]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/time/timekeeping.c
Merge tag 'char-misc-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[mirror_ubuntu-jammy-kernel.git] / kernel / time / timekeeping.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
5 */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
24 #include <linux/audit.h>
25
26 #include "tick-internal.h"
27 #include "ntp_internal.h"
28 #include "timekeeping_internal.h"
29
30 #define TK_CLEAR_NTP (1 << 0)
31 #define TK_MIRROR (1 << 1)
32 #define TK_CLOCK_WAS_SET (1 << 2)
33
34 enum timekeeping_adv_mode {
35 /* Update timekeeper when a tick has passed */
36 TK_ADV_TICK,
37
38 /* Update timekeeper on a direct frequency change */
39 TK_ADV_FREQ
40 };
41
42 DEFINE_RAW_SPINLOCK(timekeeper_lock);
43
44 /*
45 * The most important data for readout fits into a single 64 byte
46 * cache line.
47 */
48 static struct {
49 seqcount_raw_spinlock_t seq;
50 struct timekeeper timekeeper;
51 } tk_core ____cacheline_aligned = {
52 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
53 };
54
55 static struct timekeeper shadow_timekeeper;
56
57 /* flag for if timekeeping is suspended */
58 int __read_mostly timekeeping_suspended;
59
60 /**
61 * struct tk_fast - NMI safe timekeeper
62 * @seq: Sequence counter for protecting updates. The lowest bit
63 * is the index for the tk_read_base array
64 * @base: tk_read_base array. Access is indexed by the lowest bit of
65 * @seq.
66 *
67 * See @update_fast_timekeeper() below.
68 */
69 struct tk_fast {
70 seqcount_latch_t seq;
71 struct tk_read_base base[2];
72 };
73
74 /* Suspend-time cycles value for halted fast timekeeper. */
75 static u64 cycles_at_suspend;
76
77 static u64 dummy_clock_read(struct clocksource *cs)
78 {
79 if (timekeeping_suspended)
80 return cycles_at_suspend;
81 return local_clock();
82 }
83
84 static struct clocksource dummy_clock = {
85 .read = dummy_clock_read,
86 };
87
88 /*
89 * Boot time initialization which allows local_clock() to be utilized
90 * during early boot when clocksources are not available. local_clock()
91 * returns nanoseconds already so no conversion is required, hence mult=1
92 * and shift=0. When the first proper clocksource is installed then
93 * the fast time keepers are updated with the correct values.
94 */
95 #define FAST_TK_INIT \
96 { \
97 .clock = &dummy_clock, \
98 .mask = CLOCKSOURCE_MASK(64), \
99 .mult = 1, \
100 .shift = 0, \
101 }
102
103 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
104 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
105 .base[0] = FAST_TK_INIT,
106 .base[1] = FAST_TK_INIT,
107 };
108
109 static struct tk_fast tk_fast_raw ____cacheline_aligned = {
110 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
111 .base[0] = FAST_TK_INIT,
112 .base[1] = FAST_TK_INIT,
113 };
114
115 static inline void tk_normalize_xtime(struct timekeeper *tk)
116 {
117 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
118 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
119 tk->xtime_sec++;
120 }
121 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
122 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
123 tk->raw_sec++;
124 }
125 }
126
127 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
128 {
129 struct timespec64 ts;
130
131 ts.tv_sec = tk->xtime_sec;
132 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
133 return ts;
134 }
135
136 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
137 {
138 tk->xtime_sec = ts->tv_sec;
139 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
140 }
141
142 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
143 {
144 tk->xtime_sec += ts->tv_sec;
145 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
146 tk_normalize_xtime(tk);
147 }
148
149 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
150 {
151 struct timespec64 tmp;
152
153 /*
154 * Verify consistency of: offset_real = -wall_to_monotonic
155 * before modifying anything
156 */
157 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
158 -tk->wall_to_monotonic.tv_nsec);
159 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
160 tk->wall_to_monotonic = wtm;
161 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
162 tk->offs_real = timespec64_to_ktime(tmp);
163 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
164 }
165
166 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
167 {
168 tk->offs_boot = ktime_add(tk->offs_boot, delta);
169 /*
170 * Timespec representation for VDSO update to avoid 64bit division
171 * on every update.
172 */
173 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
174 }
175
176 /*
177 * tk_clock_read - atomic clocksource read() helper
178 *
179 * This helper is necessary to use in the read paths because, while the
180 * seqcount ensures we don't return a bad value while structures are updated,
181 * it doesn't protect from potential crashes. There is the possibility that
182 * the tkr's clocksource may change between the read reference, and the
183 * clock reference passed to the read function. This can cause crashes if
184 * the wrong clocksource is passed to the wrong read function.
185 * This isn't necessary to use when holding the timekeeper_lock or doing
186 * a read of the fast-timekeeper tkrs (which is protected by its own locking
187 * and update logic).
188 */
189 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
190 {
191 struct clocksource *clock = READ_ONCE(tkr->clock);
192
193 return clock->read(clock);
194 }
195
196 #ifdef CONFIG_DEBUG_TIMEKEEPING
197 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
198
199 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
200 {
201
202 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
203 const char *name = tk->tkr_mono.clock->name;
204
205 if (offset > max_cycles) {
206 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
207 offset, name, max_cycles);
208 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
209 } else {
210 if (offset > (max_cycles >> 1)) {
211 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
212 offset, name, max_cycles >> 1);
213 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
214 }
215 }
216
217 if (tk->underflow_seen) {
218 if (jiffies - tk->last_warning > WARNING_FREQ) {
219 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
220 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
221 printk_deferred(" Your kernel is probably still fine.\n");
222 tk->last_warning = jiffies;
223 }
224 tk->underflow_seen = 0;
225 }
226
227 if (tk->overflow_seen) {
228 if (jiffies - tk->last_warning > WARNING_FREQ) {
229 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
230 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
231 printk_deferred(" Your kernel is probably still fine.\n");
232 tk->last_warning = jiffies;
233 }
234 tk->overflow_seen = 0;
235 }
236 }
237
238 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
239 {
240 struct timekeeper *tk = &tk_core.timekeeper;
241 u64 now, last, mask, max, delta;
242 unsigned int seq;
243
244 /*
245 * Since we're called holding a seqcount, the data may shift
246 * under us while we're doing the calculation. This can cause
247 * false positives, since we'd note a problem but throw the
248 * results away. So nest another seqcount here to atomically
249 * grab the points we are checking with.
250 */
251 do {
252 seq = read_seqcount_begin(&tk_core.seq);
253 now = tk_clock_read(tkr);
254 last = tkr->cycle_last;
255 mask = tkr->mask;
256 max = tkr->clock->max_cycles;
257 } while (read_seqcount_retry(&tk_core.seq, seq));
258
259 delta = clocksource_delta(now, last, mask);
260
261 /*
262 * Try to catch underflows by checking if we are seeing small
263 * mask-relative negative values.
264 */
265 if (unlikely((~delta & mask) < (mask >> 3))) {
266 tk->underflow_seen = 1;
267 delta = 0;
268 }
269
270 /* Cap delta value to the max_cycles values to avoid mult overflows */
271 if (unlikely(delta > max)) {
272 tk->overflow_seen = 1;
273 delta = tkr->clock->max_cycles;
274 }
275
276 return delta;
277 }
278 #else
279 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
280 {
281 }
282 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
283 {
284 u64 cycle_now, delta;
285
286 /* read clocksource */
287 cycle_now = tk_clock_read(tkr);
288
289 /* calculate the delta since the last update_wall_time */
290 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
291
292 return delta;
293 }
294 #endif
295
296 /**
297 * tk_setup_internals - Set up internals to use clocksource clock.
298 *
299 * @tk: The target timekeeper to setup.
300 * @clock: Pointer to clocksource.
301 *
302 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
303 * pair and interval request.
304 *
305 * Unless you're the timekeeping code, you should not be using this!
306 */
307 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
308 {
309 u64 interval;
310 u64 tmp, ntpinterval;
311 struct clocksource *old_clock;
312
313 ++tk->cs_was_changed_seq;
314 old_clock = tk->tkr_mono.clock;
315 tk->tkr_mono.clock = clock;
316 tk->tkr_mono.mask = clock->mask;
317 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
318
319 tk->tkr_raw.clock = clock;
320 tk->tkr_raw.mask = clock->mask;
321 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
322
323 /* Do the ns -> cycle conversion first, using original mult */
324 tmp = NTP_INTERVAL_LENGTH;
325 tmp <<= clock->shift;
326 ntpinterval = tmp;
327 tmp += clock->mult/2;
328 do_div(tmp, clock->mult);
329 if (tmp == 0)
330 tmp = 1;
331
332 interval = (u64) tmp;
333 tk->cycle_interval = interval;
334
335 /* Go back from cycles -> shifted ns */
336 tk->xtime_interval = interval * clock->mult;
337 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
338 tk->raw_interval = interval * clock->mult;
339
340 /* if changing clocks, convert xtime_nsec shift units */
341 if (old_clock) {
342 int shift_change = clock->shift - old_clock->shift;
343 if (shift_change < 0) {
344 tk->tkr_mono.xtime_nsec >>= -shift_change;
345 tk->tkr_raw.xtime_nsec >>= -shift_change;
346 } else {
347 tk->tkr_mono.xtime_nsec <<= shift_change;
348 tk->tkr_raw.xtime_nsec <<= shift_change;
349 }
350 }
351
352 tk->tkr_mono.shift = clock->shift;
353 tk->tkr_raw.shift = clock->shift;
354
355 tk->ntp_error = 0;
356 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
357 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
358
359 /*
360 * The timekeeper keeps its own mult values for the currently
361 * active clocksource. These value will be adjusted via NTP
362 * to counteract clock drifting.
