]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/time/timekeeping.c
ASoC: sti: fix missing clk_disable_unprepare() on error in uni_player_start()
[mirror_ubuntu-zesty-kernel.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
34
35 /*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39 static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56 struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 tk->xtime_sec++;
72 }
73 }
74
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77 struct timespec64 ts;
78
79 ts.tv_sec = tk->xtime_sec;
80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 return ts;
82 }
83
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86 tk->xtime_sec = ts->tv_sec;
87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92 tk->xtime_sec += ts->tv_sec;
93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 tk_normalize_xtime(tk);
95 }
96
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99 struct timespec64 tmp;
100
101 /*
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
104 */
105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 -tk->wall_to_monotonic.tv_nsec);
107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108 tk->wall_to_monotonic = wtm;
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124
125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 const char *name = tk->tkr_mono.clock->name;
127
128 if (offset > max_cycles) {
129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 offset, name, max_cycles);
131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 } else {
133 if (offset > (max_cycles >> 1)) {
134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135 offset, name, max_cycles >> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 }
138 }
139
140 if (tk->underflow_seen) {
141 if (jiffies - tk->last_warning > WARNING_FREQ) {
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
145 tk->last_warning = jiffies;
146 }
147 tk->underflow_seen = 0;
148 }
149
150 if (tk->overflow_seen) {
151 if (jiffies - tk->last_warning > WARNING_FREQ) {
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
155 tk->last_warning = jiffies;
156 }
157 tk->overflow_seen = 0;
158 }
159 }
160
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163 struct timekeeper *tk = &tk_core.timekeeper;
164 cycle_t now, last, mask, max, delta;
165 unsigned int seq;
166
167 /*
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
173 */
174 do {
175 seq = read_seqcount_begin(&tk_core.seq);
176 now = tkr->read(tkr->clock);
177 last = tkr->cycle_last;
178 mask = tkr->mask;
179 max = tkr->clock->max_cycles;
180 } while (read_seqcount_retry(&tk_core.seq, seq));
181
182 delta = clocksource_delta(now, last, mask);
183
184 /*
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
187 */
188 if (unlikely((~delta & mask) < (mask >> 3))) {
189 tk->underflow_seen = 1;
190 delta = 0;
191 }
192
193 /* Cap delta value to the max_cycles values to avoid mult overflows */
194 if (unlikely(delta > max)) {
195 tk->overflow_seen = 1;
196 delta = tkr->clock->max_cycles;
197 }
198
199 return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203 {
204 }
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207 cycle_t cycle_now, delta;
208
209 /* read clocksource */
210 cycle_now = tkr->read(tkr->clock);
211
212 /* calculate the delta since the last update_wall_time */
213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215 return delta;
216 }
217 #endif
218
219 /**
220 * tk_setup_internals - Set up internals to use clocksource clock.
221 *
222 * @tk: The target timekeeper to setup.
223 * @clock: Pointer to clocksource.
224 *
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
227 *
228 * Unless you're the timekeeping code, you should not be using this!
229 */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232 cycle_t interval;
233 u64 tmp, ntpinterval;
234 struct clocksource *old_clock;
235
236 ++tk->cs_was_changed_seq;
237 old_clock = tk->tkr_mono.clock;
238 tk->tkr_mono.clock = clock;
239 tk->tkr_mono.read = clock->read;
240 tk->tkr_mono.mask = clock->mask;
241 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242
243 tk->tkr_raw.clock = clock;
244 tk->tkr_raw.read = clock->read;
245 tk->tkr_raw.mask = clock->mask;
246 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
247
248 /* Do the ns -> cycle conversion first, using original mult */
249 tmp = NTP_INTERVAL_LENGTH;
250 tmp <<= clock->shift;
251 ntpinterval = tmp;
252 tmp += clock->mult/2;
253 do_div(tmp, clock->mult);
254 if (tmp == 0)
255 tmp = 1;
256
257 interval = (cycle_t) tmp;
258 tk->cycle_interval = interval;
259
260 /* Go back from cycles -> shifted ns */
261 tk->xtime_interval = (u64) interval * clock->mult;
262 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
263 tk->raw_interval =
264 ((u64) interval * clock->mult) >> clock->shift;
265
266 /* if changing clocks, convert xtime_nsec shift units */
267 if (old_clock) {
268 int shift_change = clock->shift - old_clock->shift;
269 if (shift_change < 0)
270 tk->tkr_mono.xtime_nsec >>= -shift_change;
271 else
272 tk->tkr_mono.xtime_nsec <<= shift_change;
273 }
274 tk->tkr_raw.xtime_nsec = 0;
275
276 tk->tkr_mono.shift = clock->shift;
277 tk->tkr_raw.shift = clock->shift;
278
279 tk->ntp_error = 0;
280 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
281 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
282
283 /*
284 * The timekeeper keeps its own mult values for the currently
285 * active clocksource. These value will be adjusted via NTP
286 * to counteract clock drifting.
287 */
288 tk->tkr_mono.mult = clock->mult;
289 tk->tkr_raw.mult = clock->mult;
290 tk->ntp_err_mult = 0;
291 }
292
293 /* Timekeeper helper functions. */
294
295 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
296 static u32 default_arch_gettimeoffset(void) { return 0; }
297 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
298 #else
299 static inline u32 arch_gettimeoffset(void) { return 0; }
300 #endif
301
302 static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
303 cycle_t delta)
304 {
305 s64 nsec;
306
307 nsec = delta * tkr->mult + tkr->xtime_nsec;
308 nsec >>= tkr->shift;
309
310 /* If arch requires, add in get_arch_timeoffset() */
311 return nsec + arch_gettimeoffset();
312 }
313
314 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
315 {
316 cycle_t delta;
317
318 delta = timekeeping_get_delta(tkr);
319 return timekeeping_delta_to_ns(tkr, delta);
320 }
321
322 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
323 cycle_t cycles)
324 {
325 cycle_t delta;
326
327 /* calculate the delta since the last update_wall_time */
328 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
329 return timekeeping_delta_to_ns(tkr, delta);
330 }
331
332 /**
333 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
334 * @tkr: Timekeeping readout base from which we take the update
335 *
336 * We want to use this from any context including NMI and tracing /
337 * instrumenting the timekeeping code itself.
338 *
339 * Employ the latch technique; see @raw_write_seqcount_latch.
340 *
341 * So if a NMI hits the update of base[0] then it will use base[1]
342 * which is still consistent. In the worst case this can result is a
343 * slightly wrong timestamp (a few nanoseconds). See
344 * @ktime_get_mono_fast_ns.
345 */
346 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
347 {
348 struct tk_read_base *base = tkf->base;
349
350 /* Force readers off to base[1] */
351 raw_write_seqcount_latch(&tkf->seq);
352
353 /* Update base[0] */
354 memcpy(base, tkr, sizeof(*base));
355
356 /* Force readers back to base[0] */
357 raw_write_seqcount_latch(&tkf->seq);
358
359 /* Update base[1] */
360 memcpy(base + 1, base, sizeof(*base));
361 }
362
363 /**
364 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
365 *
366 * This timestamp is not guaranteed to be monotonic across an update.
367 * The timestamp is calculated by:
368 *
369 * now = base_mono + clock_delta * slope
370 *
371 * So if the update lowers the slope, readers who are forced to the
372 * not yet updated second array are still using the old steeper slope.
373 *
374 * tmono
375 * ^
376 * | o n
377 * | o n
378 * | u
379 * | o
380 * |o
381 * |12345678---> reader order
382 *
383 * o = old slope
384 * u = update
385 * n = new slope
386 *
387 * So reader 6 will observe time going backwards versus reader 5.
388 *
389 * While other CPUs are likely to be able observe that, the only way
390 * for a CPU local observation is when an NMI hits in the middle of
391 * the update. Timestamps taken from that NMI context might be ahead
392 * of the following timestamps. Callers need to be aware of that and
393 * deal with it.
394 */
395 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
396 {
397 struct tk_read_base *tkr;
398 unsigned int seq;
399 u64 now;
400
401 do {
402 seq = raw_read_seqcount_latch(&tkf->seq);
403 tkr = tkf->base + (seq & 0x01);
404 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
405 } while (read_seqcount_retry(&tkf->seq, seq));
406
407 return now;
408 }
409
410 u64 ktime_get_mono_fast_ns(void)
411 {
412 return __ktime_get_fast_ns(&tk_fast_mono);
413 }
414 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
415
416 u64 ktime_get_raw_fast_ns(void)
417 {
418 return __ktime_get_fast_ns(&tk_fast_raw);
419 }
420 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
421
422 /* Suspend-time cycles value for halted fast timekeeper. */
423 static cycle_t cycles_at_suspend;
424
425 static cycle_t dummy_clock_read(struct clocksource *cs)
426 {
427 return cycles_at_suspend;
428 }
429
430 /**
431 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
432 * @tk: Timekeeper to snapshot.
