]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/time/timekeeping.c
timekeeping: Provide fast and NMI safe access to CLOCK_MONOTONIC
[mirror_ubuntu-zesty-kernel.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
34
35 /*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39 static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56 struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62
63 /* flag for if timekeeping is suspended */
64 int __read_mostly timekeeping_suspended;
65
66 /* Flag for if there is a persistent clock on this platform */
67 bool __read_mostly persistent_clock_exist = false;
68
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71 while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72 tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73 tk->xtime_sec++;
74 }
75 }
76
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78 {
79 struct timespec64 ts;
80
81 ts.tv_sec = tk->xtime_sec;
82 ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83 return ts;
84 }
85
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 {
88 tk->xtime_sec = ts->tv_sec;
89 tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 }
91
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94 tk->xtime_sec += ts->tv_sec;
95 tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96 tk_normalize_xtime(tk);
97 }
98
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100 {
101 struct timespec64 tmp;
102
103 /*
104 * Verify consistency of: offset_real = -wall_to_monotonic
105 * before modifying anything
106 */
107 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108 -tk->wall_to_monotonic.tv_nsec);
109 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110 tk->wall_to_monotonic = wtm;
111 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112 tk->offs_real = timespec64_to_ktime(tmp);
113 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 }
115
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117 {
118 tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 }
120
121 /**
122 * tk_setup_internals - Set up internals to use clocksource clock.
123 *
124 * @tk: The target timekeeper to setup.
125 * @clock: Pointer to clocksource.
126 *
127 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
128 * pair and interval request.
129 *
130 * Unless you're the timekeeping code, you should not be using this!
131 */
132 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 {
134 cycle_t interval;
135 u64 tmp, ntpinterval;
136 struct clocksource *old_clock;
137
138 old_clock = tk->tkr.clock;
139 tk->tkr.clock = clock;
140 tk->tkr.read = clock->read;
141 tk->tkr.mask = clock->mask;
142 tk->tkr.cycle_last = tk->tkr.read(clock);
143
144 /* Do the ns -> cycle conversion first, using original mult */
145 tmp = NTP_INTERVAL_LENGTH;
146 tmp <<= clock->shift;
147 ntpinterval = tmp;
148 tmp += clock->mult/2;
149 do_div(tmp, clock->mult);
150 if (tmp == 0)
151 tmp = 1;
152
153 interval = (cycle_t) tmp;
154 tk->cycle_interval = interval;
155
156 /* Go back from cycles -> shifted ns */
157 tk->xtime_interval = (u64) interval * clock->mult;
158 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
159 tk->raw_interval =
160 ((u64) interval * clock->mult) >> clock->shift;
161
162 /* if changing clocks, convert xtime_nsec shift units */
163 if (old_clock) {
164 int shift_change = clock->shift - old_clock->shift;
165 if (shift_change < 0)
166 tk->tkr.xtime_nsec >>= -shift_change;
167 else
168 tk->tkr.xtime_nsec <<= shift_change;
169 }
170 tk->tkr.shift = clock->shift;
171
172 tk->ntp_error = 0;
173 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174
175 /*
176 * The timekeeper keeps its own mult values for the currently
177 * active clocksource. These value will be adjusted via NTP
178 * to counteract clock drifting.
179 */
180 tk->tkr.mult = clock->mult;
181 }
182
183 /* Timekeeper helper functions. */
184
185 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
186 static u32 default_arch_gettimeoffset(void) { return 0; }
187 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
188 #else
189 static inline u32 arch_gettimeoffset(void) { return 0; }
190 #endif
191
192 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
193 {
194 cycle_t cycle_now, delta;
195 s64 nsec;
196
197 /* read clocksource: */
198 cycle_now = tkr->read(tkr->clock);
199
200 /* calculate the delta since the last update_wall_time: */
201 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
202
203 nsec = delta * tkr->mult + tkr->xtime_nsec;
204 nsec >>= tkr->shift;
205
206 /* If arch requires, add in get_arch_timeoffset() */
207 return nsec + arch_gettimeoffset();
208 }
209
210 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
211 {
212 struct clocksource *clock = tk->tkr.clock;
213 cycle_t cycle_now, delta;
214 s64 nsec;
215
216 /* read clocksource: */
217 cycle_now = tk->tkr.read(clock);
218
219 /* calculate the delta since the last update_wall_time: */
220 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
221
222 /* convert delta to nanoseconds. */
223 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
224
225 /* If arch requires, add in get_arch_timeoffset() */
226 return nsec + arch_gettimeoffset();
227 }
228
229 /**
230 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
231 * @tk: The timekeeper from which we take the update
232 * @tkf: The fast timekeeper to update
233 * @tbase: The time base for the fast timekeeper (mono/raw)
234 *
235 * We want to use this from any context including NMI and tracing /
236 * instrumenting the timekeeping code itself.
237 *
238 * So we handle this differently than the other timekeeping accessor
239 * functions which retry when the sequence count has changed. The
240 * update side does:
241 *
242 * smp_wmb(); <- Ensure that the last base[1] update is visible
243 * tkf->seq++;
244 * smp_wmb(); <- Ensure that the seqcount update is visible
245 * update(tkf->base[0], tk);
246 * smp_wmb(); <- Ensure that the base[0] update is visible
247 * tkf->seq++;
248 * smp_wmb(); <- Ensure that the seqcount update is visible
249 * update(tkf->base[1], tk);
250 *
251 * The reader side does:
252 *
253 * do {
254 * seq = tkf->seq;
255 * smp_rmb();
256 * idx = seq & 0x01;
257 * now = now(tkf->base[idx]);
258 * smp_rmb();
259 * } while (seq != tkf->seq)
260 *
261 * As long as we update base[0] readers are forced off to
262 * base[1]. Once base[0] is updated readers are redirected to base[0]
263 * and the base[1] update takes place.
264 *
265 * So if a NMI hits the update of base[0] then it will use base[1]
266 * which is still consistent. In the worst case this can result is a
267 * slightly wrong timestamp (a few nanoseconds). See
268 * @ktime_get_mono_fast_ns.
269 */
270 static void update_fast_timekeeper(struct timekeeper *tk)
271 {
272 struct tk_read_base *base = tk_fast_mono.base;
273
274 /* Force readers off to base[1] */
275 raw_write_seqcount_latch(&tk_fast_mono.seq);
276
277 /* Update base[0] */
278 memcpy(base, &tk->tkr, sizeof(*base));
279
280 /* Force readers back to base[0] */
281 raw_write_seqcount_latch(&tk_fast_mono.seq);
282
283 /* Update base[1] */
284 memcpy(base + 1, base, sizeof(*base));
285 }
286
287 /**
288 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
289 *
290 * This timestamp is not guaranteed to be monotonic across an update.
291 * The timestamp is calculated by:
292 *
293 * now = base_mono + clock_delta * slope
294 *
295 * So if the update lowers the slope, readers who are forced to the
296 * not yet updated second array are still using the old steeper slope.