363 */
364 tk->tkr_mono.mult = clock->mult;
365 tk->tkr_raw.mult = clock->mult;
366 tk->ntp_err_mult = 0;
367 tk->skip_second_overflow = 0;
368 }
369
370 /* Timekeeper helper functions. */
371
372 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
373 {
374 u64 nsec;
375
376 nsec = delta * tkr->mult + tkr->xtime_nsec;
377 nsec >>= tkr->shift;
378
379 return nsec;
380 }
381
382 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
383 {
384 u64 delta;
385
386 delta = timekeeping_get_delta(tkr);
387 return timekeeping_delta_to_ns(tkr, delta);
388 }
389
390 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
391 {
392 u64 delta;
393
394 /* calculate the delta since the last update_wall_time */
395 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
396 return timekeeping_delta_to_ns(tkr, delta);
397 }
398
399 /**
400 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
401 * @tkr: Timekeeping readout base from which we take the update
402 * @tkf: Pointer to NMI safe timekeeper
403 *
404 * We want to use this from any context including NMI and tracing /
405 * instrumenting the timekeeping code itself.
406 *
407 * Employ the latch technique; see @raw_write_seqcount_latch.
408 *
409 * So if a NMI hits the update of base[0] then it will use base[1]
410 * which is still consistent. In the worst case this can result is a
411 * slightly wrong timestamp (a few nanoseconds). See
412 * @ktime_get_mono_fast_ns.
413 */
414 static void update_fast_timekeeper(const struct tk_read_base *tkr,
415 struct tk_fast *tkf)
416 {
417 struct tk_read_base *base = tkf->base;
418
419 /* Force readers off to base[1] */
420 raw_write_seqcount_latch(&tkf->seq);
421
422 /* Update base[0] */
423 memcpy(base, tkr, sizeof(*base));
424
425 /* Force readers back to base[0] */
426 raw_write_seqcount_latch(&tkf->seq);
427
428 /* Update base[1] */
429 memcpy(base + 1, base, sizeof(*base));
430 }
431
432 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
433 {
434 struct tk_read_base *tkr;
435 unsigned int seq;
436 u64 now;
437
438 do {
439 seq = raw_read_seqcount_latch(&tkf->seq);
440 tkr = tkf->base + (seq & 0x01);
441 now = ktime_to_ns(tkr->base);
442
443 now += timekeeping_delta_to_ns(tkr,
444 clocksource_delta(
445 tk_clock_read(tkr),
446 tkr->cycle_last,
447 tkr->mask));
448 } while (read_seqcount_latch_retry(&tkf->seq, seq));
449
450 return now;
451 }
452
453 /**
454 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
455 *
456 * This timestamp is not guaranteed to be monotonic across an update.
457 * The timestamp is calculated by:
458 *
459 * now = base_mono + clock_delta * slope
460 *
461 * So if the update lowers the slope, readers who are forced to the
462 * not yet updated second array are still using the old steeper slope.
463 *
464 * tmono
465 * ^
466 * | o n
467 * | o n
468 * | u
469 * | o
470 * |o
471 * |12345678---> reader order
472 *
473 * o = old slope
474 * u = update
475 * n = new slope
476 *
477 * So reader 6 will observe time going backwards versus reader 5.
478 *
479 * While other CPUs are likely to be able to observe that, the only way
480 * for a CPU local observation is when an NMI hits in the middle of
481 * the update. Timestamps taken from that NMI context might be ahead
482 * of the following timestamps. Callers need to be aware of that and
483 * deal with it.
484 */
485 u64 ktime_get_mono_fast_ns(void)
486 {
487 return __ktime_get_fast_ns(&tk_fast_mono);
488 }
489 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
490
491 /**
492 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
493 *
494 * Contrary to ktime_get_mono_fast_ns() this is always correct because the
495 * conversion factor is not affected by NTP/PTP correction.
496 */
497 u64 ktime_get_raw_fast_ns(void)
498 {
499 return __ktime_get_fast_ns(&tk_fast_raw);
500 }
501 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
502
503 /**
504 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
505 *
506 * To keep it NMI safe since we're accessing from tracing, we're not using a
507 * separate timekeeper with updates to monotonic clock and boot offset
508 * protected with seqcounts. This has the following minor side effects:
509 *
510 * (1) Its possible that a timestamp be taken after the boot offset is updated
511 * but before the timekeeper is updated. If this happens, the new boot offset
512 * is added to the old timekeeping making the clock appear to update slightly
513 * earlier:
514 * CPU 0 CPU 1
515 * timekeeping_inject_sleeptime64()
516 * __timekeeping_inject_sleeptime(tk, delta);
517 * timestamp();
518 * timekeeping_update(tk, TK_CLEAR_NTP...);
519 *
520 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
521 * partially updated. Since the tk->offs_boot update is a rare event, this
522 * should be a rare occurrence which postprocessing should be able to handle.
523 *
524 * The caveats vs. timestamp ordering as documented for ktime_get_fast_ns()
525 * apply as well.
526 */
527 u64 notrace ktime_get_boot_fast_ns(void)
528 {
529 struct timekeeper *tk = &tk_core.timekeeper;
530
531 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
532 }
533 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
534
535 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
536 {
537 struct tk_read_base *tkr;
538 u64 basem, baser, delta;
539 unsigned int seq;
540
541 do {
542 seq = raw_read_seqcount_latch(&tkf->seq);
543 tkr = tkf->base + (seq & 0x01);
544 basem = ktime_to_ns(tkr->base);
545 baser = ktime_to_ns(tkr->base_real);
546
547 delta = timekeeping_delta_to_ns(tkr,
548 clocksource_delta(tk_clock_read(tkr),
549 tkr->cycle_last, tkr->mask));
550 } while (read_seqcount_latch_retry(&tkf->seq, seq));
551
552 if (mono)
553 *mono = basem + delta;
554 return baser + delta;
555 }
556
557 /**
558 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
559 *
560 * See ktime_get_fast_ns() for documentation of the time stamp ordering.
561 */
562 u64 ktime_get_real_fast_ns(void)
563 {
564 return __ktime_get_real_fast(&tk_fast_mono, NULL);
565 }
566 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
567
568 /**
569 * ktime_get_fast_timestamps: - NMI safe timestamps
570 * @snapshot: Pointer to timestamp storage
571 *
572 * Stores clock monotonic, boottime and realtime timestamps.
573 *
574 * Boot time is a racy access on 32bit systems if the sleep time injection
575 * happens late during resume and not in timekeeping_resume(). That could
576 * be avoided by expanding struct tk_read_base with boot offset for 32bit
577 * and adding more overhead to the update. As this is a hard to observe
578 * once per resume event which can be filtered with reasonable effort using
579 * the accurate mono/real timestamps, it's probably not worth the trouble.
580 *
581 * Aside of that it might be possible on 32 and 64 bit to observe the
582 * following when the sleep time injection happens late:
583 *
584 * CPU 0 CPU 1
585 * timekeeping_resume()
586 * ktime_get_fast_timestamps()
587 * mono, real = __ktime_get_real_fast()
588 * inject_sleep_time()
589 * update boot offset
590 * boot = mono + bootoffset;
591 *
592 * That means that boot time already has the sleep time adjustment, but
593 * real time does not. On the next readout both are in sync again.
594 *
595 * Preventing this for 64bit is not really feasible without destroying the
596 * careful cache layout of the timekeeper because the sequence count and
597 * struct tk_read_base would then need two cache lines instead of one.
598 *
599 * Access to the time keeper clock source is disabled accross the innermost
600 * steps of suspend/resume. The accessors still work, but the timestamps
601 * are frozen until time keeping is resumed which happens very early.
602 *
603 * For regular suspend/resume there is no observable difference vs. sched
604 * clock, but it might affect some of the nasty low level debug printks.
605 *
606 * OTOH, access to sched clock is not guaranteed accross suspend/resume on
607 * all systems either so it depends on the hardware in use.
608 *
609 * If that turns out to be a real problem then this could be mitigated by
610 * using sched clock in a similar way as during early boot. But it's not as
611 * trivial as on early boot because it needs some careful protection
612 * against the clock monotonic timestamp jumping backwards on resume.
613 */
614 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
615 {
616 struct timekeeper *tk = &tk_core.timekeeper;
617
618 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
619 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
620 }
621
622 /**
623 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
624 * @tk: Timekeeper to snapshot.
625 *
626 * It generally is unsafe to access the clocksource after timekeeping has been
627 * suspended, so take a snapshot of the readout base of @tk and use it as the
628 * fast timekeeper's readout base while suspended. It will return the same
629 * number of cycles every time until timekeeping is resumed at which time the
630 * proper readout base for the fast timekeeper will be restored automatically.
