies by either multiplying
496 * the input value by a factor or dividing it with a factor and
497 * handling any 32-bit overflows.
498 * for the details see __msecs_to_jiffies()
499 *
500 * msecs_to_jiffies() checks for the passed in value being a constant
501 * via __builtin_constant_p() allowing gcc to eliminate most of the
502 * code, __msecs_to_jiffies() is called if the value passed does not
503 * allow constant folding and the actual conversion must be done at
504 * runtime.
505 * the _msecs_to_jiffies helpers are the HZ dependent conversion
506 * routines found in include/linux/jiffies.h
507 */
508 unsigned long __msecs_to_jiffies(const unsigned int m)
509 {
510 /*
511 * Negative value, means infinite timeout:
512 */
513 if ((int)m < 0)
514 return MAX_JIFFY_OFFSET;
515 return _msecs_to_jiffies(m);
516 }
517 EXPORT_SYMBOL(__msecs_to_jiffies);
518
519 unsigned long __usecs_to_jiffies(const unsigned int u)
520 {
521 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
522 return MAX_JIFFY_OFFSET;
523 return _usecs_to_jiffies(u);
524 }
525 EXPORT_SYMBOL(__usecs_to_jiffies);
526
527 /*
528 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
529 * that a remainder subtract here would not do the right thing as the
530 * resolution values don't fall on second boundries. I.e. the line:
531 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
532 * Note that due to the small error in the multiplier here, this
533 * rounding is incorrect for sufficiently large values of tv_nsec, but
534 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
535 * OK.
536 *
537 * Rather, we just shift the bits off the right.
538 *
539 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
540 * value to a scaled second value.
541 */
542 static unsigned long
543 __timespec64_to_jiffies(u64 sec, long nsec)
544 {
545 nsec = nsec + TICK_NSEC - 1;
546
547 if (sec >= MAX_SEC_IN_JIFFIES){
548 sec = MAX_SEC_IN_JIFFIES;
549 nsec = 0;
550 }
551 return ((sec * SEC_CONVERSION) +
552 (((u64)nsec * NSEC_CONVERSION) >>
553 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
554
555 }
556
557 static unsigned long
558 __timespec_to_jiffies(unsigned long sec, long nsec)
559 {
560 return __timespec64_to_jiffies((u64)sec, nsec);
561 }
562
563 unsigned long
564 timespec64_to_jiffies(const struct timespec64 *value)
565 {
566 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
567 }
568 EXPORT_SYMBOL(timespec64_to_jiffies);
569
570 void
571 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
572 {
573 /*
574 * Convert jiffies to nanoseconds and separate with
575 * one divide.
576 */
577 u32 rem;
578 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
579 NSEC_PER_SEC, &rem);
580 value->tv_nsec = rem;
581 }
582 EXPORT_SYMBOL(jiffies_to_timespec64);
583
584 /*
585 * We could use a similar algorithm to timespec_to_jiffies (with a
586 * different multiplier for usec instead of nsec). But this has a
587 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
588 * usec value, since it's not necessarily integral.
589 *
590 * We could instead round in the intermediate scaled representation
591 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
592 * perilous: the scaling introduces a small positive error, which
593 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
594 * units to the intermediate before shifting) leads to accidental
595 * overflow and overestimates.
596 *
597 * At the cost of one additional multiplication by a constant, just
598 * use the timespec implementation.
599 */
600 unsigned long
601 timeval_to_jiffies(const struct timeval *value)
602 {
603 return __timespec_to_jiffies(value->tv_sec,
604 value->tv_usec * NSEC_PER_USEC);
605 }
606 EXPORT_SYMBOL(timeval_to_jiffies);
607
608 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
609 {
610 /*
611 * Convert jiffies to nanoseconds and separate with
612 * one divide.
613 */
614 u32 rem;
615
616 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
617 NSEC_PER_SEC, &rem);
618 value->tv_usec = rem / NSEC_PER_USEC;
619 }
620 EXPORT_SYMBOL(jiffies_to_timeval);
621
622 /*
623 * Convert jiffies/jiffies_64 to clock_t and back.
624 */
625 clock_t jiffies_to_clock_t(unsigned long x)
626 {
627 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
628 # if HZ < USER_HZ
629 return x * (USER_HZ / HZ);
630 # else
631 return x / (HZ / USER_HZ);
632 # endif
633 #else
634 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
635 #endif
636 }
637 EXPORT_SYMBOL(jiffies_to_clock_t);
638
639 unsigned long clock_t_to_jiffies(unsigned long x)
640 {
641 #if (HZ % USER_HZ)==0
642 if (x >= ~0UL / (HZ / USER_HZ))
643 return ~0UL;
644 return x * (HZ / USER_HZ);
645 #else
646 /* Don't worry about loss of precision here .. */
647 if (x >= ~0UL / HZ * USER_HZ)
648 return ~0UL;
649
650 /* .. but do try to contain it here */
651 return div_u64((u64)x * HZ, USER_HZ);
652 #endif
653 }
654 EXPORT_SYMBOL(clock_t_to_jiffies);
655
656 u64 jiffies_64_to_clock_t(u64 x)
657 {
658 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
659 # if HZ < USER_HZ
660 x = div_u64(x * USER_HZ, HZ);
661 # elif HZ > USER_HZ
662 x = div_u64(x, HZ / USER_HZ);
663 # else
664 /* Nothing to do */
665 # endif
666 #else
667 /*
668 * There are better ways that don't overflow early,
669 * but even this doesn't overflow in hundreds of years
670 * in 64 bits, so..
671 */
672 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
673 #endif
674 return x;
675 }
676 EXPORT_SYMBOL(jiffies_64_to_clock_t);
677
678 u64 nsec_to_clock_t(u64 x)
679 {
680 #if (NSEC_PER_SEC % USER_HZ) == 0
681 return div_u64(x, NSEC_PER_SEC / USER_HZ);
682 #elif (USER_HZ % 512) == 0
683 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
684 #else
685 /*
686 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
687 * overflow after 64.99 years.
688 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
689 */
690 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
691 #endif
692 }
693
694 /**
695 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
696 *
697 * @n: nsecs in u64
698 *
699 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
700 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
701 * for scheduler, not for use in device drivers to calculate timeout value.
702 *
703 * note:
704 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
705 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
706 */
707 u64 nsecs_to_jiffies64(u64 n)
708 {
709 #if (NSEC_PER_SEC % HZ) == 0
710 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
711 return div_u64(n, NSEC_PER_SEC / HZ);
712 #elif (HZ % 512) == 0
713 /* overflow after 292 years if HZ = 1024 */
714 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
715 #else
716 /*
717 * Generic case - optimized for cases where HZ is a multiple of 3.
718 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
719 */
720 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
721 #endif
722 }
723 EXPORT_SYMBOL(nsecs_to_jiffies64);
724
725 /**
726 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
727 *
728 * @n: nsecs in u64
729 *
730 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
731 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
732 * for scheduler, not for use in device drivers to calculate timeout value.
733 *
734 * note:
735 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
736 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
737 */
738 unsigned long nsecs_to_jiffies(u64 n)
739 {
740 return (unsigned long)nsecs_to_jiffies64(n);
741 }
742 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
743
744 /*
745 * Add two timespec values and do a safety check for overflow.
746 * It's assumed that both values are valid (>= 0)
747 */
748 struct timespec timespec_add_safe(const struct timespec lhs,
749 const struct timespec rhs)
750 {
751 struct timespec res;
752
753 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
754 lhs.tv_nsec + rhs.tv_nsec);
755
756 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
757 res.tv_sec = TIME_T_MAX;
758
759 return res;
760 }