433 *
434 * It generally is unsafe to access the clocksource after timekeeping has been
435 * suspended, so take a snapshot of the readout base of @tk and use it as the
436 * fast timekeeper's readout base while suspended. It will return the same
437 * number of cycles every time until timekeeping is resumed at which time the
438 * proper readout base for the fast timekeeper will be restored automatically.
439 */
440 static void halt_fast_timekeeper(struct timekeeper *tk)
441 {
442 static struct tk_read_base tkr_dummy;
443 struct tk_read_base *tkr = &tk->tkr_mono;
444
445 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
446 cycles_at_suspend = tkr->read(tkr->clock);
447 tkr_dummy.read = dummy_clock_read;
448 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
449
450 tkr = &tk->tkr_raw;
451 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
452 tkr_dummy.read = dummy_clock_read;
453 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
454 }
455
456 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
457
458 static inline void update_vsyscall(struct timekeeper *tk)
459 {
460 struct timespec xt, wm;
461
462 xt = timespec64_to_timespec(tk_xtime(tk));
463 wm = timespec64_to_timespec(tk->wall_to_monotonic);
464 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
465 tk->tkr_mono.cycle_last);
466 }
467
468 static inline void old_vsyscall_fixup(struct timekeeper *tk)
469 {
470 s64 remainder;
471
472 /*
473 * Store only full nanoseconds into xtime_nsec after rounding
474 * it up and add the remainder to the error difference.
475 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
476 * by truncating the remainder in vsyscalls. However, it causes
477 * additional work to be done in timekeeping_adjust(). Once
478 * the vsyscall implementations are converted to use xtime_nsec
479 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
480 * users are removed, this can be killed.
481 */
482 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
483 if (remainder != 0) {
484 tk->tkr_mono.xtime_nsec -= remainder;
485 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
486 tk->ntp_error += remainder << tk->ntp_error_shift;
487 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
488 }
489 }
490 #else
491 #define old_vsyscall_fixup(tk)
492 #endif
493
494 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
495
496 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
497 {
498 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
499 }
500
501 /**
502 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
503 */
504 int pvclock_gtod_register_notifier(struct notifier_block *nb)
505 {
506 struct timekeeper *tk = &tk_core.timekeeper;
507 unsigned long flags;
508 int ret;
509
510 raw_spin_lock_irqsave(&timekeeper_lock, flags);
511 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
512 update_pvclock_gtod(tk, true);
513 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
514
515 return ret;
516 }
517 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
518
519 /**
520 * pvclock_gtod_unregister_notifier - unregister a pvclock
521 * timedata update listener
522 */
523 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
524 {
525 unsigned long flags;
526 int ret;
527
528 raw_spin_lock_irqsave(&timekeeper_lock, flags);
529 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
530 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
531
532 return ret;
533 }
534 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
535
536 /*
537 * tk_update_leap_state - helper to update the next_leap_ktime
538 */
539 static inline void tk_update_leap_state(struct timekeeper *tk)
540 {
541 tk->next_leap_ktime = ntp_get_next_leap();
542 if (tk->next_leap_ktime.tv64 != KTIME_MAX)
543 /* Convert to monotonic time */
544 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
545 }
546
547 /*
548 * Update the ktime_t based scalar nsec members of the timekeeper
549 */
550 static inline void tk_update_ktime_data(struct timekeeper *tk)
551 {
552 u64 seconds;
553 u32 nsec;
554
555 /*
556 * The xtime based monotonic readout is:
557 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
558 * The ktime based monotonic readout is:
559 * nsec = base_mono + now();
560 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
561 */
562 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
563 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
564 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
565
566 /* Update the monotonic raw base */
567 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
568
569 /*
570 * The sum of the nanoseconds portions of xtime and
571 * wall_to_monotonic can be greater/equal one second. Take
572 * this into account before updating tk->ktime_sec.
573 */
574 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
575 if (nsec >= NSEC_PER_SEC)
576 seconds++;
577 tk->ktime_sec = seconds;
578 }
579
580 /* must hold timekeeper_lock */
581 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
582 {
583 if (action & TK_CLEAR_NTP) {
584 tk->ntp_error = 0;
585 ntp_clear();
586 }
587
588 tk_update_leap_state(tk);
589 tk_update_ktime_data(tk);
590
591 update_vsyscall(tk);
592 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
593
594 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
595 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
596
597 if (action & TK_CLOCK_WAS_SET)
598 tk->clock_was_set_seq++;
599 /*
600 * The mirroring of the data to the shadow-timekeeper needs
601 * to happen last here to ensure we don't over-write the
602 * timekeeper structure on the next update with stale data
603 */
604 if (action & TK_MIRROR)
605 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
606 sizeof(tk_core.timekeeper));
607 }
608
609 /**
610 * timekeeping_forward_now - update clock to the current time
611 *
612 * Forward the current clock to update its state since the last call to
613 * update_wall_time(). This is useful before significant clock changes,
614 * as it avoids having to deal with this time offset explicitly.
615 */
616 static void timekeeping_forward_now(struct timekeeper *tk)
617 {
618 struct clocksource *clock = tk->tkr_mono.clock;
619 cycle_t cycle_now, delta;
620 s64 nsec;
621
622 cycle_now = tk->tkr_mono.read(clock);
623 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
624 tk->tkr_mono.cycle_last = cycle_now;
625 tk->tkr_raw.cycle_last = cycle_now;
626
627 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
628
629 /* If arch requires, add in get_arch_timeoffset() */
630 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
631
632 tk_normalize_xtime(tk);
633
634 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
635 timespec64_add_ns(&tk->raw_time, nsec);
636 }
637
638 /**
639 * __getnstimeofday64 - Returns the time of day in a timespec64.
640 * @ts: pointer to the timespec to be set
641 *
642 * Updates the time of day in the timespec.
643 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
644 */
645 int __getnstimeofday64(struct timespec64 *ts)
646 {
647 struct timekeeper *tk = &tk_core.timekeeper;
648 unsigned long seq;
649 s64 nsecs = 0;
650
651 do {
652 seq = read_seqcount_begin(&tk_core.seq);
653
654 ts->tv_sec = tk->xtime_sec;
655 nsecs = timekeeping_get_ns(&tk->tkr_mono);
656
657 } while (read_seqcount_retry(&tk_core.seq, seq));
658
659 ts->tv_nsec = 0;
660 timespec64_add_ns(ts, nsecs);
661
662 /*
663 * Do not bail out early, in case there were callers still using
664 * the value, even in the face of the WARN_ON.
665 */
666 if (unlikely(timekeeping_suspended))
667 return -EAGAIN;
668 return 0;
669 }
670 EXPORT_SYMBOL(__getnstimeofday64);
671
672 /**
673 * getnstimeofday64 - Returns the time of day in a timespec64.
674 * @ts: pointer to the timespec64 to be set
675 *
676 * Returns the time of day in a timespec64 (WARN if suspended).
677 */
678 void getnstimeofday64(struct timespec64 *ts)
679 {
680 WARN_ON(__getnstimeofday64(ts));
681 }
682 EXPORT_SYMBOL(getnstimeofday64);
683
684 ktime_t ktime_get(void)
685 {
686 struct timekeeper *tk = &tk_core.timekeeper;
687 unsigned int seq;
688 ktime_t base;
689 s64 nsecs;
690
691 WARN_ON(timekeeping_suspended);
692
693 do {
694 seq = read_seqcount_begin(&tk_core.seq);
695 base = tk->tkr_mono.base;
696 nsecs = timekeeping_get_ns(&tk->tkr_mono);
697
698 } while (read_seqcount_retry(&tk_core.seq, seq));
699
700 return ktime_add_ns(base, nsecs);
701 }
702 EXPORT_SYMBOL_GPL(ktime_get);
703
704 u32 ktime_get_resolution_ns(void)
705 {
706 struct timekeeper *tk = &tk_core.timekeeper;
707 unsigned int seq;
708 u32 nsecs;
709
710 WARN_ON(timekeeping_suspended);
711
712 do {
713 seq = read_seqcount_begin(&tk_core.seq);
714 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
715 } while (read_seqcount_retry(&tk_core.seq, seq));
716
717 return nsecs;
718 }
719 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
720
721 static ktime_t *offsets[TK_OFFS_MAX] = {
722 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
723 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
724 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
725 };
726
727 ktime_t ktime_get_with_offset(enum tk_offsets offs)
728 {
729 struct timekeeper *tk = &tk_core.timekeeper;
730 unsigned int seq;
731 ktime_t base, *offset = offsets[offs];
732 s64 nsecs;
733
734 WARN_ON(timekeeping_suspended);
735
736 do {
737 seq = read_seqcount_begin(&tk_core.seq);
738 base = ktime_add(tk->tkr_mono.base, *offset);
739 nsecs = timekeeping_get_ns(&tk->tkr_mono);
740
741 } while (read_seqcount_retry(&tk_core.seq, seq));
742
743 return ktime_add_ns(base, nsecs);
744
745 }
746 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
747
748 /**
749 * ktime_mono_to_any() - convert mononotic time to any other time
750 * @tmono: time to convert.