631 */
632 static void halt_fast_timekeeper(const struct timekeeper *tk)
633 {
634 static struct tk_read_base tkr_dummy;
635 const struct tk_read_base *tkr = &tk->tkr_mono;
636
637 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
638 cycles_at_suspend = tk_clock_read(tkr);
639 tkr_dummy.clock = &dummy_clock;
640 tkr_dummy.base_real = tkr->base + tk->offs_real;
641 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
642
643 tkr = &tk->tkr_raw;
644 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
645 tkr_dummy.clock = &dummy_clock;
646 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
647 }
648
649 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
650
651 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
652 {
653 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
654 }
655
656 /**
657 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
658 * @nb: Pointer to the notifier block to register
659 */
660 int pvclock_gtod_register_notifier(struct notifier_block *nb)
661 {
662 struct timekeeper *tk = &tk_core.timekeeper;
663 unsigned long flags;
664 int ret;
665
666 raw_spin_lock_irqsave(&timekeeper_lock, flags);
667 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
668 update_pvclock_gtod(tk, true);
669 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
670
671 return ret;
672 }
673 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
674
675 /**
676 * pvclock_gtod_unregister_notifier - unregister a pvclock
677 * timedata update listener
678 * @nb: Pointer to the notifier block to unregister
679 */
680 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
681 {
682 unsigned long flags;
683 int ret;
684
685 raw_spin_lock_irqsave(&timekeeper_lock, flags);
686 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
687 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
688
689 return ret;
690 }
691 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
692
693 /*
694 * tk_update_leap_state - helper to update the next_leap_ktime
695 */
696 static inline void tk_update_leap_state(struct timekeeper *tk)
697 {
698 tk->next_leap_ktime = ntp_get_next_leap();
699 if (tk->next_leap_ktime != KTIME_MAX)
700 /* Convert to monotonic time */
701 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
702 }
703
704 /*
705 * Update the ktime_t based scalar nsec members of the timekeeper
706 */
707 static inline void tk_update_ktime_data(struct timekeeper *tk)
708 {
709 u64 seconds;
710 u32 nsec;
711
712 /*
713 * The xtime based monotonic readout is:
714 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
715 * The ktime based monotonic readout is:
716 * nsec = base_mono + now();
717 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
718 */
719 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
720 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
721 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
722
723 /*
724 * The sum of the nanoseconds portions of xtime and
725 * wall_to_monotonic can be greater/equal one second. Take
726 * this into account before updating tk->ktime_sec.
727 */
728 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
729 if (nsec >= NSEC_PER_SEC)
730 seconds++;
731 tk->ktime_sec = seconds;
732
733 /* Update the monotonic raw base */
734 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
735 }
736
737 /* must hold timekeeper_lock */
738 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
739 {
740 if (action & TK_CLEAR_NTP) {
741 tk->ntp_error = 0;
742 ntp_clear();
743 }
744
745 tk_update_leap_state(tk);
746 tk_update_ktime_data(tk);
747
748 update_vsyscall(tk);
749 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
750
751 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
752 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
753 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
754
755 if (action & TK_CLOCK_WAS_SET)
756 tk->clock_was_set_seq++;
757 /*
758 * The mirroring of the data to the shadow-timekeeper needs
759 * to happen last here to ensure we don't over-write the
760 * timekeeper structure on the next update with stale data
761 */
762 if (action & TK_MIRROR)
763 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
764 sizeof(tk_core.timekeeper));
765 }
766
767 /**
768 * timekeeping_forward_now - update clock to the current time
769 * @tk: Pointer to the timekeeper to update
770 *
771 * Forward the current clock to update its state since the last call to
772 * update_wall_time(). This is useful before significant clock changes,
773 * as it avoids having to deal with this time offset explicitly.
774 */
775 static void timekeeping_forward_now(struct timekeeper *tk)
776 {
777 u64 cycle_now, delta;
778
779 cycle_now = tk_clock_read(&tk->tkr_mono);
780 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
781 tk->tkr_mono.cycle_last = cycle_now;
782 tk->tkr_raw.cycle_last = cycle_now;
783
784 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
785 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
786
787 tk_normalize_xtime(tk);
788 }
789
790 /**
791 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
792 * @ts: pointer to the timespec to be set
793 *
794 * Returns the time of day in a timespec64 (WARN if suspended).
795 */
796 void ktime_get_real_ts64(struct timespec64 *ts)
797 {
798 struct timekeeper *tk = &tk_core.timekeeper;
799 unsigned int seq;
800 u64 nsecs;
801
802 WARN_ON(timekeeping_suspended);
803
804 do {
805 seq = read_seqcount_begin(&tk_core.seq);
806
807 ts->tv_sec = tk->xtime_sec;
808 nsecs = timekeeping_get_ns(&tk->tkr_mono);
809
810 } while (read_seqcount_retry(&tk_core.seq, seq));
811
812 ts->tv_nsec = 0;
813 timespec64_add_ns(ts, nsecs);
814 }
815 EXPORT_SYMBOL(ktime_get_real_ts64);
816
817 ktime_t ktime_get(void)
818 {
819 struct timekeeper *tk = &tk_core.timekeeper;
820 unsigned int seq;
821 ktime_t base;
822 u64 nsecs;
823
824 WARN_ON(timekeeping_suspended);
825
826 do {
827 seq = read_seqcount_begin(&tk_core.seq);
828 base = tk->tkr_mono.base;
829 nsecs = timekeeping_get_ns(&tk->tkr_mono);
830
831 } while (read_seqcount_retry(&tk_core.seq, seq));
832
833 return ktime_add_ns(base, nsecs);
834 }
835 EXPORT_SYMBOL_GPL(ktime_get);
836
837 u32 ktime_get_resolution_ns(void)
838 {
839 struct timekeeper *tk = &tk_core.timekeeper;
840 unsigned int seq;
841 u32 nsecs;
842
843 WARN_ON(timekeeping_suspended);
844
845 do {
846 seq = read_seqcount_begin(&tk_core.seq);
847 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
848 } while (read_seqcount_retry(&tk_core.seq, seq));
849
850 return nsecs;
851 }
852 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
853
854 static ktime_t *offsets[TK_OFFS_MAX] = {
855 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
856 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
857 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
858 };
859
860 ktime_t ktime_get_with_offset(enum tk_offsets offs)
861 {
862 struct timekeeper *tk = &tk_core.timekeeper;
863 unsigned int seq;
864 ktime_t base, *offset = offsets[offs];
865 u64 nsecs;
866
867 WARN_ON(timekeeping_suspended);
868
869 do {
870 seq = read_seqcount_begin(&tk_core.seq);
871 base = ktime_add(tk->tkr_mono.base, *offset);
872 nsecs = timekeeping_get_ns(&tk->tkr_mono);
873
874 } while (read_seqcount_retry(&tk_core.seq, seq));
875
876 return ktime_add_ns(base, nsecs);
877
878 }
879 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
880
881 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
882 {
883 struct timekeeper *tk = &tk_core.timekeeper;
884 unsigned int seq;
885 ktime_t base, *offset = offsets[offs];
886 u64 nsecs;
887
888 WARN_ON(timekeeping_suspended);
889
890 do {
891 seq = read_seqcount_begin(&tk_core.seq);
892 base = ktime_add(tk->tkr_mono.base, *offset);
893 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
894
895 } while (read_seqcount_retry(&tk_core.seq, seq));
896
897 return ktime_add_ns(base, nsecs);
898 }
899 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
900
901 /**
902 * ktime_mono_to_any() - convert mononotic time to any other time
903 * @tmono: time to convert.
904 * @offs: which offset to use
905 */
906 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
907 {
908 ktime_t *offset = offsets[offs];
909 unsigned int seq;
910 ktime_t tconv;
911
912 do {
913 seq = read_seqcount_begin(&tk_core.seq);
914 tconv = ktime_add(tmono, *offset);
915 } while (read_seqcount_retry(&tk_core.seq, seq));
916
917 return tconv;
918 }
919 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
920
921 /**
922 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
923 */
924 ktime_t ktime_get_raw(void)
925 {
926 struct timekeeper *tk = &tk_core.timekeeper;
927 unsigned int seq;
928 ktime_t base;
929 u64 nsecs;
930
931 do {
932 seq = read_seqcount_begin(&tk_core.seq);
933 base = tk->tkr_raw.base;
934 nsecs = timekeeping_get_ns(&tk->tkr_raw);
935
936 } while (read_seqcount_retry(&tk_core.seq, seq));
937
938 return ktime_add_ns(base, nsecs);
939 }
940 EXPORT_SYMBOL_GPL(ktime_get_raw);
941
942 /**
943 * ktime_get_ts64 - get the monotonic clock in timespec64 format
944 * @ts: pointer to timespec variable
945 *
946 * The function calculates the monotonic clock from the realtime
947 * clock and the wall_to_monotonic offset and stores the result
948 * in normalized timespec64 format in the variable pointed to by @ts.
949 */
950 void ktime_get_ts64(struct timespec64 *ts)
951 {
952 struct timekeeper *tk = &tk_core.timekeeper;
953 struct timespec64 tomono;
954 unsigned int seq;
955 u64 nsec;
956
957 WARN_ON(timekeeping_suspended);
958
959 do {
960 seq = read_seqcount_begin(&tk_core.seq);
961 ts->tv_sec = tk->xtime_sec;
962 nsec = timekeeping_get_ns(&tk->tkr_mono);
963 tomono = tk->wall_to_monotonic;
964
965 } while (read_seqcount_retry(&tk_core.seq, seq));
966
967 ts->tv_sec += tomono.tv_sec;
968 ts->tv_nsec = 0;
969 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
970 }
971 EXPORT_SYMBOL_GPL(ktime_get_ts64);
972
973 /**
974 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
975 *
976 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
977 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
978 * works on both 32 and 64 bit systems. On 32 bit systems the readout
979 * covers ~136 years of uptime which should be enough to prevent
980 * premature wrap arounds.