297 *
298 * tmono
299 * ^
300 * | o n
301 * | o n
302 * | u
303 * | o
304 * |o
305 * |12345678---> reader order
306 *
307 * o = old slope
308 * u = update
309 * n = new slope
310 *
311 * So reader 6 will observe time going backwards versus reader 5.
312 *
313 * While other CPUs are likely to be able observe that, the only way
314 * for a CPU local observation is when an NMI hits in the middle of
315 * the update. Timestamps taken from that NMI context might be ahead
316 * of the following timestamps. Callers need to be aware of that and
317 * deal with it.
318 */
319 u64 notrace ktime_get_mono_fast_ns(void)
320 {
321 struct tk_read_base *tkr;
322 unsigned int seq;
323 u64 now;
324
325 do {
326 seq = raw_read_seqcount(&tk_fast_mono.seq);
327 tkr = tk_fast_mono.base + (seq & 0x01);
328 now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
329
330 } while (read_seqcount_retry(&tk_fast_mono.seq, seq));
331 return now;
332 }
333 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
334
335 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
336
337 static inline void update_vsyscall(struct timekeeper *tk)
338 {
339 struct timespec xt;
340
341 xt = tk_xtime(tk);
342 update_vsyscall_old(&xt, &tk->wall_to_monotonic, tk->tkr.clock, tk->tkr.mult,
343 tk->tkr.cycle_last);
344 }
345
346 static inline void old_vsyscall_fixup(struct timekeeper *tk)
347 {
348 s64 remainder;
349
350 /*
351 * Store only full nanoseconds into xtime_nsec after rounding
352 * it up and add the remainder to the error difference.
353 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
354 * by truncating the remainder in vsyscalls. However, it causes
355 * additional work to be done in timekeeping_adjust(). Once
356 * the vsyscall implementations are converted to use xtime_nsec
357 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
358 * users are removed, this can be killed.
359 */
360 remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
361 tk->tkr.xtime_nsec -= remainder;
362 tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
363 tk->ntp_error += remainder << tk->ntp_error_shift;
364 tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
365 }
366 #else
367 #define old_vsyscall_fixup(tk)
368 #endif
369
370 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
371
372 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
373 {
374 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
375 }
376
377 /**
378 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
379 */
380 int pvclock_gtod_register_notifier(struct notifier_block *nb)
381 {
382 struct timekeeper *tk = &tk_core.timekeeper;
383 unsigned long flags;
384 int ret;
385
386 raw_spin_lock_irqsave(&timekeeper_lock, flags);
387 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
388 update_pvclock_gtod(tk, true);
389 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
390
391 return ret;
392 }
393 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
394
395 /**
396 * pvclock_gtod_unregister_notifier - unregister a pvclock
397 * timedata update listener
398 */
399 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
400 {
401 unsigned long flags;
402 int ret;
403
404 raw_spin_lock_irqsave(&timekeeper_lock, flags);
405 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
406 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
407
408 return ret;
409 }
410 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
411
412 /*
413 * Update the ktime_t based scalar nsec members of the timekeeper
414 */
415 static inline void tk_update_ktime_data(struct timekeeper *tk)
416 {
417 s64 nsec;
418
419 /*
420 * The xtime based monotonic readout is:
421 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
422 * The ktime based monotonic readout is:
423 * nsec = base_mono + now();
424 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
425 */
426 nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
427 nsec *= NSEC_PER_SEC;
428 nsec += tk->wall_to_monotonic.tv_nsec;
429 tk->tkr.base_mono = ns_to_ktime(nsec);
430
431 /* Update the monotonic raw base */
432 tk->base_raw = timespec64_to_ktime(tk->raw_time);
433 }
434
435 /* must hold timekeeper_lock */
436 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
437 {
438 if (action & TK_CLEAR_NTP) {
439 tk->ntp_error = 0;
440 ntp_clear();
441 }
442 update_vsyscall(tk);
443 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
444
445 tk_update_ktime_data(tk);
446
447 if (action & TK_MIRROR)
448 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
449 sizeof(tk_core.timekeeper));
450
451 update_fast_timekeeper(tk);
452 }
453
454 /**
455 * timekeeping_forward_now - update clock to the current time
456 *
457 * Forward the current clock to update its state since the last call to
458 * update_wall_time(). This is useful before significant clock changes,
459 * as it avoids having to deal with this time offset explicitly.
460 */
461 static void timekeeping_forward_now(struct timekeeper *tk)
462 {
463 struct clocksource *clock = tk->tkr.clock;
464 cycle_t cycle_now, delta;
465 s64 nsec;
466
467 cycle_now = tk->tkr.read(clock);
468 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
469 tk->tkr.cycle_last = cycle_now;
470
471 tk->tkr.xtime_nsec += delta * tk->tkr.mult;
472
473 /* If arch requires, add in get_arch_timeoffset() */
474 tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
475
476 tk_normalize_xtime(tk);
477
478 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
479 timespec64_add_ns(&tk->raw_time, nsec);
480 }
481
482 /**
483 * __getnstimeofday64 - Returns the time of day in a timespec64.
484 * @ts: pointer to the timespec to be set
485 *
486 * Updates the time of day in the timespec.
487 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
488 */
489 int __getnstimeofday64(struct timespec64 *ts)
490 {
491 struct timekeeper *tk = &tk_core.timekeeper;
492 unsigned long seq;
493 s64 nsecs = 0;
494
495 do {
496 seq = read_seqcount_begin(&tk_core.seq);
497
498 ts->tv_sec = tk->xtime_sec;
499 nsecs = timekeeping_get_ns(&tk->tkr);
500
501 } while (read_seqcount_retry(&tk_core.seq, seq));
502
503 ts->tv_nsec = 0;
504 timespec64_add_ns(ts, nsecs);
505
506 /*
507 * Do not bail out early, in case there were callers still using
508 * the value, even in the face of the WARN_ON.
509 */
510 if (unlikely(timekeeping_suspended))
511 return -EAGAIN;
512 return 0;
513 }
514 EXPORT_SYMBOL(__getnstimeofday64);
515
516 /**
517 * getnstimeofday64 - Returns the time of day in a timespec64.
518 * @ts: pointer to the timespec to be set
519 *
520 * Returns the time of day in a timespec (WARN if suspended).