751 * @offs: which offset to use
752 */
753 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
754 {
755 ktime_t *offset = offsets[offs];
756 unsigned long seq;
757 ktime_t tconv;
758
759 do {
760 seq = read_seqcount_begin(&tk_core.seq);
761 tconv = ktime_add(tmono, *offset);
762 } while (read_seqcount_retry(&tk_core.seq, seq));
763
764 return tconv;
765 }
766 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
767
768 /**
769 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
770 */
771 ktime_t ktime_get_raw(void)
772 {
773 struct timekeeper *tk = &tk_core.timekeeper;
774 unsigned int seq;
775 ktime_t base;
776 s64 nsecs;
777
778 do {
779 seq = read_seqcount_begin(&tk_core.seq);
780 base = tk->tkr_raw.base;
781 nsecs = timekeeping_get_ns(&tk->tkr_raw);
782
783 } while (read_seqcount_retry(&tk_core.seq, seq));
784
785 return ktime_add_ns(base, nsecs);
786 }
787 EXPORT_SYMBOL_GPL(ktime_get_raw);
788
789 /**
790 * ktime_get_ts64 - get the monotonic clock in timespec64 format
791 * @ts: pointer to timespec variable
792 *
793 * The function calculates the monotonic clock from the realtime
794 * clock and the wall_to_monotonic offset and stores the result
795 * in normalized timespec64 format in the variable pointed to by @ts.
796 */
797 void ktime_get_ts64(struct timespec64 *ts)
798 {
799 struct timekeeper *tk = &tk_core.timekeeper;
800 struct timespec64 tomono;
801 s64 nsec;
802 unsigned int seq;
803
804 WARN_ON(timekeeping_suspended);
805
806 do {
807 seq = read_seqcount_begin(&tk_core.seq);
808 ts->tv_sec = tk->xtime_sec;
809 nsec = timekeeping_get_ns(&tk->tkr_mono);
810 tomono = tk->wall_to_monotonic;
811
812 } while (read_seqcount_retry(&tk_core.seq, seq));
813
814 ts->tv_sec += tomono.tv_sec;
815 ts->tv_nsec = 0;
816 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
817 }
818 EXPORT_SYMBOL_GPL(ktime_get_ts64);
819
820 /**
821 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
822 *
823 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
824 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
825 * works on both 32 and 64 bit systems. On 32 bit systems the readout
826 * covers ~136 years of uptime which should be enough to prevent
827 * premature wrap arounds.
828 */
829 time64_t ktime_get_seconds(void)
830 {
831 struct timekeeper *tk = &tk_core.timekeeper;
832
833 WARN_ON(timekeeping_suspended);
834 return tk->ktime_sec;
835 }
836 EXPORT_SYMBOL_GPL(ktime_get_seconds);
837
838 /**
839 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
840 *
841 * Returns the wall clock seconds since 1970. This replaces the
842 * get_seconds() interface which is not y2038 safe on 32bit systems.
843 *
844 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
845 * 32bit systems the access must be protected with the sequence
846 * counter to provide "atomic" access to the 64bit tk->xtime_sec
847 * value.
848 */
849 time64_t ktime_get_real_seconds(void)
850 {
851 struct timekeeper *tk = &tk_core.timekeeper;
852 time64_t seconds;
853 unsigned int seq;
854
855 if (IS_ENABLED(CONFIG_64BIT))
856 return tk->xtime_sec;
857
858 do {
859 seq = read_seqcount_begin(&tk_core.seq);
860 seconds = tk->xtime_sec;
861
862 } while (read_seqcount_retry(&tk_core.seq, seq));
863
864 return seconds;
865 }
866 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
867
868 /**
869 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
870 * but without the sequence counter protect. This internal function
871 * is called just when timekeeping lock is already held.
872 */
873 time64_t __ktime_get_real_seconds(void)
874 {
875 struct timekeeper *tk = &tk_core.timekeeper;
876
877 return tk->xtime_sec;
878 }
879
880 /**
881 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
882 * @systime_snapshot: pointer to struct receiving the system time snapshot
883 */
884 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
885 {
886 struct timekeeper *tk = &tk_core.timekeeper;
887 unsigned long seq;
888 ktime_t base_raw;
889 ktime_t base_real;
890 s64 nsec_raw;
891 s64 nsec_real;
892 cycle_t now;
893
894 WARN_ON_ONCE(timekeeping_suspended);
895
896 do {
897 seq = read_seqcount_begin(&tk_core.seq);
898
899 now = tk->tkr_mono.read(tk->tkr_mono.clock);
900 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
901 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
902 base_real = ktime_add(tk->tkr_mono.base,
903 tk_core.timekeeper.offs_real);
904 base_raw = tk->tkr_raw.base;
905 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
906 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
907 } while (read_seqcount_retry(&tk_core.seq, seq));
908
909 systime_snapshot->cycles = now;
910 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
911 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
912 }
913 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
914
915 /* Scale base by mult/div checking for overflow */
916 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
917 {
918 u64 tmp, rem;
919
920 tmp = div64_u64_rem(*base, div, &rem);
921
922 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
923 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
924 return -EOVERFLOW;
925 tmp *= mult;
926 rem *= mult;
927
928 do_div(rem, div);
929 *base = tmp + rem;
930 return 0;
931 }
932
933 /**
934 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
935 * @history: Snapshot representing start of history
936 * @partial_history_cycles: Cycle offset into history (fractional part)
937 * @total_history_cycles: Total history length in cycles
938 * @discontinuity: True indicates clock was set on history period
939 * @ts: Cross timestamp that should be adjusted using
940 * partial/total ratio
941 *
942 * Helper function used by get_device_system_crosststamp() to correct the
943 * crosstimestamp corresponding to the start of the current interval to the
944 * system counter value (timestamp point) provided by the driver. The
945 * total_history_* quantities are the total history starting at the provided
946 * reference point and ending at the start of the current interval. The cycle
947 * count between the driver timestamp point and the start of the current
948 * interval is partial_history_cycles.
949 */
950 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
951 cycle_t partial_history_cycles,
952 cycle_t total_history_cycles,
953 bool discontinuity,
954 struct system_device_crosststamp *ts)
955 {
956 struct timekeeper *tk = &tk_core.timekeeper;
957 u64 corr_raw, corr_real;
958 bool interp_forward;
959 int ret;
960
961 if (total_history_cycles == 0 || partial_history_cycles == 0)
962 return 0;
963
964 /* Interpolate shortest distance from beginning or end of history */
965 interp_forward = partial_history_cycles > total_history_cycles/2 ?
966 true : false;
967 partial_history_cycles = interp_forward ?