981 */
982 time64_t ktime_get_seconds(void)
983 {
984 struct timekeeper *tk = &tk_core.timekeeper;
985
986 WARN_ON(timekeeping_suspended);
987 return tk->ktime_sec;
988 }
989 EXPORT_SYMBOL_GPL(ktime_get_seconds);
990
991 /**
992 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
993 *
994 * Returns the wall clock seconds since 1970.
995 *
996 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
997 * 32bit systems the access must be protected with the sequence
998 * counter to provide "atomic" access to the 64bit tk->xtime_sec
999 * value.
1000 */
1001 time64_t ktime_get_real_seconds(void)
1002 {
1003 struct timekeeper *tk = &tk_core.timekeeper;
1004 time64_t seconds;
1005 unsigned int seq;
1006
1007 if (IS_ENABLED(CONFIG_64BIT))
1008 return tk->xtime_sec;
1009
1010 do {
1011 seq = read_seqcount_begin(&tk_core.seq);
1012 seconds = tk->xtime_sec;
1013
1014 } while (read_seqcount_retry(&tk_core.seq, seq));
1015
1016 return seconds;
1017 }
1018 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1019
1020 /**
1021 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1022 * but without the sequence counter protect. This internal function
1023 * is called just when timekeeping lock is already held.
1024 */
1025 noinstr time64_t __ktime_get_real_seconds(void)
1026 {
1027 struct timekeeper *tk = &tk_core.timekeeper;
1028
1029 return tk->xtime_sec;
1030 }
1031
1032 /**
1033 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1034 * @systime_snapshot: pointer to struct receiving the system time snapshot
1035 */
1036 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1037 {
1038 struct timekeeper *tk = &tk_core.timekeeper;
1039 unsigned int seq;
1040 ktime_t base_raw;
1041 ktime_t base_real;
1042 u64 nsec_raw;
1043 u64 nsec_real;
1044 u64 now;
1045
1046 WARN_ON_ONCE(timekeeping_suspended);
1047
1048 do {
1049 seq = read_seqcount_begin(&tk_core.seq);
1050 now = tk_clock_read(&tk->tkr_mono);
1051 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1052 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1053 base_real = ktime_add(tk->tkr_mono.base,
1054 tk_core.timekeeper.offs_real);
1055 base_raw = tk->tkr_raw.base;
1056 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1057 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1058 } while (read_seqcount_retry(&tk_core.seq, seq));
1059
1060 systime_snapshot->cycles = now;
1061 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1062 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1063 }
1064 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1065
1066 /* Scale base by mult/div checking for overflow */
1067 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1068 {
1069 u64 tmp, rem;
1070
1071 tmp = div64_u64_rem(*base, div, &rem);
1072
1073 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1074 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1075 return -EOVERFLOW;
1076 tmp *= mult;
1077
1078 rem = div64_u64(rem * mult, div);
1079 *base = tmp + rem;
1080 return 0;
1081 }
1082
1083 /**
1084 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1085 * @history: Snapshot representing start of history
1086 * @partial_history_cycles: Cycle offset into history (fractional part)
1087 * @total_history_cycles: Total history length in cycles
1088 * @discontinuity: True indicates clock was set on history period
1089 * @ts: Cross timestamp that should be adjusted using
1090 * partial/total ratio
1091 *
1092 * Helper function used by get_device_system_crosststamp() to correct the
1093 * crosstimestamp corresponding to the start of the current interval to the
1094 * system counter value (timestamp point) provided by the driver. The
1095 * total_history_* quantities are the total history starting at the provided
1096 * reference point and ending at the start of the current interval. The cycle
1097 * count between the driver timestamp point and the start of the current
1098 * interval is partial_history_cycles.
1099 */
1100 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1101 u64 partial_history_cycles,
1102 u64 total_history_cycles,
1103 bool discontinuity,
1104 struct system_device_crosststamp *ts)
1105 {
1106 struct timekeeper *tk = &tk_core.timekeeper;
1107 u64 corr_raw, corr_real;
1108 bool interp_forward;
1109 int ret;
1110
1111 if (total_history_cycles == 0 || partial_history_cycles == 0)
1112 return 0;
1113
1114 /* Interpolate shortest distance from beginning or end of history */
1115 interp_forward = partial_history_cycles > total_history_cycles / 2;
1116 partial_history_cycles = interp_forward ?
1117 total_history_cycles - partial_history_cycles :
1118 partial_history_cycles;
1119
1120 /*
1121 * Scale the monotonic raw time delta by:
1122 * partial_history_cycles / total_history_cycles
1123 */
1124 corr_raw = (u64)ktime_to_ns(
1125 ktime_sub(ts->sys_monoraw, history->raw));
1126 ret = scale64_check_overflow(partial_history_cycles,
1127 total_history_cycles, &corr_raw);
1128 if (ret)
1129 return ret;
1130
1131 /*
1132 * If there is a discontinuity in the history, scale monotonic raw
1133 * correction by:
1134 * mult(real)/mult(raw) yielding the realtime correction
1135 * Otherwise, calculate the realtime correction similar to monotonic
1136 * raw calculation
1137 */
1138 if (discontinuity) {
1139 corr_real = mul_u64_u32_div
1140 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1141 } else {
1142 corr_real = (u64)ktime_to_ns(
1143 ktime_sub(ts->sys_realtime, history->real));
1144 ret = scale64_check_overflow(partial_history_cycles,
1145 total_history_cycles, &corr_real);
1146 if (ret)
1147 return ret;
1148 }
1149
1150 /* Fixup monotonic raw and real time time values */
1151 if (interp_forward) {
1152 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1153 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1154 } else {
1155 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1156 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1157 }
1158
1159 return 0;
1160 }
1161
1162 /*
1163 * cycle_between - true if test occurs chronologically between before and after
1164 */
1165 static bool cycle_between(u64 before, u64 test, u64 after)
1166 {
1167 if (test > before && test < after)
1168 return true;
1169 if (test < before && before > after)
1170 return true;
1171 return false;
1172 }
1173
1174 /**
1175 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1176 * @get_time_fn: Callback to get simultaneous device time and
1177 * system counter from the device driver
1178 * @ctx: Context passed to get_time_fn()
1179 * @history_begin: Historical reference point used to interpolate system
1180 * time when counter provided by the driver is before the current interval
1181 * @xtstamp: Receives simultaneously captured system and device time
1182 *
1183 * Reads a timestamp from a device and correlates it to system time
1184 */
1185 int get_device_system_crosststamp(int (*get_time_fn)
1186 (ktime_t *device_time,
1187 struct system_counterval_t *sys_counterval,
1188 void *ctx),
1189 void *ctx,
1190 struct system_time_snapshot *history_begin,
1191 struct system_device_crosststamp *xtstamp)
1192 {
1193 struct system_counterval_t system_counterval;
1194 struct timekeeper *tk = &tk_core.timekeeper;
1195 u64 cycles, now, interval_start;
1196 unsigned int clock_was_set_seq = 0;
1197 ktime_t base_real, base_raw;
1198 u64 nsec_real, nsec_raw;
1199 u8 cs_was_changed_seq;
1200 unsigned int seq;
1201 bool do_interp;
1202 int ret;
1203
1204 do {
1205 seq = read_seqcount_begin(&tk_core.seq);
1206 /*
1207 * Try to synchronously capture device time and a system
1208 * counter value calling back into the device driver
1209 */
1210 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1211 if (ret)
1212 return ret;
1213
1214 /*
1215 * Verify that the clocksource associated with the captured
1216 * system counter value is the same as the currently installed
1217 * timekeeper clocksource
1218 */
1219 if (tk->tkr_mono.clock != system_counterval.cs)
1220 return -ENODEV;
1221 cycles = system_counterval.cycles;
1222
1223 /*
1224 * Check whether the system counter value provided by the
1225 * device driver is on the current timekeeping interval.
1226 */
1227 now = tk_clock_read(&tk->tkr_mono);
1228 interval_start = tk->tkr_mono.cycle_last;
1229 if (!cycle_between(interval_start, cycles, now)) {
1230 clock_was_set_seq = tk->clock_was_set_seq;
1231 cs_was_changed_seq = tk->cs_was_changed_seq;
1232 cycles = interval_start;
1233 do_interp = true;
1234 } else {
1235 do_interp = false;
1236 }
1237
1238 base_real = ktime_add(tk->tkr_mono.base,
1239 tk_core.timekeeper.offs_real);
1240 base_raw = tk->tkr_raw.base;
1241
1242 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1243 system_counterval.cycles);
1244 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1245 system_counterval.cycles);
1246 } while (read_seqcount_retry(&tk_core.seq, seq));
1247
1248 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1249 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1250
1251 /*
1252 * Interpolate if necessary, adjusting back from the start of the
1253 * current interval
1254 */
1255 if (do_interp) {
1256 u64 partial_history_cycles, total_history_cycles;
1257 bool discontinuity;
1258
1259 /*
1260 * Check that the counter value occurs after the provided
1261 * history reference and that the history doesn't cross a
1262 * clocksource change
1263 */
1264 if (!history_begin ||
1265 !cycle_between(history_begin->cycles,
1266 system_counterval.cycles, cycles) ||
1267 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1268 return -EINVAL;
1269 partial_history_cycles = cycles - system_counterval.cycles;
1270 total_history_cycles = cycles - history_begin->cycles;
1271 discontinuity =
1272 history_begin->clock_was_set_seq != clock_was_set_seq;
1273
1274 ret = adjust_historical_crosststamp(history_begin,
1275 partial_history_cycles,
1276 total_history_cycles,
1277 discontinuity, xtstamp);
1278 if (ret)
1279 return ret;
1280 }
1281
1282 return 0;
1283 }
1284 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1285
1286 /**
1287 * do_settimeofday64 - Sets the time of day.
