]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/time/timekeeping.c
Merge tag 'fixes-for-v4.0-rc5' of https://github.com/rjarzmik/linux into fixes
[mirror_ubuntu-zesty-kernel.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
34
35 /*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39 static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56 struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62
63 /* flag for if timekeeping is suspended */
64 int __read_mostly timekeeping_suspended;
65
66 /* Flag for if there is a persistent clock on this platform */
67 bool __read_mostly persistent_clock_exist = false;
68
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71 while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72 tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73 tk->xtime_sec++;
74 }
75 }
76
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78 {
79 struct timespec64 ts;
80
81 ts.tv_sec = tk->xtime_sec;
82 ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83 return ts;
84 }
85
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 {
88 tk->xtime_sec = ts->tv_sec;
89 tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 }
91
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94 tk->xtime_sec += ts->tv_sec;
95 tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96 tk_normalize_xtime(tk);
97 }
98
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100 {
101 struct timespec64 tmp;
102
103 /*
104 * Verify consistency of: offset_real = -wall_to_monotonic
105 * before modifying anything
106 */
107 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108 -tk->wall_to_monotonic.tv_nsec);
109 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110 tk->wall_to_monotonic = wtm;
111 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112 tk->offs_real = timespec64_to_ktime(tmp);
113 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 }
115
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117 {
118 tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 }
120
121 /**
122 * tk_setup_internals - Set up internals to use clocksource clock.
123 *
124 * @tk: The target timekeeper to setup.
125 * @clock: Pointer to clocksource.
126 *
127 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
128 * pair and interval request.
129 *
130 * Unless you're the timekeeping code, you should not be using this!
131 */
132 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 {
134 cycle_t interval;
135 u64 tmp, ntpinterval;
136 struct clocksource *old_clock;
137
138 old_clock = tk->tkr.clock;
139 tk->tkr.clock = clock;
140 tk->tkr.read = clock->read;
141 tk->tkr.mask = clock->mask;
142 tk->tkr.cycle_last = tk->tkr.read(clock);
143
144 /* Do the ns -> cycle conversion first, using original mult */
145 tmp = NTP_INTERVAL_LENGTH;
146 tmp <<= clock->shift;
147 ntpinterval = tmp;
148 tmp += clock->mult/2;
149 do_div(tmp, clock->mult);
150 if (tmp == 0)
151 tmp = 1;
152
153 interval = (cycle_t) tmp;
154 tk->cycle_interval = interval;
155
156 /* Go back from cycles -> shifted ns */
157 tk->xtime_interval = (u64) interval * clock->mult;
158 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
159 tk->raw_interval =
160 ((u64) interval * clock->mult) >> clock->shift;
161
162 /* if changing clocks, convert xtime_nsec shift units */
163 if (old_clock) {
164 int shift_change = clock->shift - old_clock->shift;
165 if (shift_change < 0)
166 tk->tkr.xtime_nsec >>= -shift_change;
167 else
168 tk->tkr.xtime_nsec <<= shift_change;
169 }
170 tk->tkr.shift = clock->shift;
171
172 tk->ntp_error = 0;
173 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
175
176 /*
177 * The timekeeper keeps its own mult values for the currently
178 * active clocksource. These value will be adjusted via NTP
179 * to counteract clock drifting.
180 */
181 tk->tkr.mult = clock->mult;
182 tk->ntp_err_mult = 0;
183 }
184
185 /* Timekeeper helper functions. */
186
187 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
188 static u32 default_arch_gettimeoffset(void) { return 0; }
189 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
190 #else
191 static inline u32 arch_gettimeoffset(void) { return 0; }
192 #endif
193
194 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
195 {
196 cycle_t cycle_now, delta;
197 s64 nsec;
198
199 /* read clocksource: */
200 cycle_now = tkr->read(tkr->clock);
201
202 /* calculate the delta since the last update_wall_time: */
203 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
204
205 nsec = delta * tkr->mult + tkr->xtime_nsec;
206 nsec >>= tkr->shift;
207
208 /* If arch requires, add in get_arch_timeoffset() */
209 return nsec + arch_gettimeoffset();
210 }
211
212 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
213 {
214 struct clocksource *clock = tk->tkr.clock;
215 cycle_t cycle_now, delta;
216 s64 nsec;
217
218 /* read clocksource: */
219 cycle_now = tk->tkr.read(clock);
220
221 /* calculate the delta since the last update_wall_time: */
222 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
223
224 /* convert delta to nanoseconds. */
225 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
226
227 /* If arch requires, add in get_arch_timeoffset() */
228 return nsec + arch_gettimeoffset();
229 }
230
231 /**
232 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
233 * @tkr: Timekeeping readout base from which we take the update
234 *
235 * We want to use this from any context including NMI and tracing /
236 * instrumenting the timekeeping code itself.