968 total_history_cycles - partial_history_cycles :
969 partial_history_cycles;
970
971 /*
972 * Scale the monotonic raw time delta by:
973 * partial_history_cycles / total_history_cycles
974 */
975 corr_raw = (u64)ktime_to_ns(
976 ktime_sub(ts->sys_monoraw, history->raw));
977 ret = scale64_check_overflow(partial_history_cycles,
978 total_history_cycles, &corr_raw);
979 if (ret)
980 return ret;
981
982 /*
983 * If there is a discontinuity in the history, scale monotonic raw
984 * correction by:
985 * mult(real)/mult(raw) yielding the realtime correction
986 * Otherwise, calculate the realtime correction similar to monotonic
987 * raw calculation
988 */
989 if (discontinuity) {
990 corr_real = mul_u64_u32_div
991 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
992 } else {
993 corr_real = (u64)ktime_to_ns(
994 ktime_sub(ts->sys_realtime, history->real));
995 ret = scale64_check_overflow(partial_history_cycles,
996 total_history_cycles, &corr_real);
997 if (ret)
998 return ret;
999 }
1000
1001 /* Fixup monotonic raw and real time time values */
1002 if (interp_forward) {
1003 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1004 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1005 } else {
1006 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1007 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1008 }
1009
1010 return 0;
1011 }
1012
1013 /*
1014 * cycle_between - true if test occurs chronologically between before and after
1015 */
1016 static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1017 {
1018 if (test > before && test < after)
1019 return true;
1020 if (test < before && before > after)
1021 return true;
1022 return false;
1023 }
1024
1025 /**
1026 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1027 * @get_time_fn: Callback to get simultaneous device time and
1028 * system counter from the device driver
1029 * @ctx: Context passed to get_time_fn()
1030 * @history_begin: Historical reference point used to interpolate system
1031 * time when counter provided by the driver is before the current interval
1032 * @xtstamp: Receives simultaneously captured system and device time
1033 *
1034 * Reads a timestamp from a device and correlates it to system time
1035 */
1036 int get_device_system_crosststamp(int (*get_time_fn)
1037 (ktime_t *device_time,
1038 struct system_counterval_t *sys_counterval,
1039 void *ctx),
1040 void *ctx,
1041 struct system_time_snapshot *history_begin,
1042 struct system_device_crosststamp *xtstamp)
1043 {
1044 struct system_counterval_t system_counterval;
1045 struct timekeeper *tk = &tk_core.timekeeper;
1046 cycle_t cycles, now, interval_start;
1047 unsigned int clock_was_set_seq = 0;
1048 ktime_t base_real, base_raw;
1049 s64 nsec_real, nsec_raw;
1050 u8 cs_was_changed_seq;
1051 unsigned long seq;
1052 bool do_interp;
1053 int ret;
1054
1055 do {
1056 seq = read_seqcount_begin(&tk_core.seq);
1057 /*
1058 * Try to synchronously capture device time and a system
1059 * counter value calling back into the device driver
1060 */
1061 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1062 if (ret)
1063 return ret;
1064
1065 /*
1066 * Verify that the clocksource associated with the captured
1067 * system counter value is the same as the currently installed
1068 * timekeeper clocksource
1069 */
1070 if (tk->tkr_mono.clock != system_counterval.cs)
1071 return -ENODEV;
1072 cycles = system_counterval.cycles;
1073
1074 /*
1075 * Check whether the system counter value provided by the
1076 * device driver is on the current timekeeping interval.
1077 */
1078 now = tk->tkr_mono.read(tk->tkr_mono.clock);
1079 interval_start = tk->tkr_mono.cycle_last;
1080 if (!cycle_between(interval_start, cycles, now)) {
1081 clock_was_set_seq = tk->clock_was_set_seq;
1082 cs_was_changed_seq = tk->cs_was_changed_seq;
1083 cycles = interval_start;
1084 do_interp = true;
1085 } else {
1086 do_interp = false;
1087 }
1088
1089 base_real = ktime_add(tk->tkr_mono.base,
1090 tk_core.timekeeper.offs_real);
1091 base_raw = tk->tkr_raw.base;
1092
1093 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1094 system_counterval.cycles);
1095 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1096 system_counterval.cycles);
1097 } while (read_seqcount_retry(&tk_core.seq, seq));
1098
1099 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1100 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1101
1102 /*
1103 * Interpolate if necessary, adjusting back from the start of the
1104 * current interval
1105 */
1106 if (do_interp) {
1107 cycle_t partial_history_cycles, total_history_cycles;
1108 bool discontinuity;
1109
1110 /*
1111 * Check that the counter value occurs after the provided
1112 * history reference and that the history doesn't cross a
1113 * clocksource change
1114 */
1115 if (!history_begin ||
1116 !cycle_between(history_begin->cycles,
1117 system_counterval.cycles, cycles) ||
1118 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1119 return -EINVAL;
1120 partial_history_cycles = cycles - system_counterval.cycles;
1121 total_history_cycles = cycles - history_begin->cycles;
1122 discontinuity =
1123 history_begin->clock_was_set_seq != clock_was_set_seq;
1124
1125 ret = adjust_historical_crosststamp(history_begin,
1126 partial_history_cycles,
1127 total_history_cycles,
1128 discontinuity, xtstamp);
1129 if (ret)
1130 return ret;
1131 }
1132
1133 return 0;
1134 }
1135 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1136
1137 /**
1138 * do_gettimeofday - Returns the time of day in a timeval
1139 * @tv: pointer to the timeval to be set
1140 *
1141 * NOTE: Users should be converted to using getnstimeofday()
1142 */
1143 void do_gettimeofday(struct timeval *tv)
1144 {
1145 struct timespec64 now;
1146
1147 getnstimeofday64(&now);
1148 tv->tv_sec = now.tv_sec;
1149 tv->tv_usec = now.tv_nsec/1000;
1150 }
1151 EXPORT_SYMBOL(do_gettimeofday);
1152
1153 /**
1154 * do_settimeofday64 - Sets the time of day.
1155 * @ts: pointer to the timespec64 variable containing the new time
1156 *
1157 * Sets the time of day to the new time and update NTP and notify hrtimers
1158 */
1159 int do_settimeofday64(const struct timespec64 *ts)
1160 {
1161 struct timekeeper *tk = &tk_core.timekeeper;
1162 struct timespec64 ts_delta, xt;
1163 unsigned long flags;
1164 int ret = 0;
1165
1166 if (!timespec64_valid_strict(ts))
1167 return -EINVAL;
1168
1169 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1170 write_seqcount_begin(&tk_core.seq);
1171
1172 timekeeping_forward_now(tk);
1173
1174 xt = tk_xtime(tk);
1175 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1176 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1177
1178 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1179 ret = -EINVAL;
1180 goto out;
1181 }
1182
1183 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1184
1185 tk_set_xtime(tk, ts);
1186 out:
1187 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1188
1189 write_seqcount_end(&tk_core.seq);
1190 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1191
1192 /* signal hrtimers about time change */
1193 clock_was_set();
1194
1195 return ret;
1196 }
1197 EXPORT_SYMBOL(do_settimeofday64);
1198
1199 /**
1200 * timekeeping_inject_offset - Adds or subtracts from the current time.
1201 * @tv: pointer to the timespec variable containing the offset
1202 *
1203 * Adds or subtracts an offset value from the current time.
1204 */
1205 int timekeeping_inject_offset(struct timespec *ts)
1206 {
1207 struct timekeeper *tk = &tk_core.timekeeper;
1208 unsigned long flags;
1209 struct timespec64 ts64, tmp;
1210 int ret = 0;
1211
1212 if (!timespec_inject_offset_valid(ts))
1213 return -EINVAL;
1214
1215 ts64 = timespec_to_timespec64(*ts);
1216
1217 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1218 write_seqcount_begin(&tk_core.seq);
1219
1220 timekeeping_forward_now(tk);
1221
1222 /* Make sure the proposed value is valid */
1223 tmp = timespec64_add(tk_xtime(tk), ts64);
1224 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1225 !timespec64_valid_strict(&tmp)) {
1226 ret = -EINVAL;
1227 goto error;
1228 }
1229
1230 tk_xtime_add(tk, &ts64);
1231 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1232
1233 error: /* even if we error out, we forwarded the time, so call update */
1234 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1235
1236 write_seqcount_end(&tk_core.seq);
1237 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1238
1239 /* signal hrtimers about time change */
1240 clock_was_set();
1241
1242 return ret;
1243 }
1244 EXPORT_SYMBOL(timekeeping_inject_offset);
1245
1246
1247 /**
1248 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1249 *
1250 */
1251 s32 timekeeping_get_tai_offset(void)
1252 {
1253 struct timekeeper *tk = &tk_core.timekeeper;
1254 unsigned int seq;
1255 s32 ret;
1256
1257 do {
1258 seq = read_seqcount_begin(&tk_core.seq);
1259 ret = tk->tai_offset;
1260 } while (read_seqcount_retry(&tk_core.seq, seq));
1261
1262 return ret;
1263 }
1264
1265 /**
1266 * __timekeeping_set_tai_offset - Lock free worker function
1267 *
1268 */
1269 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1270 {
1271 tk->tai_offset = tai_offset;
1272 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1273 }
1274
1275 /**
1276 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1277 *
1278 */
1279 void timekeeping_set_tai_offset(s32 tai_offset)
1280 {
1281 struct timekeeper *tk = &tk_core.timekeeper;
1282 unsigned long flags;
1283
1284 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1285 write_seqcount_begin(&tk_core.seq);
1286 __timekeeping_set_tai_offset(tk, tai_offset);
1287 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1288 write_seqcount_end(&tk_core.seq);
1289 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1290 clock_was_set();
1291 }
1292
1293 /**
1294 * change_clocksource - Swaps clocksources if a new one is available
1295 *
1296 * Accumulates current time interval and initializes new clocksource
1297 */
1298 static int change_clocksource(void *data)
1299 {
1300 struct timekeeper *tk = &tk_core.timekeeper;
1301 struct clocksource *new, *old;
1302 unsigned long flags;
1303
1304 new = (struct clocksource *) data;
1305
1306 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1307 write_seqcount_begin(&tk_core.seq);
1308
1309 timekeeping_forward_now(tk);
1310 /*
1311 * If the cs is in module, get a module reference. Succeeds
1312 * for built-in code (owner == NULL) as well.