1288 * @ts: pointer to the timespec64 variable containing the new time
1289 *
1290 * Sets the time of day to the new time and update NTP and notify hrtimers
1291 */
1292 int do_settimeofday64(const struct timespec64 *ts)
1293 {
1294 struct timekeeper *tk = &tk_core.timekeeper;
1295 struct timespec64 ts_delta, xt;
1296 unsigned long flags;
1297 int ret = 0;
1298
1299 if (!timespec64_valid_settod(ts))
1300 return -EINVAL;
1301
1302 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1303 write_seqcount_begin(&tk_core.seq);
1304
1305 timekeeping_forward_now(tk);
1306
1307 xt = tk_xtime(tk);
1308 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1309 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1310
1311 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1312 ret = -EINVAL;
1313 goto out;
1314 }
1315
1316 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1317
1318 tk_set_xtime(tk, ts);
1319 out:
1320 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1321
1322 write_seqcount_end(&tk_core.seq);
1323 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1324
1325 /* signal hrtimers about time change */
1326 clock_was_set();
1327
1328 if (!ret)
1329 audit_tk_injoffset(ts_delta);
1330
1331 return ret;
1332 }
1333 EXPORT_SYMBOL(do_settimeofday64);
1334
1335 /**
1336 * timekeeping_inject_offset - Adds or subtracts from the current time.
1337 * @ts: Pointer to the timespec variable containing the offset
1338 *
1339 * Adds or subtracts an offset value from the current time.
1340 */
1341 static int timekeeping_inject_offset(const struct timespec64 *ts)
1342 {
1343 struct timekeeper *tk = &tk_core.timekeeper;
1344 unsigned long flags;
1345 struct timespec64 tmp;
1346 int ret = 0;
1347
1348 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1349 return -EINVAL;
1350
1351 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1352 write_seqcount_begin(&tk_core.seq);
1353
1354 timekeeping_forward_now(tk);
1355
1356 /* Make sure the proposed value is valid */
1357 tmp = timespec64_add(tk_xtime(tk), *ts);
1358 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1359 !timespec64_valid_settod(&tmp)) {
1360 ret = -EINVAL;
1361 goto error;
1362 }
1363
1364 tk_xtime_add(tk, ts);
1365 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1366
1367 error: /* even if we error out, we forwarded the time, so call update */
1368 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1369
1370 write_seqcount_end(&tk_core.seq);
1371 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1372
1373 /* signal hrtimers about time change */
1374 clock_was_set();
1375
1376 return ret;
1377 }
1378
1379 /*
1380 * Indicates if there is an offset between the system clock and the hardware
1381 * clock/persistent clock/rtc.
1382 */
1383 int persistent_clock_is_local;
1384
1385 /*
1386 * Adjust the time obtained from the CMOS to be UTC time instead of
1387 * local time.
1388 *
1389 * This is ugly, but preferable to the alternatives. Otherwise we
1390 * would either need to write a program to do it in /etc/rc (and risk
1391 * confusion if the program gets run more than once; it would also be
1392 * hard to make the program warp the clock precisely n hours) or
1393 * compile in the timezone information into the kernel. Bad, bad....
1394 *
1395 * - TYT, 1992-01-01
1396 *
1397 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1398 * as real UNIX machines always do it. This avoids all headaches about
1399 * daylight saving times and warping kernel clocks.
1400 */
1401 void timekeeping_warp_clock(void)
1402 {
1403 if (sys_tz.tz_minuteswest != 0) {
1404 struct timespec64 adjust;
1405
1406 persistent_clock_is_local = 1;
1407 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1408 adjust.tv_nsec = 0;
1409 timekeeping_inject_offset(&adjust);
1410 }
1411 }
1412
1413 /*
1414 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1415 */
1416 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1417 {
1418 tk->tai_offset = tai_offset;
1419 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1420 }
1421
1422 /*
1423 * change_clocksource - Swaps clocksources if a new one is available
1424 *
1425 * Accumulates current time interval and initializes new clocksource
1426 */
1427 static int change_clocksource(void *data)
1428 {
1429 struct timekeeper *tk = &tk_core.timekeeper;
1430 struct clocksource *new, *old;
1431 unsigned long flags;
1432
1433 new = (struct clocksource *) data;
1434
1435 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1436 write_seqcount_begin(&tk_core.seq);
1437
1438 timekeeping_forward_now(tk);
1439 /*
1440 * If the cs is in module, get a module reference. Succeeds
1441 * for built-in code (owner == NULL) as well.
1442 */
1443 if (try_module_get(new->owner)) {
1444 if (!new->enable || new->enable(new) == 0) {
1445 old = tk->tkr_mono.clock;
1446 tk_setup_internals(tk, new);
1447 if (old->disable)
1448 old->disable(old);
1449 module_put(old->owner);
1450 } else {
1451 module_put(new->owner);
1452 }
1453 }
1454 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1455
1456 write_seqcount_end(&tk_core.seq);
1457 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1458
1459 return 0;
1460 }
1461
1462 /**
1463 * timekeeping_notify - Install a new clock source
1464 * @clock: pointer to the clock source
1465 *
1466 * This function is called from clocksource.c after a new, better clock
1467 * source has been registered. The caller holds the clocksource_mutex.
1468 */
1469 int timekeeping_notify(struct clocksource *clock)
1470 {
1471 struct timekeeper *tk = &tk_core.timekeeper;
1472
1473 if (tk->tkr_mono.clock == clock)
1474 return 0;
1475 stop_machine(change_clocksource, clock, NULL);
1476 tick_clock_notify();
1477 return tk->tkr_mono.clock == clock ? 0 : -1;
1478 }
1479
1480 /**
1481 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1482 * @ts: pointer to the timespec64 to be set
1483 *
1484 * Returns the raw monotonic time (completely un-modified by ntp)
1485 */
1486 void ktime_get_raw_ts64(struct timespec64 *ts)
1487 {
1488 struct timekeeper *tk = &tk_core.timekeeper;
1489 unsigned int seq;
1490 u64 nsecs;
1491
1492 do {
1493 seq = read_seqcount_begin(&tk_core.seq);
1494 ts->tv_sec = tk->raw_sec;
1495 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1496
1497 } while (read_seqcount_retry(&tk_core.seq, seq));
1498
1499 ts->tv_nsec = 0;
1500 timespec64_add_ns(ts, nsecs);
1501 }
1502 EXPORT_SYMBOL(ktime_get_raw_ts64);
1503
1504
1505 /**
1506 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1507 */
1508 int timekeeping_valid_for_hres(void)
1509 {
1510 struct timekeeper *tk = &tk_core.timekeeper;
1511 unsigned int seq;
1512 int ret;
1513
1514 do {
1515 seq = read_seqcount_begin(&tk_core.seq);
1516
1517 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1518
1519 } while (read_seqcount_retry(&tk_core.seq, seq));
1520
1521 return ret;
1522 }
1523
1524 /**
1525 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1526 */
1527 u64 timekeeping_max_deferment(void)
1528 {
1529 struct timekeeper *tk = &tk_core.timekeeper;
1530 unsigned int seq;
1531 u64 ret;
1532
1533 do {
1534 seq = read_seqcount_begin(&tk_core.seq);
1535
1536 ret = tk->tkr_mono.clock->max_idle_ns;
1537
1538 } while (read_seqcount_retry(&tk_core.seq, seq));
1539
1540 return ret;
1541 }
1542
1543 /**
1544 * read_persistent_clock64 - Return time from the persistent clock.
1545 * @ts: Pointer to the storage for the readout value
1546 *
1547 * Weak dummy function for arches that do not yet support it.
1548 * Reads the time from the battery backed persistent clock.
1549 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1550 *
1551 * XXX - Do be sure to remove it once all arches implement it.
1552 */
1553 void __weak read_persistent_clock64(struct timespec64 *ts)
1554 {
1555 ts->tv_sec = 0;
1556 ts->tv_nsec = 0;
1557 }
1558
1559 /**
1560 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1561 * from the boot.
1562 *
1563 * Weak dummy function for arches that do not yet support it.
1564 * @wall_time: - current time as returned by persistent clock
1565 * @boot_offset: - offset that is defined as wall_time - boot_time
1566 *
1567 * The default function calculates offset based on the current value of
1568 * local_clock(). This way architectures that support sched_clock() but don't
1569 * support dedicated boot time clock will provide the best estimate of the
1570 * boot time.
1571 */
1572 void __weak __init
1573 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1574 struct timespec64 *boot_offset)
1575 {
1576 read_persistent_clock64(wall_time);
1577 *boot_offset = ns_to_timespec64(local_clock());
1578 }
1579
1580 /*
1581 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1582 *
1583 * The flag starts of false and is only set when a suspend reaches
1584 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1585 * timekeeper clocksource is not stopping across suspend and has been
1586 * used to update sleep time. If the timekeeper clocksource has stopped
1587 * then the flag stays true and is used by the RTC resume code to decide
1588 * whether sleeptime must be injected and if so the flag gets false then.