521 */
522 void getnstimeofday64(struct timespec64 *ts)
523 {
524 WARN_ON(__getnstimeofday64(ts));
525 }
526 EXPORT_SYMBOL(getnstimeofday64);
527
528 ktime_t ktime_get(void)
529 {
530 struct timekeeper *tk = &tk_core.timekeeper;
531 unsigned int seq;
532 ktime_t base;
533 s64 nsecs;
534
535 WARN_ON(timekeeping_suspended);
536
537 do {
538 seq = read_seqcount_begin(&tk_core.seq);
539 base = tk->tkr.base_mono;
540 nsecs = timekeeping_get_ns(&tk->tkr);
541
542 } while (read_seqcount_retry(&tk_core.seq, seq));
543
544 return ktime_add_ns(base, nsecs);
545 }
546 EXPORT_SYMBOL_GPL(ktime_get);
547
548 static ktime_t *offsets[TK_OFFS_MAX] = {
549 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
550 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
551 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
552 };
553
554 ktime_t ktime_get_with_offset(enum tk_offsets offs)
555 {
556 struct timekeeper *tk = &tk_core.timekeeper;
557 unsigned int seq;
558 ktime_t base, *offset = offsets[offs];
559 s64 nsecs;
560
561 WARN_ON(timekeeping_suspended);
562
563 do {
564 seq = read_seqcount_begin(&tk_core.seq);
565 base = ktime_add(tk->tkr.base_mono, *offset);
566 nsecs = timekeeping_get_ns(&tk->tkr);
567
568 } while (read_seqcount_retry(&tk_core.seq, seq));
569
570 return ktime_add_ns(base, nsecs);
571
572 }
573 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
574
575 /**
576 * ktime_mono_to_any() - convert mononotic time to any other time
577 * @tmono: time to convert.
578 * @offs: which offset to use
579 */
580 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
581 {
582 ktime_t *offset = offsets[offs];
583 unsigned long seq;
584 ktime_t tconv;
585
586 do {
587 seq = read_seqcount_begin(&tk_core.seq);
588 tconv = ktime_add(tmono, *offset);
589 } while (read_seqcount_retry(&tk_core.seq, seq));
590
591 return tconv;
592 }
593 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
594
595 /**
596 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
597 */
598 ktime_t ktime_get_raw(void)
599 {
600 struct timekeeper *tk = &tk_core.timekeeper;
601 unsigned int seq;
602 ktime_t base;
603 s64 nsecs;
604
605 do {
606 seq = read_seqcount_begin(&tk_core.seq);
607 base = tk->base_raw;
608 nsecs = timekeeping_get_ns_raw(tk);
609
610 } while (read_seqcount_retry(&tk_core.seq, seq));
611
612 return ktime_add_ns(base, nsecs);
613 }
614 EXPORT_SYMBOL_GPL(ktime_get_raw);
615
616 /**
617 * ktime_get_ts64 - get the monotonic clock in timespec64 format
618 * @ts: pointer to timespec variable
619 *
620 * The function calculates the monotonic clock from the realtime
621 * clock and the wall_to_monotonic offset and stores the result
622 * in normalized timespec format in the variable pointed to by @ts.
623 */
624 void ktime_get_ts64(struct timespec64 *ts)
625 {
626 struct timekeeper *tk = &tk_core.timekeeper;
627 struct timespec64 tomono;
628 s64 nsec;
629 unsigned int seq;
630
631 WARN_ON(timekeeping_suspended);
632
633 do {
634 seq = read_seqcount_begin(&tk_core.seq);
635 ts->tv_sec = tk->xtime_sec;
636 nsec = timekeeping_get_ns(&tk->tkr);
637 tomono = tk->wall_to_monotonic;
638
639 } while (read_seqcount_retry(&tk_core.seq, seq));
640
641 ts->tv_sec += tomono.tv_sec;
642 ts->tv_nsec = 0;
643 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
644 }
645 EXPORT_SYMBOL_GPL(ktime_get_ts64);
646
647 #ifdef CONFIG_NTP_PPS
648
649 /**
650 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
651 * @ts_raw: pointer to the timespec to be set to raw monotonic time
652 * @ts_real: pointer to the timespec to be set to the time of day
653 *
654 * This function reads both the time of day and raw monotonic time at the
655 * same time atomically and stores the resulting timestamps in timespec
656 * format.
657 */
658 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
659 {
660 struct timekeeper *tk = &tk_core.timekeeper;
661 unsigned long seq;
662 s64 nsecs_raw, nsecs_real;
663
664 WARN_ON_ONCE(timekeeping_suspended);
665
666 do {
667 seq = read_seqcount_begin(&tk_core.seq);
668
669 *ts_raw = timespec64_to_timespec(tk->raw_time);
670 ts_real->tv_sec = tk->xtime_sec;
671 ts_real->tv_nsec = 0;
672
673 nsecs_raw = timekeeping_get_ns_raw(tk);
674 nsecs_real = timekeeping_get_ns(&tk->tkr);
675
676 } while (read_seqcount_retry(&tk_core.seq, seq));
677
678 timespec_add_ns(ts_raw, nsecs_raw);
679 timespec_add_ns(ts_real, nsecs_real);
680 }
681 EXPORT_SYMBOL(getnstime_raw_and_real);
682
683 #endif /* CONFIG_NTP_PPS */
684
685 /**
686 * do_gettimeofday - Returns the time of day in a timeval
687 * @tv: pointer to the timeval to be set
688 *
689 * NOTE: Users should be converted to using getnstimeofday()
690 */
691 void do_gettimeofday(struct timeval *tv)
692 {
693 struct timespec64 now;
694
695 getnstimeofday64(&now);
696 tv->tv_sec = now.tv_sec;
697 tv->tv_usec = now.tv_nsec/1000;
698 }
699 EXPORT_SYMBOL(do_gettimeofday);
700
701 /**
702 * do_settimeofday - Sets the time of day
703 * @tv: pointer to the timespec variable containing the new time
704 *
705 * Sets the time of day to the new time and update NTP and notify hrtimers
706 */
707 int do_settimeofday(const struct timespec *tv)
708 {
709 struct timekeeper *tk = &tk_core.timekeeper;
710 struct timespec64 ts_delta, xt, tmp;
711 unsigned long flags;
712
713 if (!timespec_valid_strict(tv))
714 return -EINVAL;
715
716 raw_spin_lock_irqsave(&timekeeper_lock, flags);
717 write_seqcount_begin(&tk_core.seq);
718
719 timekeeping_forward_now(tk);
720
721 xt = tk_xtime(tk);
722 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
723 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
724
725 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
726
727 tmp = timespec_to_timespec64(*tv);
728 tk_set_xtime(tk, &tmp);
729
730 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
731
732 write_seqcount_end(&tk_core.seq);
733 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
734
735 /* signal hrtimers about time change */
736 clock_was_set();
737
738 return 0;
739 }
740 EXPORT_SYMBOL(do_settimeofday);
741
742 /**
743 * timekeeping_inject_offset - Adds or subtracts from the current time.
744 * @tv: pointer to the timespec variable containing the offset
745 *
746 * Adds or subtracts an offset value from the current time.