1313 */
1314 if (try_module_get(new->owner)) {
1315 if (!new->enable || new->enable(new) == 0) {
1316 old = tk->tkr_mono.clock;
1317 tk_setup_internals(tk, new);
1318 if (old->disable)
1319 old->disable(old);
1320 module_put(old->owner);
1321 } else {
1322 module_put(new->owner);
1323 }
1324 }
1325 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1326
1327 write_seqcount_end(&tk_core.seq);
1328 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1329
1330 return 0;
1331 }
1332
1333 /**
1334 * timekeeping_notify - Install a new clock source
1335 * @clock: pointer to the clock source
1336 *
1337 * This function is called from clocksource.c after a new, better clock
1338 * source has been registered. The caller holds the clocksource_mutex.
1339 */
1340 int timekeeping_notify(struct clocksource *clock)
1341 {
1342 struct timekeeper *tk = &tk_core.timekeeper;
1343
1344 if (tk->tkr_mono.clock == clock)
1345 return 0;
1346 stop_machine(change_clocksource, clock, NULL);
1347 tick_clock_notify();
1348 return tk->tkr_mono.clock == clock ? 0 : -1;
1349 }
1350
1351 /**
1352 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1353 * @ts: pointer to the timespec64 to be set
1354 *
1355 * Returns the raw monotonic time (completely un-modified by ntp)
1356 */
1357 void getrawmonotonic64(struct timespec64 *ts)
1358 {
1359 struct timekeeper *tk = &tk_core.timekeeper;
1360 struct timespec64 ts64;
1361 unsigned long seq;
1362 s64 nsecs;
1363
1364 do {
1365 seq = read_seqcount_begin(&tk_core.seq);
1366 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1367 ts64 = tk->raw_time;
1368
1369 } while (read_seqcount_retry(&tk_core.seq, seq));
1370
1371 timespec64_add_ns(&ts64, nsecs);
1372 *ts = ts64;
1373 }
1374 EXPORT_SYMBOL(getrawmonotonic64);
1375
1376
1377 /**
1378 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1379 */
1380 int timekeeping_valid_for_hres(void)
1381 {
1382 struct timekeeper *tk = &tk_core.timekeeper;
1383 unsigned long seq;
1384 int ret;
1385
1386 do {
1387 seq = read_seqcount_begin(&tk_core.seq);
1388
1389 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1390
1391 } while (read_seqcount_retry(&tk_core.seq, seq));
1392
1393 return ret;
1394 }
1395
1396 /**
1397 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1398 */
1399 u64 timekeeping_max_deferment(void)
1400 {
1401 struct timekeeper *tk = &tk_core.timekeeper;
1402 unsigned long seq;
1403 u64 ret;
1404
1405 do {
1406 seq = read_seqcount_begin(&tk_core.seq);
1407
1408 ret = tk->tkr_mono.clock->max_idle_ns;
1409
1410 } while (read_seqcount_retry(&tk_core.seq, seq));
1411
1412 return ret;
1413 }
1414
1415 /**
1416 * read_persistent_clock - Return time from the persistent clock.
1417 *
1418 * Weak dummy function for arches that do not yet support it.
1419 * Reads the time from the battery backed persistent clock.
1420 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1421 *
1422 * XXX - Do be sure to remove it once all arches implement it.
1423 */
1424 void __weak read_persistent_clock(struct timespec *ts)
1425 {
1426 ts->tv_sec = 0;
1427 ts->tv_nsec = 0;
1428 }
1429
1430 void __weak read_persistent_clock64(struct timespec64 *ts64)
1431 {
1432 struct timespec ts;
1433
1434 read_persistent_clock(&ts);
1435 *ts64 = timespec_to_timespec64(ts);
1436 }
1437
1438 /**
1439 * read_boot_clock64 - Return time of the system start.
1440 *
1441 * Weak dummy function for arches that do not yet support it.
1442 * Function to read the exact time the system has been started.
1443 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1444 *
1445 * XXX - Do be sure to remove it once all arches implement it.
1446 */
1447 void __weak read_boot_clock64(struct timespec64 *ts)
1448 {
1449 ts->tv_sec = 0;
1450 ts->tv_nsec = 0;
1451 }
1452
1453 /* Flag for if timekeeping_resume() has injected sleeptime */
1454 static bool sleeptime_injected;
1455
1456 /* Flag for if there is a persistent clock on this platform */
1457 static bool persistent_clock_exists;
1458
1459 /*
1460 * timekeeping_init - Initializes the clocksource and common timekeeping values
1461 */
1462 void __init timekeeping_init(void)
1463 {
1464 struct timekeeper *tk = &tk_core.timekeeper;
1465 struct clocksource *clock;
1466 unsigned long flags;
1467 struct timespec64 now, boot, tmp;
1468
1469 read_persistent_clock64(&now);
1470 if (!timespec64_valid_strict(&now)) {
1471 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1472 " Check your CMOS/BIOS settings.\n");
1473 now.tv_sec = 0;
1474 now.tv_nsec = 0;
1475 } else if (now.tv_sec || now.tv_nsec)
1476 persistent_clock_exists = true;
1477
1478 read_boot_clock64(&boot);
1479 if (!timespec64_valid_strict(&boot)) {
1480 pr_warn("WARNING: Boot clock returned invalid value!\n"
1481 " Check your CMOS/BIOS settings.\n");
1482 boot.tv_sec = 0;
1483 boot.tv_nsec = 0;
1484 }
1485
1486 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1487 write_seqcount_begin(&tk_core.seq);
1488 ntp_init();
1489
1490 clock = clocksource_default_clock();
1491 if (clock->enable)
1492 clock->enable(clock);
1493 tk_setup_internals(tk, clock);
1494
1495 tk_set_xtime(tk, &now);
1496 tk->raw_time.tv_sec = 0;
1497 tk->raw_time.tv_nsec = 0;
1498 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1499 boot = tk_xtime(tk);
1500
1501 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1502 tk_set_wall_to_mono(tk, tmp);
1503
1504 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1505
1506 write_seqcount_end(&tk_core.seq);
1507 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1508 }
1509
1510 /* time in seconds when suspend began for persistent clock */
1511 static struct timespec64 timekeeping_suspend_time;
1512
1513 /**
1514 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1515 * @delta: pointer to a timespec delta value
1516 *
1517 * Takes a timespec offset measuring a suspend interval and properly
1518 * adds the sleep offset to the timekeeping variables.
1519 */
1520 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1521 struct timespec64 *delta)
1522 {
1523 if (!timespec64_valid_strict(delta)) {
1524 printk_deferred(KERN_WARNING
1525 "__timekeeping_inject_sleeptime: Invalid "
1526 "sleep delta value!\n");
1527 return;
1528 }
1529 tk_xtime_add(tk, delta);
1530 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1531 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1532 tk_debug_account_sleep_time(delta);
1533 }
1534
1535 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1536 /**
1537 * We have three kinds of time sources to use for sleep time
1538 * injection, the preference order is:
1539 * 1) non-stop clocksource
1540 * 2) persistent clock (ie: RTC accessible when irqs are off)
1541 * 3) RTC
1542 *
1543 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1544 * If system has neither 1) nor 2), 3) will be used finally.
1545 *
1546 *
1547 * If timekeeping has injected sleeptime via either 1) or 2),
1548 * 3) becomes needless, so in this case we don't need to call
1549 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1550 * means.