1589 *
1590 * If a suspend fails before reaching timekeeping_resume() then the flag
1591 * stays false and prevents erroneous sleeptime injection.
1592 */
1593 static bool suspend_timing_needed;
1594
1595 /* Flag for if there is a persistent clock on this platform */
1596 static bool persistent_clock_exists;
1597
1598 /*
1599 * timekeeping_init - Initializes the clocksource and common timekeeping values
1600 */
1601 void __init timekeeping_init(void)
1602 {
1603 struct timespec64 wall_time, boot_offset, wall_to_mono;
1604 struct timekeeper *tk = &tk_core.timekeeper;
1605 struct clocksource *clock;
1606 unsigned long flags;
1607
1608 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1609 if (timespec64_valid_settod(&wall_time) &&
1610 timespec64_to_ns(&wall_time) > 0) {
1611 persistent_clock_exists = true;
1612 } else if (timespec64_to_ns(&wall_time) != 0) {
1613 pr_warn("Persistent clock returned invalid value");
1614 wall_time = (struct timespec64){0};
1615 }
1616
1617 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1618 boot_offset = (struct timespec64){0};
1619
1620 /*
1621 * We want set wall_to_mono, so the following is true:
1622 * wall time + wall_to_mono = boot time
1623 */
1624 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1625
1626 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1627 write_seqcount_begin(&tk_core.seq);
1628 ntp_init();
1629
1630 clock = clocksource_default_clock();
1631 if (clock->enable)
1632 clock->enable(clock);
1633 tk_setup_internals(tk, clock);
1634
1635 tk_set_xtime(tk, &wall_time);
1636 tk->raw_sec = 0;
1637
1638 tk_set_wall_to_mono(tk, wall_to_mono);
1639
1640 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1641
1642 write_seqcount_end(&tk_core.seq);
1643 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1644 }
1645
1646 /* time in seconds when suspend began for persistent clock */
1647 static struct timespec64 timekeeping_suspend_time;
1648
1649 /**
1650 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1651 * @tk: Pointer to the timekeeper to be updated
1652 * @delta: Pointer to the delta value in timespec64 format
1653 *
1654 * Takes a timespec offset measuring a suspend interval and properly
1655 * adds the sleep offset to the timekeeping variables.
1656 */
1657 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1658 const struct timespec64 *delta)
1659 {
1660 if (!timespec64_valid_strict(delta)) {
1661 printk_deferred(KERN_WARNING
1662 "__timekeeping_inject_sleeptime: Invalid "
1663 "sleep delta value!\n");
1664 return;
1665 }
1666 tk_xtime_add(tk, delta);
1667 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1668 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1669 tk_debug_account_sleep_time(delta);
1670 }
1671
1672 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1673 /**
1674 * We have three kinds of time sources to use for sleep time
1675 * injection, the preference order is:
1676 * 1) non-stop clocksource
1677 * 2) persistent clock (ie: RTC accessible when irqs are off)
1678 * 3) RTC
1679 *
1680 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1681 * If system has neither 1) nor 2), 3) will be used finally.
1682 *
1683 *
1684 * If timekeeping has injected sleeptime via either 1) or 2),
1685 * 3) becomes needless, so in this case we don't need to call
1686 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1687 * means.
1688 */
1689 bool timekeeping_rtc_skipresume(void)
1690 {
1691 return !suspend_timing_needed;
1692 }
1693
1694 /**
1695 * 1) can be determined whether to use or not only when doing
1696 * timekeeping_resume() which is invoked after rtc_suspend(),
1697 * so we can't skip rtc_suspend() surely if system has 1).
1698 *
1699 * But if system has 2), 2) will definitely be used, so in this
1700 * case we don't need to call rtc_suspend(), and this is what
1701 * timekeeping_rtc_skipsuspend() means.
1702 */
1703 bool timekeeping_rtc_skipsuspend(void)
1704 {
1705 return persistent_clock_exists;
1706 }
1707
1708 /**
1709 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1710 * @delta: pointer to a timespec64 delta value
1711 *
1712 * This hook is for architectures that cannot support read_persistent_clock64
1713 * because their RTC/persistent clock is only accessible when irqs are enabled.
1714 * and also don't have an effective nonstop clocksource.
1715 *
1716 * This function should only be called by rtc_resume(), and allows
1717 * a suspend offset to be injected into the timekeeping values.
1718 */
1719 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1720 {
1721 struct timekeeper *tk = &tk_core.timekeeper;
1722 unsigned long flags;
1723
1724 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1725 write_seqcount_begin(&tk_core.seq);
1726
1727 suspend_timing_needed = false;
1728
1729 timekeeping_forward_now(tk);
1730
1731 __timekeeping_inject_sleeptime(tk, delta);
1732
1733 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1734
1735 write_seqcount_end(&tk_core.seq);
1736 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1737
1738 /* signal hrtimers about time change */
1739 clock_was_set();
1740 }
1741 #endif
1742
1743 /**
1744 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1745 */
1746 void timekeeping_resume(void)
1747 {
1748 struct timekeeper *tk = &tk_core.timekeeper;
1749 struct clocksource *clock = tk->tkr_mono.clock;
1750 unsigned long flags;
1751 struct timespec64 ts_new, ts_delta;
1752 u64 cycle_now, nsec;
1753 bool inject_sleeptime = false;
1754
1755 read_persistent_clock64(&ts_new);
1756
1757 clockevents_resume();
1758 clocksource_resume();
1759
1760 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1761 write_seqcount_begin(&tk_core.seq);
1762
1763 /*
1764 * After system resumes, we need to calculate the suspended time and
1765 * compensate it for the OS time. There are 3 sources that could be
1766 * used: Nonstop clocksource during suspend, persistent clock and rtc
1767 * device.
1768 *
1769 * One specific platform may have 1 or 2 or all of them, and the
1770 * preference will be:
1771 * suspend-nonstop clocksource -> persistent clock -> rtc
1772 * The less preferred source will only be tried if there is no better
1773 * usable source. The rtc part is handled separately in rtc core code.
1774 */
1775 cycle_now = tk_clock_read(&tk->tkr_mono);
1776 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1777 if (nsec > 0) {
1778 ts_delta = ns_to_timespec64(nsec);
1779 inject_sleeptime = true;
1780 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1781 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1782 inject_sleeptime = true;
1783 }
1784
1785 if (inject_sleeptime) {
1786 suspend_timing_needed = false;
1787 __timekeeping_inject_sleeptime(tk, &ts_delta);
1788 }
1789
1790 /* Re-base the last cycle value */
1791 tk->tkr_mono.cycle_last = cycle_now;
1792 tk->tkr_raw.cycle_last = cycle_now;
1793
1794 tk->ntp_error = 0;
1795 timekeeping_suspended = 0;
1796 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1797 write_seqcount_end(&tk_core.seq);
1798 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1799
1800 touch_softlockup_watchdog();
1801
1802 tick_resume();
1803 hrtimers_resume();
1804 }
1805
1806 int timekeeping_suspend(void)
1807 {
1808 struct timekeeper *tk = &tk_core.timekeeper;
1809 unsigned long flags;
1810 struct timespec64 delta, delta_delta;
1811 static struct timespec64 old_delta;
1812 struct clocksource *curr_clock;
1813 u64 cycle_now;
1814
1815 read_persistent_clock64(&timekeeping_suspend_time);
1816
1817 /*
1818 * On some systems the persistent_clock can not be detected at
1819 * timekeeping_init by its return value, so if we see a valid
1820 * value returned, update the persistent_clock_exists flag.
1821 */
1822 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1823 persistent_clock_exists = true;
1824
1825 suspend_timing_needed = true;
1826
1827 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1828 write_seqcount_begin(&tk_core.seq);
1829 timekeeping_forward_now(tk);
1830 timekeeping_suspended = 1;
1831
1832 /*
1833 * Since we've called forward_now, cycle_last stores the value
1834 * just read from the current clocksource. Save this to potentially
1835 * use in suspend timing.
1836 */
1837 curr_clock = tk->tkr_mono.clock;
1838 cycle_now = tk->tkr_mono.cycle_last;
1839 clocksource_start_suspend_timing(curr_clock, cycle_now);
1840
1841 if (persistent_clock_exists) {
1842 /*
1843 * To avoid drift caused by repeated suspend/resumes,
1844 * which each can add ~1 second drift error,
1845 * try to compensate so the difference in system time
1846 * and persistent_clock time stays close to constant.
1847 */
1848 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1849 delta_delta = timespec64_sub(delta, old_delta);
1850 if (abs(delta_delta.tv_sec) >= 2) {
1851 /*
1852 * if delta_delta is too large, assume time correction
1853 * has occurred and set old_delta to the current delta.