237 *
238 * So we handle this differently than the other timekeeping accessor
239 * functions which retry when the sequence count has changed. The
240 * update side does:
241 *
242 * smp_wmb(); <- Ensure that the last base[1] update is visible
243 * tkf->seq++;
244 * smp_wmb(); <- Ensure that the seqcount update is visible
245 * update(tkf->base[0], tkr);
246 * smp_wmb(); <- Ensure that the base[0] update is visible
247 * tkf->seq++;
248 * smp_wmb(); <- Ensure that the seqcount update is visible
249 * update(tkf->base[1], tkr);
250 *
251 * The reader side does:
252 *
253 * do {
254 * seq = tkf->seq;
255 * smp_rmb();
256 * idx = seq & 0x01;
257 * now = now(tkf->base[idx]);
258 * smp_rmb();
259 * } while (seq != tkf->seq)
260 *
261 * As long as we update base[0] readers are forced off to
262 * base[1]. Once base[0] is updated readers are redirected to base[0]
263 * and the base[1] update takes place.
264 *
265 * So if a NMI hits the update of base[0] then it will use base[1]
266 * which is still consistent. In the worst case this can result is a
267 * slightly wrong timestamp (a few nanoseconds). See
268 * @ktime_get_mono_fast_ns.
269 */
270 static void update_fast_timekeeper(struct tk_read_base *tkr)
271 {
272 struct tk_read_base *base = tk_fast_mono.base;
273
274 /* Force readers off to base[1] */
275 raw_write_seqcount_latch(&tk_fast_mono.seq);
276
277 /* Update base[0] */
278 memcpy(base, tkr, sizeof(*base));
279
280 /* Force readers back to base[0] */
281 raw_write_seqcount_latch(&tk_fast_mono.seq);
282
283 /* Update base[1] */
284 memcpy(base + 1, base, sizeof(*base));
285 }
286
287 /**
288 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
289 *
290 * This timestamp is not guaranteed to be monotonic across an update.
291 * The timestamp is calculated by:
292 *
293 * now = base_mono + clock_delta * slope
294 *
295 * So if the update lowers the slope, readers who are forced to the
296 * not yet updated second array are still using the old steeper slope.
297 *
298 * tmono
299 * ^
300 * | o n
301 * | o n
302 * | u
303 * | o
304 * |o
305 * |12345678---> reader order
306 *
307 * o = old slope
308 * u = update
309 * n = new slope
310 *
311 * So reader 6 will observe time going backwards versus reader 5.
312 *
313 * While other CPUs are likely to be able observe that, the only way
314 * for a CPU local observation is when an NMI hits in the middle of
315 * the update. Timestamps taken from that NMI context might be ahead
316 * of the following timestamps. Callers need to be aware of that and
317 * deal with it.
318 */
319 u64 notrace ktime_get_mono_fast_ns(void)
320 {
321 struct tk_read_base *tkr;
322 unsigned int seq;
323 u64 now;
324
325 do {
326 seq = raw_read_seqcount(&tk_fast_mono.seq);
327 tkr = tk_fast_mono.base + (seq & 0x01);
328 now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
329
330 } while (read_seqcount_retry(&tk_fast_mono.seq, seq));
331 return now;
332 }
333 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
334
335 /* Suspend-time cycles value for halted fast timekeeper. */
336 static cycle_t cycles_at_suspend;
337
338 static cycle_t dummy_clock_read(struct clocksource *cs)
339 {
340 return cycles_at_suspend;
341 }
342
343 /**
344 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
345 * @tk: Timekeeper to snapshot.