747 */
748 int timekeeping_inject_offset(struct timespec *ts)
749 {
750 struct timekeeper *tk = &tk_core.timekeeper;
751 unsigned long flags;
752 struct timespec64 ts64, tmp;
753 int ret = 0;
754
755 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
756 return -EINVAL;
757
758 ts64 = timespec_to_timespec64(*ts);
759
760 raw_spin_lock_irqsave(&timekeeper_lock, flags);
761 write_seqcount_begin(&tk_core.seq);
762
763 timekeeping_forward_now(tk);
764
765 /* Make sure the proposed value is valid */
766 tmp = timespec64_add(tk_xtime(tk), ts64);
767 if (!timespec64_valid_strict(&tmp)) {
768 ret = -EINVAL;
769 goto error;
770 }
771
772 tk_xtime_add(tk, &ts64);
773 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
774
775 error: /* even if we error out, we forwarded the time, so call update */
776 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
777
778 write_seqcount_end(&tk_core.seq);
779 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
780
781 /* signal hrtimers about time change */
782 clock_was_set();
783
784 return ret;
785 }
786 EXPORT_SYMBOL(timekeeping_inject_offset);
787
788
789 /**
790 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
791 *
792 */
793 s32 timekeeping_get_tai_offset(void)
794 {
795 struct timekeeper *tk = &tk_core.timekeeper;
796 unsigned int seq;
797 s32 ret;
798
799 do {
800 seq = read_seqcount_begin(&tk_core.seq);
801 ret = tk->tai_offset;
802 } while (read_seqcount_retry(&tk_core.seq, seq));
803
804 return ret;
805 }
806
807 /**
808 * __timekeeping_set_tai_offset - Lock free worker function
809 *
810 */
811 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
812 {
813 tk->tai_offset = tai_offset;
814 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
815 }
816
817 /**
818 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
819 *
820 */
821 void timekeeping_set_tai_offset(s32 tai_offset)
822 {
823 struct timekeeper *tk = &tk_core.timekeeper;
824 unsigned long flags;
825
826 raw_spin_lock_irqsave(&timekeeper_lock, flags);
827 write_seqcount_begin(&tk_core.seq);
828 __timekeeping_set_tai_offset(tk, tai_offset);
829 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
830 write_seqcount_end(&tk_core.seq);
831 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
832 clock_was_set();
833 }
834
835 /**
836 * change_clocksource - Swaps clocksources if a new one is available
837 *
838 * Accumulates current time interval and initializes new clocksource
839 */
840 static int change_clocksource(void *data)
841 {
842 struct timekeeper *tk = &tk_core.timekeeper;
843 struct clocksource *new, *old;
844 unsigned long flags;
845
846 new = (struct clocksource *) data;
847
848 raw_spin_lock_irqsave(&timekeeper_lock, flags);
849 write_seqcount_begin(&tk_core.seq);
850
851 timekeeping_forward_now(tk);
852 /*
853 * If the cs is in module, get a module reference. Succeeds
854 * for built-in code (owner == NULL) as well.
855 */
856 if (try_module_get(new->owner)) {
857 if (!new->enable || new->enable(new) == 0) {
858 old = tk->tkr.clock;
859 tk_setup_internals(tk, new);
860 if (old->disable)
861 old->disable(old);
862 module_put(old->owner);
863 } else {
864 module_put(new->owner);
865 }
866 }
867 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
868
869 write_seqcount_end(&tk_core.seq);
870 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
871
872 return 0;
873 }
874
875 /**
876 * timekeeping_notify - Install a new clock source
877 * @clock: pointer to the clock source
878 *
879 * This function is called from clocksource.c after a new, better clock
880 * source has been registered. The caller holds the clocksource_mutex.
881 */
882 int timekeeping_notify(struct clocksource *clock)
883 {
884 struct timekeeper *tk = &tk_core.timekeeper;
885
886 if (tk->tkr.clock == clock)
887 return 0;
888 stop_machine(change_clocksource, clock, NULL);
889 tick_clock_notify();
890 return tk->tkr.clock == clock ? 0 : -1;
891 }
892
893 /**
894 * getrawmonotonic - Returns the raw monotonic time in a timespec
895 * @ts: pointer to the timespec to be set
896 *
897 * Returns the raw monotonic time (completely un-modified by ntp)
898 */
899 void getrawmonotonic(struct timespec *ts)
900 {
901 struct timekeeper *tk = &tk_core.timekeeper;
902 struct timespec64 ts64;
903 unsigned long seq;
904 s64 nsecs;
905
906 do {
907 seq = read_seqcount_begin(&tk_core.seq);
908 nsecs = timekeeping_get_ns_raw(tk);
909 ts64 = tk->raw_time;
910
911 } while (read_seqcount_retry(&tk_core.seq, seq));
912
913 timespec64_add_ns(&ts64, nsecs);
914 *ts = timespec64_to_timespec(ts64);
915 }
916 EXPORT_SYMBOL(getrawmonotonic);
917
918 /**
919 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
920 */
921 int timekeeping_valid_for_hres(void)
922 {
923 struct timekeeper *tk = &tk_core.timekeeper;
924 unsigned long seq;
925 int ret;
926
927 do {
928 seq = read_seqcount_begin(&tk_core.seq);
929
930 ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
931
932 } while (read_seqcount_retry(&tk_core.seq, seq));
933
934 return ret;
935 }
936
937 /**
938 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
939 */
940 u64 timekeeping_max_deferment(void)
941 {
942 struct timekeeper *tk = &tk_core.timekeeper;
943 unsigned long seq;
944 u64 ret;
945
946 do {
947 seq = read_seqcount_begin(&tk_core.seq);
948
949 ret = tk->tkr.clock->max_idle_ns;
950
951 } while (read_seqcount_retry(&tk_core.seq, seq));
952
953 return ret;
954 }
955
956 /**
957 * read_persistent_clock - Return time from the persistent clock.
958 *
959 * Weak dummy function for arches that do not yet support it.
960 * Reads the time from the battery backed persistent clock.
961 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
962 *
963 * XXX - Do be sure to remove it once all arches implement it.
964 */
965 void __weak read_persistent_clock(struct timespec *ts)
966 {
967 ts->tv_sec = 0;
968 ts->tv_nsec = 0;
969 }
970
971 /**
972 * read_boot_clock - Return time of the system start.
973 *
974 * Weak dummy function for arches that do not yet support it.
975 * Function to read the exact time the system has been started.
976 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
977 *
978 * XXX - Do be sure to remove it once all arches implement it.