1854 */
1855 old_delta = delta;
1856 } else {
1857 /* Otherwise try to adjust old_system to compensate */
1858 timekeeping_suspend_time =
1859 timespec64_add(timekeeping_suspend_time, delta_delta);
1860 }
1861 }
1862
1863 timekeeping_update(tk, TK_MIRROR);
1864 halt_fast_timekeeper(tk);
1865 write_seqcount_end(&tk_core.seq);
1866 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1867
1868 tick_suspend();
1869 clocksource_suspend();
1870 clockevents_suspend();
1871
1872 return 0;
1873 }
1874
1875 /* sysfs resume/suspend bits for timekeeping */
1876 static struct syscore_ops timekeeping_syscore_ops = {
1877 .resume = timekeeping_resume,
1878 .suspend = timekeeping_suspend,
1879 };
1880
1881 static int __init timekeeping_init_ops(void)
1882 {
1883 register_syscore_ops(&timekeeping_syscore_ops);
1884 return 0;
1885 }
1886 device_initcall(timekeeping_init_ops);
1887
1888 /*
1889 * Apply a multiplier adjustment to the timekeeper
1890 */
1891 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1892 s64 offset,
1893 s32 mult_adj)
1894 {
1895 s64 interval = tk->cycle_interval;
1896
1897 if (mult_adj == 0) {
1898 return;
1899 } else if (mult_adj == -1) {
1900 interval = -interval;
1901 offset = -offset;
1902 } else if (mult_adj != 1) {
1903 interval *= mult_adj;
1904 offset *= mult_adj;
1905 }
1906
1907 /*
1908 * So the following can be confusing.
1909 *
1910 * To keep things simple, lets assume mult_adj == 1 for now.
1911 *
1912 * When mult_adj != 1, remember that the interval and offset values
1913 * have been appropriately scaled so the math is the same.
1914 *
1915 * The basic idea here is that we're increasing the multiplier
1916 * by one, this causes the xtime_interval to be incremented by
1917 * one cycle_interval. This is because:
1918 * xtime_interval = cycle_interval * mult
1919 * So if mult is being incremented by one:
1920 * xtime_interval = cycle_interval * (mult + 1)
1921 * Its the same as:
1922 * xtime_interval = (cycle_interval * mult) + cycle_interval
1923 * Which can be shortened to:
1924 * xtime_interval += cycle_interval
1925 *
1926 * So offset stores the non-accumulated cycles. Thus the current
1927 * time (in shifted nanoseconds) is:
1928 * now = (offset * adj) + xtime_nsec
1929 * Now, even though we're adjusting the clock frequency, we have
1930 * to keep time consistent. In other words, we can't jump back
1931 * in time, and we also want to avoid jumping forward in time.
1932 *
1933 * So given the same offset value, we need the time to be the same
1934 * both before and after the freq adjustment.
1935 * now = (offset * adj_1) + xtime_nsec_1
1936 * now = (offset * adj_2) + xtime_nsec_2
1937 * So:
1938 * (offset * adj_1) + xtime_nsec_1 =
1939 * (offset * adj_2) + xtime_nsec_2
1940 * And we know:
1941 * adj_2 = adj_1 + 1
1942 * So:
1943 * (offset * adj_1) + xtime_nsec_1 =
1944 * (offset * (adj_1+1)) + xtime_nsec_2
1945 * (offset * adj_1) + xtime_nsec_1 =
1946 * (offset * adj_1) + offset + xtime_nsec_2
1947 * Canceling the sides:
1948 * xtime_nsec_1 = offset + xtime_nsec_2
1949 * Which gives us:
1950 * xtime_nsec_2 = xtime_nsec_1 - offset
1951 * Which simplfies to:
1952 * xtime_nsec -= offset
1953 */
1954 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1955 /* NTP adjustment caused clocksource mult overflow */
1956 WARN_ON_ONCE(1);
1957 return;
1958 }
1959
1960 tk->tkr_mono.mult += mult_adj;
1961 tk->xtime_interval += interval;
1962 tk->tkr_mono.xtime_nsec -= offset;
1963 }
1964
1965 /*
1966 * Adjust the timekeeper's multiplier to the correct frequency
1967 * and also to reduce the accumulated error value.
1968 */
1969 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1970 {
1971 u32 mult;
1972
1973 /*
1974 * Determine the multiplier from the current NTP tick length.
1975 * Avoid expensive division when the tick length doesn't change.
1976 */
1977 if (likely(tk->ntp_tick == ntp_tick_length())) {
1978 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1979 } else {
1980 tk->ntp_tick = ntp_tick_length();
1981 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1982 tk->xtime_remainder, tk->cycle_interval);
1983 }
1984
1985 /*
1986 * If the clock is behind the NTP time, increase the multiplier by 1
1987 * to catch up with it. If it's ahead and there was a remainder in the
1988 * tick division, the clock will slow down. Otherwise it will stay
1989 * ahead until the tick length changes to a non-divisible value.
1990 */
1991 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1992 mult += tk->ntp_err_mult;
1993
1994 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1995
1996 if (unlikely(tk->tkr_mono.clock->maxadj &&
1997 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1998 > tk->tkr_mono.clock->maxadj))) {
1999 printk_once(KERN_WARNING
2000 "Adjusting %s more than 11%% (%ld vs %ld)\n",
2001 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2002 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2003 }
2004
2005 /*
2006 * It may be possible that when we entered this function, xtime_nsec
2007 * was very small. Further, if we're slightly speeding the clocksource
2008 * in the code above, its possible the required corrective factor to
2009 * xtime_nsec could cause it to underflow.
2010 *
2011 * Now, since we have already accumulated the second and the NTP
2012 * subsystem has been notified via second_overflow(), we need to skip
2013 * the next update.
2014 */
2015 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2016 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2017 tk->tkr_mono.shift;
2018 tk->xtime_sec--;
2019 tk->skip_second_overflow = 1;
2020 }
2021 }
2022
2023 /*
2024 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2025 *
2026 * Helper function that accumulates the nsecs greater than a second
2027 * from the xtime_nsec field to the xtime_secs field.
2028 * It also calls into the NTP code to handle leapsecond processing.
2029 */
2030 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2031 {
2032 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2033 unsigned int clock_set = 0;
2034
2035 while (tk->tkr_mono.xtime_nsec >= nsecps) {
2036 int leap;
2037
2038 tk->tkr_mono.xtime_nsec -= nsecps;
2039 tk->xtime_sec++;
2040
2041 /*
2042 * Skip NTP update if this second was accumulated before,
2043 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2044 */
2045 if (unlikely(tk->skip_second_overflow)) {
2046 tk->skip_second_overflow = 0;
2047 continue;
2048 }
2049
2050 /* Figure out if its a leap sec and apply if needed */
2051 leap = second_overflow(tk->xtime_sec);
2052 if (unlikely(leap)) {
2053 struct timespec64 ts;
2054
2055 tk->xtime_sec += leap;
2056
2057 ts.tv_sec = leap;
2058 ts.tv_nsec = 0;
2059 tk_set_wall_to_mono(tk,
2060 timespec64_sub(tk->wall_to_monotonic, ts));
2061
2062 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2063
2064 clock_set = TK_CLOCK_WAS_SET;
2065 }
2066 }
2067 return clock_set;
2068 }
2069
2070 /*
2071 * logarithmic_accumulation - shifted accumulation of cycles
2072 *
2073 * This functions accumulates a shifted interval of cycles into
2074 * a shifted interval nanoseconds. Allows for O(log) accumulation
2075 * loop.
2076 *
2077 * Returns the unconsumed cycles.
2078 */
2079 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2080 u32 shift, unsigned int *clock_set)
2081 {
2082 u64 interval = tk->cycle_interval << shift;
2083 u64 snsec_per_sec;
2084
2085 /* If the offset is smaller than a shifted interval, do nothing */
2086 if (offset < interval)
2087 return offset;
2088
2089 /* Accumulate one shifted interval */
2090 offset -= interval;
2091 tk->tkr_mono.cycle_last += interval;
2092 tk->tkr_raw.cycle_last += interval;
2093
2094 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2095 *clock_set |= accumulate_nsecs_to_secs(tk);
2096
2097 /* Accumulate raw time */
2098 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2099 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2100 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2101 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2102 tk->raw_sec++;
2103 }
2104
2105 /* Accumulate error between NTP and clock interval */
2106 tk->ntp_error += tk->ntp_tick << shift;
2107 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2108 (tk->ntp_error_shift + shift);
2109
2110 return offset;
2111 }
2112
2113 /*
2114 * timekeeping_advance - Updates the timekeeper to the current time and
2115 * current NTP tick length
2116 */
2117 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2118 {
2119 struct timekeeper *real_tk = &tk_core.timekeeper;
2120 struct timekeeper *tk = &shadow_timekeeper;
2121 u64 offset;
2122 int shift = 0, maxshift;
2123 unsigned int clock_set = 0;
2124 unsigned long flags;
2125
2126 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2127
2128 /* Make sure we're fully resumed: */
2129 if (unlikely(timekeeping_suspended))
2130 goto out;
2131
2132 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2133 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2134
2135 /* Check if there's really nothing to do */
2136 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2137 goto out;
2138
2139 /* Do some additional sanity checking */
2140 timekeeping_check_update(tk, offset);
2141
2142 /*
2143 * With NO_HZ we may have to accumulate many cycle_intervals
2144 * (think "ticks") worth of time at once. To do this efficiently,
2145 * we calculate the largest doubling multiple of cycle_intervals
2146 * that is smaller than the offset. We then accumulate that
2147 * chunk in one go, and then try to consume the next smaller
2148 * doubled multiple.
2149 */
2150 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2151 shift = max(0, shift);
2152 /* Bound shift to one less than what overflows tick_length */
2153 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2154 shift = min(shift, maxshift);
2155 while (offset >= tk->cycle_interval) {
2156 offset = logarithmic_accumulation(tk, offset, shift,
2157 &clock_set);
2158 if (offset < tk->cycle_interval<<shift)
2159 shift--;
2160 }
2161
2162 /* Adjust the multiplier to correct NTP error */
2163 timekeeping_adjust(tk, offset);
2164
2165 /*
2166 * Finally, make sure that after the rounding
2167 * xtime_nsec isn't larger than NSEC_PER_SEC
2168 */
2169 clock_set |= accumulate_nsecs_to_secs(tk);
2170
2171 write_seqcount_begin(&tk_core.seq);
2172 /*
2173 * Update the real timekeeper.