1551 */
1552 bool timekeeping_rtc_skipresume(void)
1553 {
1554 return sleeptime_injected;
1555 }
1556
1557 /**
1558 * 1) can be determined whether to use or not only when doing
1559 * timekeeping_resume() which is invoked after rtc_suspend(),
1560 * so we can't skip rtc_suspend() surely if system has 1).
1561 *
1562 * But if system has 2), 2) will definitely be used, so in this
1563 * case we don't need to call rtc_suspend(), and this is what
1564 * timekeeping_rtc_skipsuspend() means.
1565 */
1566 bool timekeeping_rtc_skipsuspend(void)
1567 {
1568 return persistent_clock_exists;
1569 }
1570
1571 /**
1572 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1573 * @delta: pointer to a timespec64 delta value
1574 *
1575 * This hook is for architectures that cannot support read_persistent_clock64
1576 * because their RTC/persistent clock is only accessible when irqs are enabled.
1577 * and also don't have an effective nonstop clocksource.
1578 *
1579 * This function should only be called by rtc_resume(), and allows
1580 * a suspend offset to be injected into the timekeeping values.
1581 */
1582 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1583 {
1584 struct timekeeper *tk = &tk_core.timekeeper;
1585 unsigned long flags;
1586
1587 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1588 write_seqcount_begin(&tk_core.seq);
1589
1590 timekeeping_forward_now(tk);
1591
1592 __timekeeping_inject_sleeptime(tk, delta);
1593
1594 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1595
1596 write_seqcount_end(&tk_core.seq);
1597 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1598
1599 /* signal hrtimers about time change */
1600 clock_was_set();
1601 }
1602 #endif
1603
1604 /**
1605 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1606 */
1607 void timekeeping_resume(void)
1608 {
1609 struct timekeeper *tk = &tk_core.timekeeper;
1610 struct clocksource *clock = tk->tkr_mono.clock;
1611 unsigned long flags;
1612 struct timespec64 ts_new, ts_delta;
1613 cycle_t cycle_now, cycle_delta;
1614
1615 sleeptime_injected = false;
1616 read_persistent_clock64(&ts_new);
1617
1618 clockevents_resume();
1619 clocksource_resume();
1620
1621 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1622 write_seqcount_begin(&tk_core.seq);
1623
1624 /*
1625 * After system resumes, we need to calculate the suspended time and
1626 * compensate it for the OS time. There are 3 sources that could be
1627 * used: Nonstop clocksource during suspend, persistent clock and rtc
1628 * device.
1629 *
1630 * One specific platform may have 1 or 2 or all of them, and the
1631 * preference will be:
1632 * suspend-nonstop clocksource -> persistent clock -> rtc
1633 * The less preferred source will only be tried if there is no better
1634 * usable source. The rtc part is handled separately in rtc core code.
1635 */
1636 cycle_now = tk->tkr_mono.read(clock);
1637 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1638 cycle_now > tk->tkr_mono.cycle_last) {
1639 u64 num, max = ULLONG_MAX;
1640 u32 mult = clock->mult;
1641 u32 shift = clock->shift;
1642 s64 nsec = 0;
1643
1644 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1645 tk->tkr_mono.mask);
1646
1647 /*
1648 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1649 * suspended time is too long. In that case we need do the
1650 * 64 bits math carefully
1651 */
1652 do_div(max, mult);
1653 if (cycle_delta > max) {
1654 num = div64_u64(cycle_delta, max);
1655 nsec = (((u64) max * mult) >> shift) * num;
1656 cycle_delta -= num * max;
1657 }
1658 nsec += ((u64) cycle_delta * mult) >> shift;
1659
1660 ts_delta = ns_to_timespec64(nsec);
1661 sleeptime_injected = true;
1662 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1663 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1664 sleeptime_injected = true;
1665 }
1666
1667 if (sleeptime_injected)
1668 __timekeeping_inject_sleeptime(tk, &ts_delta);
1669
1670 /* Re-base the last cycle value */
1671 tk->tkr_mono.cycle_last = cycle_now;
1672 tk->tkr_raw.cycle_last = cycle_now;
1673
1674 tk->ntp_error = 0;
1675 timekeeping_suspended = 0;
1676 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1677 write_seqcount_end(&tk_core.seq);
1678 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1679
1680 touch_softlockup_watchdog();
1681
1682 tick_resume();
1683 hrtimers_resume();
1684 }
1685
1686 int timekeeping_suspend(void)
1687 {
1688 struct timekeeper *tk = &tk_core.timekeeper;
1689 unsigned long flags;
1690 struct timespec64 delta, delta_delta;
1691 static struct timespec64 old_delta;
1692
1693 read_persistent_clock64(&timekeeping_suspend_time);
1694
1695 /*
1696 * On some systems the persistent_clock can not be detected at
1697 * timekeeping_init by its return value, so if we see a valid
1698 * value returned, update the persistent_clock_exists flag.
1699 */
1700 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1701 persistent_clock_exists = true;
1702
1703 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1704 write_seqcount_begin(&tk_core.seq);
1705 timekeeping_forward_now(tk);
1706 timekeeping_suspended = 1;
1707
1708 if (persistent_clock_exists) {
1709 /*
1710 * To avoid drift caused by repeated suspend/resumes,
1711 * which each can add ~1 second drift error,
1712 * try to compensate so the difference in system time
1713 * and persistent_clock time stays close to constant.
1714 */
1715 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1716 delta_delta = timespec64_sub(delta, old_delta);
1717 if (abs(delta_delta.tv_sec) >= 2) {
1718 /*
1719 * if delta_delta is too large, assume time correction
1720 * has occurred and set old_delta to the current delta.
1721 */
1722 old_delta = delta;
1723 } else {
1724 /* Otherwise try to adjust old_system to compensate */
1725 timekeeping_suspend_time =
1726 timespec64_add(timekeeping_suspend_time, delta_delta);
1727 }
1728 }
1729
1730 timekeeping_update(tk, TK_MIRROR);
1731 halt_fast_timekeeper(tk);
1732 write_seqcount_end(&tk_core.seq);
1733 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1734
1735 tick_suspend();
1736 clocksource_suspend();
1737 clockevents_suspend();
1738
1739 return 0;
1740 }
1741
1742 /* sysfs resume/suspend bits for timekeeping */
1743 static struct syscore_ops timekeeping_syscore_ops = {
1744 .resume = timekeeping_resume,
1745 .suspend = timekeeping_suspend,
1746 };
1747
1748 static int __init timekeeping_init_ops(void)
1749 {
1750 register_syscore_ops(&timekeeping_syscore_ops);
1751 return 0;
1752 }
1753 device_initcall(timekeeping_init_ops);
1754
1755 /*
1756 * Apply a multiplier adjustment to the timekeeper
1757 */
1758 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1759 s64 offset,
1760 bool negative,
1761 int adj_scale)
1762 {
1763 s64 interval = tk->cycle_interval;
1764 s32 mult_adj = 1;
1765
1766 if (negative) {
1767 mult_adj = -mult_adj;
1768 interval = -interval;
1769 offset = -offset;
1770 }
1771 mult_adj <<= adj_scale;
1772 interval <<= adj_scale;
1773 offset <<= adj_scale;
1774
1775 /*
1776 * So the following can be confusing.
1777 *
1778 * To keep things simple, lets assume mult_adj == 1 for now.
1779 *
1780 * When mult_adj != 1, remember that the interval and offset values
1781 * have been appropriately scaled so the math is the same.
1782 *
1783 * The basic idea here is that we're increasing the multiplier
1784 * by one, this causes the xtime_interval to be incremented by
1785 * one cycle_interval. This is because:
1786 * xtime_interval = cycle_interval * mult
1787 * So if mult is being incremented by one:
1788 * xtime_interval = cycle_interval * (mult + 1)
1789 * Its the same as:
1790 * xtime_interval = (cycle_interval * mult) + cycle_interval
1791 * Which can be shortened to:
1792 * xtime_interval += cycle_interval
1793 *
1794 * So offset stores the non-accumulated cycles. Thus the current
1795 * time (in shifted nanoseconds) is:
1796 * now = (offset * adj) + xtime_nsec
1797 * Now, even though we're adjusting the clock frequency, we have
1798 * to keep time consistent. In other words, we can't jump back
1799 * in time, and we also want to avoid jumping forward in time.
1800 *
1801 * So given the same offset value, we need the time to be the same
1802 * both before and after the freq adjustment.