979 */
980 void __weak read_boot_clock(struct timespec *ts)
981 {
982 ts->tv_sec = 0;
983 ts->tv_nsec = 0;
984 }
985
986 /*
987 * timekeeping_init - Initializes the clocksource and common timekeeping values
988 */
989 void __init timekeeping_init(void)
990 {
991 struct timekeeper *tk = &tk_core.timekeeper;
992 struct clocksource *clock;
993 unsigned long flags;
994 struct timespec64 now, boot, tmp;
995 struct timespec ts;
996
997 read_persistent_clock(&ts);
998 now = timespec_to_timespec64(ts);
999 if (!timespec64_valid_strict(&now)) {
1000 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1001 " Check your CMOS/BIOS settings.\n");
1002 now.tv_sec = 0;
1003 now.tv_nsec = 0;
1004 } else if (now.tv_sec || now.tv_nsec)
1005 persistent_clock_exist = true;
1006
1007 read_boot_clock(&ts);
1008 boot = timespec_to_timespec64(ts);
1009 if (!timespec64_valid_strict(&boot)) {
1010 pr_warn("WARNING: Boot clock returned invalid value!\n"
1011 " Check your CMOS/BIOS settings.\n");
1012 boot.tv_sec = 0;
1013 boot.tv_nsec = 0;
1014 }
1015
1016 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1017 write_seqcount_begin(&tk_core.seq);
1018 ntp_init();
1019
1020 clock = clocksource_default_clock();
1021 if (clock->enable)
1022 clock->enable(clock);
1023 tk_setup_internals(tk, clock);
1024
1025 tk_set_xtime(tk, &now);
1026 tk->raw_time.tv_sec = 0;
1027 tk->raw_time.tv_nsec = 0;
1028 tk->base_raw.tv64 = 0;
1029 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1030 boot = tk_xtime(tk);
1031
1032 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1033 tk_set_wall_to_mono(tk, tmp);
1034
1035 timekeeping_update(tk, TK_MIRROR);
1036
1037 write_seqcount_end(&tk_core.seq);
1038 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1039 }
1040
1041 /* time in seconds when suspend began */
1042 static struct timespec64 timekeeping_suspend_time;
1043
1044 /**
1045 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1046 * @delta: pointer to a timespec delta value
1047 *
1048 * Takes a timespec offset measuring a suspend interval and properly
1049 * adds the sleep offset to the timekeeping variables.
1050 */
1051 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1052 struct timespec64 *delta)
1053 {
1054 if (!timespec64_valid_strict(delta)) {
1055 printk_deferred(KERN_WARNING
1056 "__timekeeping_inject_sleeptime: Invalid "
1057 "sleep delta value!\n");
1058 return;
1059 }
1060 tk_xtime_add(tk, delta);
1061 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1062 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1063 tk_debug_account_sleep_time(delta);
1064 }
1065
1066 /**
1067 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
1068 * @delta: pointer to a timespec delta value
1069 *
1070 * This hook is for architectures that cannot support read_persistent_clock
1071 * because their RTC/persistent clock is only accessible when irqs are enabled.
1072 *
1073 * This function should only be called by rtc_resume(), and allows
1074 * a suspend offset to be injected into the timekeeping values.
1075 */
1076 void timekeeping_inject_sleeptime(struct timespec *delta)
1077 {
1078 struct timekeeper *tk = &tk_core.timekeeper;
1079 struct timespec64 tmp;
1080 unsigned long flags;
1081
1082 /*
1083 * Make sure we don't set the clock twice, as timekeeping_resume()
1084 * already did it
1085 */
1086 if (has_persistent_clock())
1087 return;
1088
1089 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1090 write_seqcount_begin(&tk_core.seq);
1091
1092 timekeeping_forward_now(tk);
1093
1094 tmp = timespec_to_timespec64(*delta);
1095 __timekeeping_inject_sleeptime(tk, &tmp);
1096
1097 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1098
1099 write_seqcount_end(&tk_core.seq);
1100 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1101
1102 /* signal hrtimers about time change */
1103 clock_was_set();
1104 }
1105
1106 /**
1107 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1108 *
1109 * This is for the generic clocksource timekeeping.
1110 * xtime/wall_to_monotonic/jiffies/etc are
1111 * still managed by arch specific suspend/resume code.
1112 */
1113 static void timekeeping_resume(void)
1114 {
1115 struct timekeeper *tk = &tk_core.timekeeper;
1116 struct clocksource *clock = tk->tkr.clock;
1117 unsigned long flags;
1118 struct timespec64 ts_new, ts_delta;
1119 struct timespec tmp;
1120 cycle_t cycle_now, cycle_delta;
1121 bool suspendtime_found = false;
1122
1123 read_persistent_clock(&tmp);
1124 ts_new = timespec_to_timespec64(tmp);
1125
1126 clockevents_resume();
1127 clocksource_resume();
1128
1129 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1130 write_seqcount_begin(&tk_core.seq);
1131
1132 /*
1133 * After system resumes, we need to calculate the suspended time and
1134 * compensate it for the OS time. There are 3 sources that could be
1135 * used: Nonstop clocksource during suspend, persistent clock and rtc
1136 * device.
1137 *
1138 * One specific platform may have 1 or 2 or all of them, and the
1139 * preference will be:
1140 * suspend-nonstop clocksource -> persistent clock -> rtc
1141 * The less preferred source will only be tried if there is no better
1142 * usable source. The rtc part is handled separately in rtc core code.
1143 */
1144 cycle_now = tk->tkr.read(clock);
1145 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1146 cycle_now > tk->tkr.cycle_last) {
1147 u64 num, max = ULLONG_MAX;
1148 u32 mult = clock->mult;
1149 u32 shift = clock->shift;
1150 s64 nsec = 0;
1151
1152 cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1153 tk->tkr.mask);
1154
1155 /*
1156 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1157 * suspended time is too long. In that case we need do the
1158 * 64 bits math carefully
1159 */
1160 do_div(max, mult);
1161 if (cycle_delta > max) {
1162 num = div64_u64(cycle_delta, max);
1163 nsec = (((u64) max * mult) >> shift) * num;
1164 cycle_delta -= num * max;
1165 }
1166 nsec += ((u64) cycle_delta * mult) >> shift;
1167
1168 ts_delta = ns_to_timespec64(nsec);
1169 suspendtime_found = true;
1170 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1171 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1172 suspendtime_found = true;
1173 }
1174
1175 if (suspendtime_found)
1176 __timekeeping_inject_sleeptime(tk, &ts_delta);
1177
1178 /* Re-base the last cycle value */
1179 tk->tkr.cycle_last = cycle_now;
1180 tk->ntp_error = 0;
1181 timekeeping_suspended = 0;
1182 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1183 write_seqcount_end(&tk_core.seq);
1184 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1185
1186 touch_softlockup_watchdog();
1187
1188 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1189
1190 /* Resume hrtimers */
1191 hrtimers_resume();
1192 }
1193
1194 static int timekeeping_suspend(void)
1195 {
1196 struct timekeeper *tk = &tk_core.timekeeper;
1197 unsigned long flags;
1198 struct timespec64 delta, delta_delta;
1199 static struct timespec64 old_delta;
1200 struct timespec tmp;
1201
1202 read_persistent_clock(&tmp);
1203 timekeeping_suspend_time = timespec_to_timespec64(tmp);
1204
1205 /*
1206 * On some systems the persistent_clock can not be detected at
1207 * timekeeping_init by its return value, so if we see a valid
1208 * value returned, update the persistent_clock_exists flag.
1209 */
1210 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1211 persistent_clock_exist = true;
1212
1213 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1214 write_seqcount_begin(&tk_core.seq);
1215 timekeeping_forward_now(tk);
1216 timekeeping_suspended = 1;
1217
1218 /*
1219 * To avoid drift caused by repeated suspend/resumes,
1220 * which each can add ~1 second drift error,
1221 * try to compensate so the difference in system time
1222 * and persistent_clock time stays close to constant.