346 *
347 * It generally is unsafe to access the clocksource after timekeeping has been
348 * suspended, so take a snapshot of the readout base of @tk and use it as the
349 * fast timekeeper's readout base while suspended. It will return the same
350 * number of cycles every time until timekeeping is resumed at which time the
351 * proper readout base for the fast timekeeper will be restored automatically.
352 */
353 static void halt_fast_timekeeper(struct timekeeper *tk)
354 {
355 static struct tk_read_base tkr_dummy;
356 struct tk_read_base *tkr = &tk->tkr;
357
358 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
359 cycles_at_suspend = tkr->read(tkr->clock);
360 tkr_dummy.read = dummy_clock_read;
361 update_fast_timekeeper(&tkr_dummy);
362 }
363
364 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
365
366 static inline void update_vsyscall(struct timekeeper *tk)
367 {
368 struct timespec xt, wm;
369
370 xt = timespec64_to_timespec(tk_xtime(tk));
371 wm = timespec64_to_timespec(tk->wall_to_monotonic);
372 update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
373 tk->tkr.cycle_last);
374 }
375
376 static inline void old_vsyscall_fixup(struct timekeeper *tk)
377 {
378 s64 remainder;
379
380 /*
381 * Store only full nanoseconds into xtime_nsec after rounding
382 * it up and add the remainder to the error difference.
383 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
384 * by truncating the remainder in vsyscalls. However, it causes
385 * additional work to be done in timekeeping_adjust(). Once
386 * the vsyscall implementations are converted to use xtime_nsec
387 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
388 * users are removed, this can be killed.
389 */
390 remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
391 tk->tkr.xtime_nsec -= remainder;
392 tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
393 tk->ntp_error += remainder << tk->ntp_error_shift;
394 tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
395 }
396 #else
397 #define old_vsyscall_fixup(tk)
398 #endif
399
400 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
401
402 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
403 {
404 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
405 }
406
407 /**
408 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
409 */
410 int pvclock_gtod_register_notifier(struct notifier_block *nb)
411 {
412 struct timekeeper *tk = &tk_core.timekeeper;
413 unsigned long flags;
414 int ret;
415
416 raw_spin_lock_irqsave(&timekeeper_lock, flags);
417 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
418 update_pvclock_gtod(tk, true);
419 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
420
421 return ret;
422 }
423 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
424
425 /**
426 * pvclock_gtod_unregister_notifier - unregister a pvclock
427 * timedata update listener
428 */
429 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
430 {
431 unsigned long flags;
432 int ret;
433
434 raw_spin_lock_irqsave(&timekeeper_lock, flags);
435 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
436 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
437
438 return ret;
439 }
440 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
441
442 /*
443 * Update the ktime_t based scalar nsec members of the timekeeper
444 */
445 static inline void tk_update_ktime_data(struct timekeeper *tk)
446 {
447 u64 seconds;
448 u32 nsec;
449
450 /*
451 * The xtime based monotonic readout is:
452 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
453 * The ktime based monotonic readout is:
454 * nsec = base_mono + now();
455 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
456 */
457 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
458 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
459 tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
460
461 /* Update the monotonic raw base */
462 tk->base_raw = timespec64_to_ktime(tk->raw_time);
463
464 /*
465 * The sum of the nanoseconds portions of xtime and
466 * wall_to_monotonic can be greater/equal one second. Take
467 * this into account before updating tk->ktime_sec.
468 */
469 nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift);
470 if (nsec >= NSEC_PER_SEC)
471 seconds++;
472 tk->ktime_sec = seconds;
473 }
474
475 /* must hold timekeeper_lock */
476 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
477 {
478 if (action & TK_CLEAR_NTP) {
479 tk->ntp_error = 0;
480 ntp_clear();
481 }
482
483 tk_update_ktime_data(tk);
484
485 update_vsyscall(tk);
486 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
487
488 if (action & TK_MIRROR)
489 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
490 sizeof(tk_core.timekeeper));
491
492 update_fast_timekeeper(&tk->tkr);
493 }
494
495 /**
496 * timekeeping_forward_now - update clock to the current time
497 *
498 * Forward the current clock to update its state since the last call to
499 * update_wall_time(). This is useful before significant clock changes,
500 * as it avoids having to deal with this time offset explicitly.