1803 * now = (offset * adj_1) + xtime_nsec_1
1804 * now = (offset * adj_2) + xtime_nsec_2
1805 * So:
1806 * (offset * adj_1) + xtime_nsec_1 =
1807 * (offset * adj_2) + xtime_nsec_2
1808 * And we know:
1809 * adj_2 = adj_1 + 1
1810 * So:
1811 * (offset * adj_1) + xtime_nsec_1 =
1812 * (offset * (adj_1+1)) + xtime_nsec_2
1813 * (offset * adj_1) + xtime_nsec_1 =
1814 * (offset * adj_1) + offset + xtime_nsec_2
1815 * Canceling the sides:
1816 * xtime_nsec_1 = offset + xtime_nsec_2
1817 * Which gives us:
1818 * xtime_nsec_2 = xtime_nsec_1 - offset
1819 * Which simplfies to:
1820 * xtime_nsec -= offset
1821 *
1822 * XXX - TODO: Doc ntp_error calculation.
1823 */
1824 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1825 /* NTP adjustment caused clocksource mult overflow */
1826 WARN_ON_ONCE(1);
1827 return;
1828 }
1829
1830 tk->tkr_mono.mult += mult_adj;
1831 tk->xtime_interval += interval;
1832 tk->tkr_mono.xtime_nsec -= offset;
1833 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1834 }
1835
1836 /*
1837 * Calculate the multiplier adjustment needed to match the frequency
1838 * specified by NTP
1839 */
1840 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1841 s64 offset)
1842 {
1843 s64 interval = tk->cycle_interval;
1844 s64 xinterval = tk->xtime_interval;
1845 u32 base = tk->tkr_mono.clock->mult;
1846 u32 max = tk->tkr_mono.clock->maxadj;
1847 u32 cur_adj = tk->tkr_mono.mult;
1848 s64 tick_error;
1849 bool negative;
1850 u32 adj_scale;
1851
1852 /* Remove any current error adj from freq calculation */
1853 if (tk->ntp_err_mult)
1854 xinterval -= tk->cycle_interval;
1855
1856 tk->ntp_tick = ntp_tick_length();
1857
1858 /* Calculate current error per tick */
1859 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1860 tick_error -= (xinterval + tk->xtime_remainder);
1861
1862 /* Don't worry about correcting it if its small */
1863 if (likely((tick_error >= 0) && (tick_error <= interval)))
1864 return;
1865
1866 /* preserve the direction of correction */
1867 negative = (tick_error < 0);
1868
1869 /* If any adjustment would pass the max, just return */
1870 if (negative && (cur_adj - 1) <= (base - max))
1871 return;
1872 if (!negative && (cur_adj + 1) >= (base + max))
1873 return;
1874 /*
1875 * Sort out the magnitude of the correction, but
1876 * avoid making so large a correction that we go
1877 * over the max adjustment.
1878 */
1879 adj_scale = 0;
1880 tick_error = abs(tick_error);
1881 while (tick_error > interval) {
1882 u32 adj = 1 << (adj_scale + 1);
1883
1884 /* Check if adjustment gets us within 1 unit from the max */
1885 if (negative && (cur_adj - adj) <= (base - max))
1886 break;
1887 if (!negative && (cur_adj + adj) >= (base + max))
1888 break;
1889
1890 adj_scale++;
1891 tick_error >>= 1;
1892 }
1893
1894 /* scale the corrections */
1895 timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1896 }
1897
1898 /*
1899 * Adjust the timekeeper's multiplier to the correct frequency
1900 * and also to reduce the accumulated error value.
1901 */
1902 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1903 {
1904 /* Correct for the current frequency error */
1905 timekeeping_freqadjust(tk, offset);
1906
1907 /* Next make a small adjustment to fix any cumulative error */
1908 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1909 tk->ntp_err_mult = 1;
1910 timekeeping_apply_adjustment(tk, offset, 0, 0);
1911 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1912 /* Undo any existing error adjustment */
1913 timekeeping_apply_adjustment(tk, offset, 1, 0);
1914 tk->ntp_err_mult = 0;
1915 }
1916
1917 if (unlikely(tk->tkr_mono.clock->maxadj &&
1918 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1919 > tk->tkr_mono.clock->maxadj))) {
1920 printk_once(KERN_WARNING
1921 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1922 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1923 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1924 }
1925
1926 /*
1927 * It may be possible that when we entered this function, xtime_nsec
1928 * was very small. Further, if we're slightly speeding the clocksource
1929 * in the code above, its possible the required corrective factor to
1930 * xtime_nsec could cause it to underflow.
1931 *
1932 * Now, since we already accumulated the second, cannot simply roll
1933 * the accumulated second back, since the NTP subsystem has been
1934 * notified via second_overflow. So instead we push xtime_nsec forward
1935 * by the amount we underflowed, and add that amount into the error.
1936 *
1937 * We'll correct this error next time through this function, when
1938 * xtime_nsec is not as small.
1939 */
1940 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1941 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1942 tk->tkr_mono.xtime_nsec = 0;
1943 tk->ntp_error += neg << tk->ntp_error_shift;
1944 }
1945 }
1946
1947 /**
1948 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1949 *
1950 * Helper function that accumulates the nsecs greater than a second
1951 * from the xtime_nsec field to the xtime_secs field.
1952 * It also calls into the NTP code to handle leapsecond processing.
1953 *
1954 */
1955 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1956 {
1957 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1958 unsigned int clock_set = 0;
1959
1960 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1961 int leap;
1962
1963 tk->tkr_mono.xtime_nsec -= nsecps;
1964 tk->xtime_sec++;
1965
1966 /* Figure out if its a leap sec and apply if needed */
1967 leap = second_overflow(tk->xtime_sec);
1968 if (unlikely(leap)) {
1969 struct timespec64 ts;
1970
1971 tk->xtime_sec += leap;
1972
1973 ts.tv_sec = leap;
1974 ts.tv_nsec = 0;
1975 tk_set_wall_to_mono(tk,
1976 timespec64_sub(tk->wall_to_monotonic, ts));
1977
1978 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1979
1980 clock_set = TK_CLOCK_WAS_SET;
1981 }
1982 }
1983 return clock_set;
1984 }
1985
1986 /**
1987 * logarithmic_accumulation - shifted accumulation of cycles
1988 *
1989 * This functions accumulates a shifted interval of cycles into
1990 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1991 * loop.
1992 *
1993 * Returns the unconsumed cycles.
1994 */
1995 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1996 u32 shift,
1997 unsigned int *clock_set)
1998 {
1999 cycle_t interval = tk->cycle_interval << shift;
2000 u64 raw_nsecs;
2001
2002 /* If the offset is smaller than a shifted interval, do nothing */
2003 if (offset < interval)
2004 return offset;
2005
2006 /* Accumulate one shifted interval */
2007 offset -= interval;
2008 tk->tkr_mono.cycle_last += interval;
2009 tk->tkr_raw.cycle_last += interval;
2010
2011 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2012 *clock_set |= accumulate_nsecs_to_secs(tk);
2013
2014 /* Accumulate raw time */
2015 raw_nsecs = (u64)tk->raw_interval << shift;
2016 raw_nsecs += tk->raw_time.tv_nsec;
2017 if (raw_nsecs >= NSEC_PER_SEC) {
2018 u64 raw_secs = raw_nsecs;
2019 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2020 tk->raw_time.tv_sec += raw_secs;
2021 }
2022 tk->raw_time.tv_nsec = raw_nsecs;
2023
2024 /* Accumulate error between NTP and clock interval */
2025 tk->ntp_error += tk->ntp_tick << shift;
2026 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2027 (tk->ntp_error_shift + shift);
2028
2029 return offset;
2030 }
2031
2032 /**
2033 * update_wall_time - Uses the current clocksource to increment the wall time
2034 *
2035 */
2036 void update_wall_time(void)
2037 {
2038 struct timekeeper *real_tk = &tk_core.timekeeper;
2039 struct timekeeper *tk = &shadow_timekeeper;
2040 cycle_t offset;
2041 int shift = 0, maxshift;
2042 unsigned int clock_set = 0;
2043 unsigned long flags;
2044
2045 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2046
2047 /* Make sure we're fully resumed: */
2048 if (unlikely(timekeeping_suspended))
2049 goto out;
2050
2051 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2052 offset = real_tk->cycle_interval;
2053 #else
2054 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2055 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2056 #endif
2057
2058 /* Check if there's really nothing to do */
2059 if (offset < real_tk->cycle_interval)
2060 goto out;
2061
2062 /* Do some additional sanity checking */
2063 timekeeping_check_update(real_tk, offset);
2064
2065 /*
2066 * With NO_HZ we may have to accumulate many cycle_intervals
2067 * (think "ticks") worth of time at once. To do this efficiently,
2068 * we calculate the largest doubling multiple of cycle_intervals
2069 * that is smaller than the offset. We then accumulate that
2070 * chunk in one go, and then try to consume the next smaller
2071 * doubled multiple.