1223 */
1224 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1225 delta_delta = timespec64_sub(delta, old_delta);
1226 if (abs(delta_delta.tv_sec) >= 2) {
1227 /*
1228 * if delta_delta is too large, assume time correction
1229 * has occured and set old_delta to the current delta.
1230 */
1231 old_delta = delta;
1232 } else {
1233 /* Otherwise try to adjust old_system to compensate */
1234 timekeeping_suspend_time =
1235 timespec64_add(timekeeping_suspend_time, delta_delta);
1236 }
1237
1238 timekeeping_update(tk, TK_MIRROR);
1239 write_seqcount_end(&tk_core.seq);
1240 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1241
1242 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1243 clocksource_suspend();
1244 clockevents_suspend();
1245
1246 return 0;
1247 }
1248
1249 /* sysfs resume/suspend bits for timekeeping */
1250 static struct syscore_ops timekeeping_syscore_ops = {
1251 .resume = timekeeping_resume,
1252 .suspend = timekeeping_suspend,
1253 };
1254
1255 static int __init timekeeping_init_ops(void)
1256 {
1257 register_syscore_ops(&timekeeping_syscore_ops);
1258 return 0;
1259 }
1260
1261 device_initcall(timekeeping_init_ops);
1262
1263 /*
1264 * If the error is already larger, we look ahead even further
1265 * to compensate for late or lost adjustments.
1266 */
1267 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
1268 s64 error, s64 *interval,
1269 s64 *offset)
1270 {
1271 s64 tick_error, i;
1272 u32 look_ahead, adj;
1273 s32 error2, mult;
1274
1275 /*
1276 * Use the current error value to determine how much to look ahead.
1277 * The larger the error the slower we adjust for it to avoid problems
1278 * with losing too many ticks, otherwise we would overadjust and
1279 * produce an even larger error. The smaller the adjustment the
1280 * faster we try to adjust for it, as lost ticks can do less harm
1281 * here. This is tuned so that an error of about 1 msec is adjusted
1282 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
1283 */
1284 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1285 error2 = abs(error2);
1286 for (look_ahead = 0; error2 > 0; look_ahead++)
1287 error2 >>= 2;
1288
1289 /*
1290 * Now calculate the error in (1 << look_ahead) ticks, but first
1291 * remove the single look ahead already included in the error.
1292 */
1293 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
1294 tick_error -= tk->xtime_interval >> 1;
1295 error = ((error - tick_error) >> look_ahead) + tick_error;
1296
1297 /* Finally calculate the adjustment shift value. */
1298 i = *interval;
1299 mult = 1;
1300 if (error < 0) {
1301 error = -error;
1302 *interval = -*interval;
1303 *offset = -*offset;
1304 mult = -1;
1305 }
1306 for (adj = 0; error > i; adj++)
1307 error >>= 1;
1308
1309 *interval <<= adj;
1310 *offset <<= adj;
1311 return mult << adj;
1312 }
1313
1314 /*
1315 * Adjust the multiplier to reduce the error value,
1316 * this is optimized for the most common adjustments of -1,0,1,
1317 * for other values we can do a bit more work.
1318 */
1319 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1320 {
1321 s64 error, interval = tk->cycle_interval;
1322 int adj;
1323
1324 /*
1325 * The point of this is to check if the error is greater than half
1326 * an interval.
1327 *
1328 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
1329 *
1330 * Note we subtract one in the shift, so that error is really error*2.
1331 * This "saves" dividing(shifting) interval twice, but keeps the
1332 * (error > interval) comparison as still measuring if error is
1333 * larger than half an interval.
1334 *
1335 * Note: It does not "save" on aggravation when reading the code.
1336 */
1337 error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1338 if (error > interval) {
1339 /*
1340 * We now divide error by 4(via shift), which checks if
1341 * the error is greater than twice the interval.
1342 * If it is greater, we need a bigadjust, if its smaller,
1343 * we can adjust by 1.
1344 */
1345 error >>= 2;
1346 if (likely(error <= interval))
1347 adj = 1;
1348 else
1349 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1350 } else {
1351 if (error < -interval) {
1352 /* See comment above, this is just switched for the negative */
1353 error >>= 2;
1354 if (likely(error >= -interval)) {
1355 adj = -1;
1356 interval = -interval;
1357 offset = -offset;
1358 } else {
1359 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1360 }
1361 } else {
1362 goto out_adjust;
1363 }
1364 }
1365
1366 if (unlikely(tk->tkr.clock->maxadj &&
1367 (tk->tkr.mult + adj > tk->tkr.clock->mult + tk->tkr.clock->maxadj))) {
1368 printk_deferred_once(KERN_WARNING
1369 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1370 tk->tkr.clock->name, (long)tk->tkr.mult + adj,
1371 (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1372 }
1373 /*
1374 * So the following can be confusing.
1375 *
1376 * To keep things simple, lets assume adj == 1 for now.
1377 *
1378 * When adj != 1, remember that the interval and offset values
1379 * have been appropriately scaled so the math is the same.
1380 *
1381 * The basic idea here is that we're increasing the multiplier
1382 * by one, this causes the xtime_interval to be incremented by
1383 * one cycle_interval. This is because:
1384 * xtime_interval = cycle_interval * mult
1385 * So if mult is being incremented by one:
1386 * xtime_interval = cycle_interval * (mult + 1)
1387 * Its the same as:
1388 * xtime_interval = (cycle_interval * mult) + cycle_interval
1389 * Which can be shortened to:
1390 * xtime_interval += cycle_interval
1391 *
1392 * So offset stores the non-accumulated cycles. Thus the current
1393 * time (in shifted nanoseconds) is:
1394 * now = (offset * adj) + xtime_nsec
1395 * Now, even though we're adjusting the clock frequency, we have
1396 * to keep time consistent. In other words, we can't jump back
1397 * in time, and we also want to avoid jumping forward in time.
1398 *
1399 * So given the same offset value, we need the time to be the same
1400 * both before and after the freq adjustment.
1401 * now = (offset * adj_1) + xtime_nsec_1
1402 * now = (offset * adj_2) + xtime_nsec_2
1403 * So:
1404 * (offset * adj_1) + xtime_nsec_1 =
1405 * (offset * adj_2) + xtime_nsec_2
1406 * And we know:
1407 * adj_2 = adj_1 + 1
1408 * So:
1409 * (offset * adj_1) + xtime_nsec_1 =
1410 * (offset * (adj_1+1)) + xtime_nsec_2
1411 * (offset * adj_1) + xtime_nsec_1 =
1412 * (offset * adj_1) + offset + xtime_nsec_2
1413 * Canceling the sides:
1414 * xtime_nsec_1 = offset + xtime_nsec_2
1415 * Which gives us:
1416 * xtime_nsec_2 = xtime_nsec_1 - offset
1417 * Which simplfies to:
1418 * xtime_nsec -= offset
1419 *
1420 * XXX - TODO: Doc ntp_error calculation.