2174 *
2175 * We could avoid this memcpy by switching pointers, but that
2176 * requires changes to all other timekeeper usage sites as
2177 * well, i.e. move the timekeeper pointer getter into the
2178 * spinlocked/seqcount protected sections. And we trade this
2179 * memcpy under the tk_core.seq against one before we start
2180 * updating.
2181 */
2182 timekeeping_update(tk, clock_set);
2183 memcpy(real_tk, tk, sizeof(*tk));
2184 /* The memcpy must come last. Do not put anything here! */
2185 write_seqcount_end(&tk_core.seq);
2186 out:
2187 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2188 if (clock_set)
2189 /* Have to call _delayed version, since in irq context*/
2190 clock_was_set_delayed();
2191 }
2192
2193 /**
2194 * update_wall_time - Uses the current clocksource to increment the wall time
2195 *
2196 */
2197 void update_wall_time(void)
2198 {
2199 timekeeping_advance(TK_ADV_TICK);
2200 }
2201
2202 /**
2203 * getboottime64 - Return the real time of system boot.
2204 * @ts: pointer to the timespec64 to be set
2205 *
2206 * Returns the wall-time of boot in a timespec64.
2207 *
2208 * This is based on the wall_to_monotonic offset and the total suspend
2209 * time. Calls to settimeofday will affect the value returned (which
2210 * basically means that however wrong your real time clock is at boot time,
2211 * you get the right time here).
2212 */
2213 void getboottime64(struct timespec64 *ts)
2214 {
2215 struct timekeeper *tk = &tk_core.timekeeper;
2216 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2217
2218 *ts = ktime_to_timespec64(t);
2219 }
2220 EXPORT_SYMBOL_GPL(getboottime64);
2221
2222 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2223 {
2224 struct timekeeper *tk = &tk_core.timekeeper;
2225 unsigned int seq;
2226
2227 do {
2228 seq = read_seqcount_begin(&tk_core.seq);
2229
2230 *ts = tk_xtime(tk);
2231 } while (read_seqcount_retry(&tk_core.seq, seq));
2232 }
2233 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2234
2235 void ktime_get_coarse_ts64(struct timespec64 *ts)
2236 {
2237 struct timekeeper *tk = &tk_core.timekeeper;
2238 struct timespec64 now, mono;
2239 unsigned int seq;
2240
2241 do {
2242 seq = read_seqcount_begin(&tk_core.seq);
2243
2244 now = tk_xtime(tk);
2245 mono = tk->wall_to_monotonic;
2246 } while (read_seqcount_retry(&tk_core.seq, seq));
2247
2248 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2249 now.tv_nsec + mono.tv_nsec);
2250 }
2251 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2252
2253 /*
2254 * Must hold jiffies_lock
2255 */
2256 void do_timer(unsigned long ticks)
2257 {
2258 jiffies_64 += ticks;
2259 calc_global_load();
2260 }
2261
2262 /**
2263 * ktime_get_update_offsets_now - hrtimer helper
2264 * @cwsseq: pointer to check and store the clock was set sequence number
2265 * @offs_real: pointer to storage for monotonic -> realtime offset
2266 * @offs_boot: pointer to storage for monotonic -> boottime offset
2267 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2268 *
2269 * Returns current monotonic time and updates the offsets if the
2270 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2271 * different.
2272 *
2273 * Called from hrtimer_interrupt() or retrigger_next_event()
2274 */
2275 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2276 ktime_t *offs_boot, ktime_t *offs_tai)
2277 {
2278 struct timekeeper *tk = &tk_core.timekeeper;
2279 unsigned int seq;
2280 ktime_t base;
2281 u64 nsecs;
2282
2283 do {
2284 seq = read_seqcount_begin(&tk_core.seq);
2285
2286 base = tk->tkr_mono.base;
2287 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2288 base = ktime_add_ns(base, nsecs);
2289
2290 if (*cwsseq != tk->clock_was_set_seq) {
2291 *cwsseq = tk->clock_was_set_seq;
2292 *offs_real = tk->offs_real;
2293 *offs_boot = tk->offs_boot;
2294 *offs_tai = tk->offs_tai;
2295 }
2296
2297 /* Handle leapsecond insertion adjustments */
2298 if (unlikely(base >= tk->next_leap_ktime))
2299 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2300
2301 } while (read_seqcount_retry(&tk_core.seq, seq));
2302
2303 return base;
2304 }
2305
2306 /*
2307 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2308 */
2309 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2310 {
2311 if (txc->modes & ADJ_ADJTIME) {
2312 /* singleshot must not be used with any other mode bits */
2313 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2314 return -EINVAL;
2315 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2316 !capable(CAP_SYS_TIME))
2317 return -EPERM;
2318 } else {
2319 /* In order to modify anything, you gotta be super-user! */
2320 if (txc->modes && !capable(CAP_SYS_TIME))
2321 return -EPERM;
2322 /*
2323 * if the quartz is off by more than 10% then
2324 * something is VERY wrong!
2325 */
2326 if (txc->modes & ADJ_TICK &&
2327 (txc->tick < 900000/USER_HZ ||
2328 txc->tick > 1100000/USER_HZ))
2329 return -EINVAL;
2330 }
2331
2332 if (txc->modes & ADJ_SETOFFSET) {
2333 /* In order to inject time, you gotta be super-user! */
2334 if (!capable(CAP_SYS_TIME))
2335 return -EPERM;
2336
2337 /*
2338 * Validate if a timespec/timeval used to inject a time
2339 * offset is valid. Offsets can be postive or negative, so
2340 * we don't check tv_sec. The value of the timeval/timespec
2341 * is the sum of its fields,but *NOTE*:
2342 * The field tv_usec/tv_nsec must always be non-negative and
2343 * we can't have more nanoseconds/microseconds than a second.
2344 */
2345 if (txc->time.tv_usec < 0)
2346 return -EINVAL;
2347
2348 if (txc->modes & ADJ_NANO) {
2349 if (txc->time.tv_usec >= NSEC_PER_SEC)
2350 return -EINVAL;
2351 } else {
2352 if (txc->time.tv_usec >= USEC_PER_SEC)
2353 return -EINVAL;
2354 }
2355 }
2356
2357 /*
2358 * Check for potential multiplication overflows that can
2359 * only happen on 64-bit systems:
2360 */
2361 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2362 if (LLONG_MIN / PPM_SCALE > txc->freq)
2363 return -EINVAL;
2364 if (LLONG_MAX / PPM_SCALE < txc->freq)
2365 return -EINVAL;
2366 }
2367
2368 return 0;
2369 }
2370
2371
2372 /**
2373 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2374 */
2375 int do_adjtimex(struct __kernel_timex *txc)
2376 {
2377 struct timekeeper *tk = &tk_core.timekeeper;
2378 struct audit_ntp_data ad;
2379 unsigned long flags;
2380 struct timespec64 ts;
2381 s32 orig_tai, tai;
2382 int ret;
2383
2384 /* Validate the data before disabling interrupts */
2385 ret = timekeeping_validate_timex(txc);
2386 if (ret)
2387 return ret;
2388
2389 if (txc->modes & ADJ_SETOFFSET) {
2390 struct timespec64 delta;
2391 delta.tv_sec = txc->time.tv_sec;
2392 delta.tv_nsec = txc->time.tv_usec;
2393 if (!(txc->modes & ADJ_NANO))
2394 delta.tv_nsec *= 1000;
2395 ret = timekeeping_inject_offset(&delta);
2396 if (ret)
2397 return ret;
2398
2399 audit_tk_injoffset(delta);
2400 }
2401
2402 audit_ntp_init(&ad);
2403
2404 ktime_get_real_ts64(&ts);
2405
2406 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2407 write_seqcount_begin(&tk_core.seq);
2408
2409 orig_tai = tai = tk->tai_offset;
2410 ret = __do_adjtimex(txc, &ts, &tai, &ad);
2411
2412 if (tai != orig_tai) {
2413 __timekeeping_set_tai_offset(tk, tai);
2414 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2415 }
2416 tk_update_leap_state(tk);
2417
2418 write_seqcount_end(&tk_core.seq);
2419 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2420
2421 audit_ntp_log(&ad);
2422
2423 /* Update the multiplier immediately if frequency was set directly */
2424 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2425 timekeeping_advance(TK_ADV_FREQ);
2426
2427 if (tai != orig_tai)
2428 clock_was_set();
2429
2430 ntp_notify_cmos_timer();
2431
2432 return ret;
2433 }
2434
2435 #ifdef CONFIG_NTP_PPS
2436 /**
2437 * hardpps() - Accessor function to NTP __hardpps function
2438 */
2439 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2440 {
2441 unsigned long flags;
2442
2443 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2444 write_seqcount_begin(&tk_core.seq);
2445
2446 __hardpps(phase_ts, raw_ts);
2447
2448 write_seqcount_end(&tk_core.seq);
2449 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2450 }
2451 EXPORT_SYMBOL(hardpps);
2452 #endif /* CONFIG_NTP_PPS */