2072 */
2073 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2074 shift = max(0, shift);
2075 /* Bound shift to one less than what overflows tick_length */
2076 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2077 shift = min(shift, maxshift);
2078 while (offset >= tk->cycle_interval) {
2079 offset = logarithmic_accumulation(tk, offset, shift,
2080 &clock_set);
2081 if (offset < tk->cycle_interval<<shift)
2082 shift--;
2083 }
2084
2085 /* correct the clock when NTP error is too big */
2086 timekeeping_adjust(tk, offset);
2087
2088 /*
2089 * XXX This can be killed once everyone converts
2090 * to the new update_vsyscall.
2091 */
2092 old_vsyscall_fixup(tk);
2093
2094 /*
2095 * Finally, make sure that after the rounding
2096 * xtime_nsec isn't larger than NSEC_PER_SEC
2097 */
2098 clock_set |= accumulate_nsecs_to_secs(tk);
2099
2100 write_seqcount_begin(&tk_core.seq);
2101 /*
2102 * Update the real timekeeper.
2103 *
2104 * We could avoid this memcpy by switching pointers, but that
2105 * requires changes to all other timekeeper usage sites as
2106 * well, i.e. move the timekeeper pointer getter into the
2107 * spinlocked/seqcount protected sections. And we trade this
2108 * memcpy under the tk_core.seq against one before we start
2109 * updating.
2110 */
2111 timekeeping_update(tk, clock_set);
2112 memcpy(real_tk, tk, sizeof(*tk));
2113 /* The memcpy must come last. Do not put anything here! */
2114 write_seqcount_end(&tk_core.seq);
2115 out:
2116 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2117 if (clock_set)
2118 /* Have to call _delayed version, since in irq context*/
2119 clock_was_set_delayed();
2120 }
2121
2122 /**
2123 * getboottime64 - Return the real time of system boot.
2124 * @ts: pointer to the timespec64 to be set
2125 *
2126 * Returns the wall-time of boot in a timespec64.
2127 *
2128 * This is based on the wall_to_monotonic offset and the total suspend
2129 * time. Calls to settimeofday will affect the value returned (which
2130 * basically means that however wrong your real time clock is at boot time,
2131 * you get the right time here).
2132 */
2133 void getboottime64(struct timespec64 *ts)
2134 {
2135 struct timekeeper *tk = &tk_core.timekeeper;
2136 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2137
2138 *ts = ktime_to_timespec64(t);
2139 }
2140 EXPORT_SYMBOL_GPL(getboottime64);
2141
2142 unsigned long get_seconds(void)
2143 {
2144 struct timekeeper *tk = &tk_core.timekeeper;
2145
2146 return tk->xtime_sec;
2147 }
2148 EXPORT_SYMBOL(get_seconds);
2149
2150 struct timespec __current_kernel_time(void)
2151 {
2152 struct timekeeper *tk = &tk_core.timekeeper;
2153
2154 return timespec64_to_timespec(tk_xtime(tk));
2155 }
2156
2157 struct timespec64 current_kernel_time64(void)
2158 {
2159 struct timekeeper *tk = &tk_core.timekeeper;
2160 struct timespec64 now;
2161 unsigned long seq;
2162
2163 do {
2164 seq = read_seqcount_begin(&tk_core.seq);
2165
2166 now = tk_xtime(tk);
2167 } while (read_seqcount_retry(&tk_core.seq, seq));
2168
2169 return now;
2170 }
2171 EXPORT_SYMBOL(current_kernel_time64);
2172
2173 struct timespec64 get_monotonic_coarse64(void)
2174 {
2175 struct timekeeper *tk = &tk_core.timekeeper;
2176 struct timespec64 now, mono;
2177 unsigned long seq;
2178
2179 do {
2180 seq = read_seqcount_begin(&tk_core.seq);
2181
2182 now = tk_xtime(tk);
2183 mono = tk->wall_to_monotonic;
2184 } while (read_seqcount_retry(&tk_core.seq, seq));
2185
2186 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2187 now.tv_nsec + mono.tv_nsec);
2188
2189 return now;
2190 }
2191 EXPORT_SYMBOL(get_monotonic_coarse64);
2192
2193 /*
2194 * Must hold jiffies_lock
2195 */
2196 void do_timer(unsigned long ticks)
2197 {
2198 jiffies_64 += ticks;
2199 calc_global_load(ticks);
2200 }
2201
2202 /**
2203 * ktime_get_update_offsets_now - hrtimer helper
2204 * @cwsseq: pointer to check and store the clock was set sequence number
2205 * @offs_real: pointer to storage for monotonic -> realtime offset
2206 * @offs_boot: pointer to storage for monotonic -> boottime offset
2207 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2208 *
2209 * Returns current monotonic time and updates the offsets if the
2210 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2211 * different.
2212 *
2213 * Called from hrtimer_interrupt() or retrigger_next_event()
2214 */
2215 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2216 ktime_t *offs_boot, ktime_t *offs_tai)
2217 {
2218 struct timekeeper *tk = &tk_core.timekeeper;
2219 unsigned int seq;
2220 ktime_t base;
2221 u64 nsecs;
2222
2223 do {
2224 seq = read_seqcount_begin(&tk_core.seq);
2225
2226 base = tk->tkr_mono.base;
2227 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2228 base = ktime_add_ns(base, nsecs);
2229
2230 if (*cwsseq != tk->clock_was_set_seq) {
2231 *cwsseq = tk->clock_was_set_seq;
2232 *offs_real = tk->offs_real;
2233 *offs_boot = tk->offs_boot;
2234 *offs_tai = tk->offs_tai;
2235 }
2236
2237 /* Handle leapsecond insertion adjustments */
2238 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2239 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2240
2241 } while (read_seqcount_retry(&tk_core.seq, seq));
2242
2243 return base;
2244 }
2245
2246 /**
2247 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2248 */
2249 int do_adjtimex(struct timex *txc)
2250 {
2251 struct timekeeper *tk = &tk_core.timekeeper;
2252 unsigned long flags;
2253 struct timespec64 ts;
2254 s32 orig_tai, tai;
2255 int ret;
2256
2257 /* Validate the data before disabling interrupts */
2258 ret = ntp_validate_timex(txc);
2259 if (ret)
2260 return ret;
2261
2262 if (txc->modes & ADJ_SETOFFSET) {
2263 struct timespec delta;
2264 delta.tv_sec = txc->time.tv_sec;
2265 delta.tv_nsec = txc->time.tv_usec;
2266 if (!(txc->modes & ADJ_NANO))
2267 delta.tv_nsec *= 1000;
2268 ret = timekeeping_inject_offset(&delta);
2269 if (ret)
2270 return ret;
2271 }
2272
2273 getnstimeofday64(&ts);
2274
2275 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2276 write_seqcount_begin(&tk_core.seq);
2277
2278 orig_tai = tai = tk->tai_offset;
2279 ret = __do_adjtimex(txc, &ts, &tai);
2280
2281 if (tai != orig_tai) {
2282 __timekeeping_set_tai_offset(tk, tai);
2283 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2284 }
2285 tk_update_leap_state(tk);
2286
2287 write_seqcount_end(&tk_core.seq);
2288 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2289
2290 if (tai != orig_tai)
2291 clock_was_set();
2292
2293 ntp_notify_cmos_timer();
2294
2295 return ret;
2296 }
2297
2298 #ifdef CONFIG_NTP_PPS
2299 /**
2300 * hardpps() - Accessor function to NTP __hardpps function
2301 */
2302 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2303 {
2304 unsigned long flags;
2305
2306 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2307 write_seqcount_begin(&tk_core.seq);
2308
2309 __hardpps(phase_ts, raw_ts);
2310
2311 write_seqcount_end(&tk_core.seq);
2312 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2313 }
2314 EXPORT_SYMBOL(hardpps);
2315 #endif
2316
2317 /**
2318 * xtime_update() - advances the timekeeping infrastructure
2319 * @ticks: number of ticks, that have elapsed since the last call.
2320 *
2321 * Must be called with interrupts disabled.
2322 */
2323 void xtime_update(unsigned long ticks)
2324 {
2325 write_seqlock(&jiffies_lock);
2326 do_timer(ticks);
2327 write_sequnlock(&jiffies_lock);
2328 update_wall_time();
2329 }