1421 */
1422 tk->tkr.mult += adj;
1423 tk->xtime_interval += interval;
1424 tk->tkr.xtime_nsec -= offset;
1425 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1426
1427 out_adjust:
1428 /*
1429 * It may be possible that when we entered this function, xtime_nsec
1430 * was very small. Further, if we're slightly speeding the clocksource
1431 * in the code above, its possible the required corrective factor to
1432 * xtime_nsec could cause it to underflow.
1433 *
1434 * Now, since we already accumulated the second, cannot simply roll
1435 * the accumulated second back, since the NTP subsystem has been
1436 * notified via second_overflow. So instead we push xtime_nsec forward
1437 * by the amount we underflowed, and add that amount into the error.
1438 *
1439 * We'll correct this error next time through this function, when
1440 * xtime_nsec is not as small.
1441 */
1442 if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1443 s64 neg = -(s64)tk->tkr.xtime_nsec;
1444 tk->tkr.xtime_nsec = 0;
1445 tk->ntp_error += neg << tk->ntp_error_shift;
1446 }
1447
1448 }
1449
1450 /**
1451 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1452 *
1453 * Helper function that accumulates a the nsecs greater then a second
1454 * from the xtime_nsec field to the xtime_secs field.
1455 * It also calls into the NTP code to handle leapsecond processing.
1456 *
1457 */
1458 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1459 {
1460 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1461 unsigned int clock_set = 0;
1462
1463 while (tk->tkr.xtime_nsec >= nsecps) {
1464 int leap;
1465
1466 tk->tkr.xtime_nsec -= nsecps;
1467 tk->xtime_sec++;
1468
1469 /* Figure out if its a leap sec and apply if needed */
1470 leap = second_overflow(tk->xtime_sec);
1471 if (unlikely(leap)) {
1472 struct timespec64 ts;
1473
1474 tk->xtime_sec += leap;
1475
1476 ts.tv_sec = leap;
1477 ts.tv_nsec = 0;
1478 tk_set_wall_to_mono(tk,
1479 timespec64_sub(tk->wall_to_monotonic, ts));
1480
1481 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1482
1483 clock_set = TK_CLOCK_WAS_SET;
1484 }
1485 }
1486 return clock_set;
1487 }
1488
1489 /**
1490 * logarithmic_accumulation - shifted accumulation of cycles
1491 *
1492 * This functions accumulates a shifted interval of cycles into
1493 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1494 * loop.
1495 *
1496 * Returns the unconsumed cycles.
1497 */
1498 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1499 u32 shift,
1500 unsigned int *clock_set)
1501 {
1502 cycle_t interval = tk->cycle_interval << shift;
1503 u64 raw_nsecs;
1504
1505 /* If the offset is smaller then a shifted interval, do nothing */
1506 if (offset < interval)
1507 return offset;
1508
1509 /* Accumulate one shifted interval */
1510 offset -= interval;
1511 tk->tkr.cycle_last += interval;
1512
1513 tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1514 *clock_set |= accumulate_nsecs_to_secs(tk);
1515
1516 /* Accumulate raw time */
1517 raw_nsecs = (u64)tk->raw_interval << shift;
1518 raw_nsecs += tk->raw_time.tv_nsec;
1519 if (raw_nsecs >= NSEC_PER_SEC) {
1520 u64 raw_secs = raw_nsecs;
1521 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1522 tk->raw_time.tv_sec += raw_secs;
1523 }
1524 tk->raw_time.tv_nsec = raw_nsecs;
1525
1526 /* Accumulate error between NTP and clock interval */
1527 tk->ntp_error += ntp_tick_length() << shift;
1528 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1529 (tk->ntp_error_shift + shift);
1530
1531 return offset;
1532 }
1533
1534 /**
1535 * update_wall_time - Uses the current clocksource to increment the wall time
1536 *
1537 */
1538 void update_wall_time(void)
1539 {
1540 struct timekeeper *real_tk = &tk_core.timekeeper;
1541 struct timekeeper *tk = &shadow_timekeeper;
1542 cycle_t offset;
1543 int shift = 0, maxshift;
1544 unsigned int clock_set = 0;
1545 unsigned long flags;
1546
1547 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1548
1549 /* Make sure we're fully resumed: */
1550 if (unlikely(timekeeping_suspended))
1551 goto out;
1552
1553 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1554 offset = real_tk->cycle_interval;
1555 #else
1556 offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1557 tk->tkr.cycle_last, tk->tkr.mask);
1558 #endif
1559
1560 /* Check if there's really nothing to do */
1561 if (offset < real_tk->cycle_interval)
1562 goto out;
1563
1564 /*
1565 * With NO_HZ we may have to accumulate many cycle_intervals
1566 * (think "ticks") worth of time at once. To do this efficiently,
1567 * we calculate the largest doubling multiple of cycle_intervals
1568 * that is smaller than the offset. We then accumulate that
1569 * chunk in one go, and then try to consume the next smaller
1570 * doubled multiple.
1571 */
1572 shift = ilog2(offset) - ilog2(tk->cycle_interval);
1573 shift = max(0, shift);
1574 /* Bound shift to one less than what overflows tick_length */
1575 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1576 shift = min(shift, maxshift);
1577 while (offset >= tk->cycle_interval) {
1578 offset = logarithmic_accumulation(tk, offset, shift,
1579 &clock_set);
1580 if (offset < tk->cycle_interval<<shift)
1581 shift--;
1582 }
1583
1584 /* correct the clock when NTP error is too big */
1585 timekeeping_adjust(tk, offset);
1586
1587 /*
1588 * XXX This can be killed once everyone converts
1589 * to the new update_vsyscall.
1590 */
1591 old_vsyscall_fixup(tk);
1592
1593 /*
1594 * Finally, make sure that after the rounding
1595 * xtime_nsec isn't larger than NSEC_PER_SEC
1596 */
1597 clock_set |= accumulate_nsecs_to_secs(tk);
1598
1599 write_seqcount_begin(&tk_core.seq);
1600 /*
1601 * Update the real timekeeper.
1602 *
1603 * We could avoid this memcpy by switching pointers, but that
1604 * requires changes to all other timekeeper usage sites as
1605 * well, i.e. move the timekeeper pointer getter into the
1606 * spinlocked/seqcount protected sections. And we trade this
1607 * memcpy under the tk_core.seq against one before we start
1608 * updating.
1609 */
1610 memcpy(real_tk, tk, sizeof(*tk));
1611 timekeeping_update(real_tk, clock_set);
1612 write_seqcount_end(&tk_core.seq);
1613 out:
1614 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1615 if (clock_set)
1616 /* Have to call _delayed version, since in irq context*/
1617 clock_was_set_delayed();
1618 }
1619
1620 /**
1621 * getboottime - Return the real time of system boot.
1622 * @ts: pointer to the timespec to be set
1623 *
1624 * Returns the wall-time of boot in a timespec.
1625 *
1626 * This is based on the wall_to_monotonic offset and the total suspend
1627 * time. Calls to settimeofday will affect the value returned (which
1628 * basically means that however wrong your real time clock is at boot time,
1629 * you get the right time here).
1630 */
1631 void getboottime(struct timespec *ts)
1632 {
1633 struct timekeeper *tk = &tk_core.timekeeper;
1634 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1635
1636 *ts = ktime_to_timespec(t);
1637 }
1638 EXPORT_SYMBOL_GPL(getboottime);
1639
1640 unsigned long get_seconds(void)
1641 {
1642 struct timekeeper *tk = &tk_core.timekeeper;
1643
1644 return tk->xtime_sec;
1645 }
1646 EXPORT_SYMBOL(get_seconds);
1647
1648 struct timespec __current_kernel_time(void)
1649 {
1650 struct timekeeper *tk = &tk_core.timekeeper;
1651
1652 return timespec64_to_timespec(tk_xtime(tk));
1653 }
1654
1655 struct timespec current_kernel_time(void)
1656 {
1657 struct timekeeper *tk = &tk_core.timekeeper;
1658 struct timespec64 now;
1659 unsigned long seq;
1660
1661 do {
1662 seq = read_seqcount_begin(&tk_core.seq);
1663
1664 now = tk_xtime(tk);
1665 } while (read_seqcount_retry(&tk_core.seq, seq));
1666
1667 return timespec64_to_timespec(now);
1668 }
1669 EXPORT_SYMBOL(current_kernel_time);
1670
1671 struct timespec get_monotonic_coarse(void)
1672 {
1673 struct timekeeper *tk = &tk_core.timekeeper;
1674 struct timespec64 now, mono;
1675 unsigned long seq;
1676
1677 do {
1678 seq = read_seqcount_begin(&tk_core.seq);
1679
1680 now = tk_xtime(tk);
1681 mono = tk->wall_to_monotonic;
1682 } while (read_seqcount_retry(&tk_core.seq, seq));
1683
1684 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1685 now.tv_nsec + mono.tv_nsec);
1686
1687 return timespec64_to_timespec(now);
1688 }
1689
1690 /*
1691 * Must hold jiffies_lock
1692 */
1693 void do_timer(unsigned long ticks)
1694 {
1695 jiffies_64 += ticks;
1696 calc_global_load(ticks);
1697 }
1698
1699 /**
1700 * ktime_get_update_offsets_tick - hrtimer helper
1701 * @offs_real: pointer to storage for monotonic -> realtime offset
1702 * @offs_boot: pointer to storage for monotonic -> boottime offset
1703 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1704 *
1705 * Returns monotonic time at last tick and various offsets
1706 */
1707 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1708 ktime_t *offs_tai)
1709 {
1710 struct timekeeper *tk = &tk_core.timekeeper;
1711 unsigned int seq;
1712 ktime_t base;
1713 u64 nsecs;
1714
1715 do {
1716 seq = read_seqcount_begin(&tk_core.seq);
1717
1718 base = tk->tkr.base_mono;
1719 nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1720
1721 *offs_real = tk->offs_real;
1722 *offs_boot = tk->offs_boot;
1723 *offs_tai = tk->offs_tai;
1724 } while (read_seqcount_retry(&tk_core.seq, seq));
1725
1726 return ktime_add_ns(base, nsecs);
1727 }
1728
1729 #ifdef CONFIG_HIGH_RES_TIMERS
1730 /**
1731 * ktime_get_update_offsets_now - hrtimer helper
1732 * @offs_real: pointer to storage for monotonic -> realtime offset
1733 * @offs_boot: pointer to storage for monotonic -> boottime offset
1734 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1735 *
1736 * Returns current monotonic time and updates the offsets
1737 * Called from hrtimer_interrupt() or retrigger_next_event()
1738 */
1739 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1740 ktime_t *offs_tai)
1741 {
1742 struct timekeeper *tk = &tk_core.timekeeper;
1743 unsigned int seq;
1744 ktime_t base;
1745 u64 nsecs;
1746
1747 do {
1748 seq = read_seqcount_begin(&tk_core.seq);
1749
1750 base = tk->tkr.base_mono;
1751 nsecs = timekeeping_get_ns(&tk->tkr);
1752
1753 *offs_real = tk->offs_real;
1754 *offs_boot = tk->offs_boot;
1755 *offs_tai = tk->offs_tai;
1756 } while (read_seqcount_retry(&tk_core.seq, seq));
1757
1758 return ktime_add_ns(base, nsecs);
1759 }
1760 #endif
1761
1762 /**
1763 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1764 */
1765 int do_adjtimex(struct timex *txc)
1766 {
1767 struct timekeeper *tk = &tk_core.timekeeper;
1768 unsigned long flags;
1769 struct timespec64 ts;
1770 s32 orig_tai, tai;
1771 int ret;
1772
1773 /* Validate the data before disabling interrupts */
1774 ret = ntp_validate_timex(txc);
1775 if (ret)
1776 return ret;
1777
1778 if (txc->modes & ADJ_SETOFFSET) {
1779 struct timespec delta;
1780 delta.tv_sec = txc->time.tv_sec;
1781 delta.tv_nsec = txc->time.tv_usec;
1782 if (!(txc->modes & ADJ_NANO))
1783 delta.tv_nsec *= 1000;
1784 ret = timekeeping_inject_offset(&delta);
1785 if (ret)
1786 return ret;
1787 }
1788
1789 getnstimeofday64(&ts);
1790
1791 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1792 write_seqcount_begin(&tk_core.seq);
1793
1794 orig_tai = tai = tk->tai_offset;
1795 ret = __do_adjtimex(txc, &ts, &tai);
1796
1797 if (tai != orig_tai) {
1798 __timekeeping_set_tai_offset(tk, tai);
1799 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1800 }
1801 write_seqcount_end(&tk_core.seq);
1802 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1803
1804 if (tai != orig_tai)
1805 clock_was_set();
1806
1807 ntp_notify_cmos_timer();
1808
1809 return ret;
1810 }
1811
1812 #ifdef CONFIG_NTP_PPS
1813 /**
1814 * hardpps() - Accessor function to NTP __hardpps function
1815 */
1816 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1817 {
1818 unsigned long flags;
1819
1820 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1821 write_seqcount_begin(&tk_core.seq);
1822
1823 __hardpps(phase_ts, raw_ts);
1824
1825 write_seqcount_end(&tk_core.seq);
1826 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1827 }
1828 EXPORT_SYMBOL(hardpps);
1829 #endif
1830
1831 /**
1832 * xtime_update() - advances the timekeeping infrastructure
1833 * @ticks: number of ticks, that have elapsed since the last call.
1834 *
1835 * Must be called with interrupts disabled.
1836 */
1837 void xtime_update(unsigned long ticks)
1838 {
1839 write_seqlock(&jiffies_lock);
1840 do_timer(ticks);
1841 write_sequnlock(&jiffies_lock);
1842 update_wall_time();
1843 }