501 */
502 static void timekeeping_forward_now(struct timekeeper *tk)
503 {
504 struct clocksource *clock = tk->tkr.clock;
505 cycle_t cycle_now, delta;
506 s64 nsec;
507
508 cycle_now = tk->tkr.read(clock);
509 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
510 tk->tkr.cycle_last = cycle_now;
511
512 tk->tkr.xtime_nsec += delta * tk->tkr.mult;
513
514 /* If arch requires, add in get_arch_timeoffset() */
515 tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
516
517 tk_normalize_xtime(tk);
518
519 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
520 timespec64_add_ns(&tk->raw_time, nsec);
521 }
522
523 /**
524 * __getnstimeofday64 - Returns the time of day in a timespec64.
525 * @ts: pointer to the timespec to be set
526 *
527 * Updates the time of day in the timespec.
528 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
529 */
530 int __getnstimeofday64(struct timespec64 *ts)
531 {
532 struct timekeeper *tk = &tk_core.timekeeper;
533 unsigned long seq;
534 s64 nsecs = 0;
535
536 do {
537 seq = read_seqcount_begin(&tk_core.seq);
538
539 ts->tv_sec = tk->xtime_sec;
540 nsecs = timekeeping_get_ns(&tk->tkr);
541
542 } while (read_seqcount_retry(&tk_core.seq, seq));
543
544 ts->tv_nsec = 0;
545 timespec64_add_ns(ts, nsecs);
546
547 /*
548 * Do not bail out early, in case there were callers still using
549 * the value, even in the face of the WARN_ON.
550 */
551 if (unlikely(timekeeping_suspended))
552 return -EAGAIN;
553 return 0;
554 }
555 EXPORT_SYMBOL(__getnstimeofday64);
556
557 /**
558 * getnstimeofday64 - Returns the time of day in a timespec64.
559 * @ts: pointer to the timespec64 to be set
560 *
561 * Returns the time of day in a timespec64 (WARN if suspended).
562 */
563 void getnstimeofday64(struct timespec64 *ts)
564 {
565 WARN_ON(__getnstimeofday64(ts));
566 }
567 EXPORT_SYMBOL(getnstimeofday64);
568
569 ktime_t ktime_get(void)
570 {
571 struct timekeeper *tk = &tk_core.timekeeper;
572 unsigned int seq;
573 ktime_t base;
574 s64 nsecs;
575
576 WARN_ON(timekeeping_suspended);
577
578 do {
579 seq = read_seqcount_begin(&tk_core.seq);
580 base = tk->tkr.base_mono;
581 nsecs = timekeeping_get_ns(&tk->tkr);
582
583 } while (read_seqcount_retry(&tk_core.seq, seq));
584
585 return ktime_add_ns(base, nsecs);
586 }
587 EXPORT_SYMBOL_GPL(ktime_get);
588
589 static ktime_t *offsets[TK_OFFS_MAX] = {
590 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
591 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
592 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
593 };
594
595 ktime_t ktime_get_with_offset(enum tk_offsets offs)
596 {
597 struct timekeeper *tk = &tk_core.timekeeper;
598 unsigned int seq;
599 ktime_t base, *offset = offsets[offs];
600 s64 nsecs;
601
602 WARN_ON(timekeeping_suspended);
603
604 do {
605 seq = read_seqcount_begin(&tk_core.seq);
606 base = ktime_add(tk->tkr.base_mono, *offset);
607 nsecs = timekeeping_get_ns(&tk->tkr);
608
609 } while (read_seqcount_retry(&tk_core.seq, seq));
610
611 return ktime_add_ns(base, nsecs);
612
613 }
614 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
615
616 /**
617 * ktime_mono_to_any() - convert mononotic time to any other time
618 * @tmono: time to convert.
619 * @offs: which offset to use
620 */
621 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
622 {
623 ktime_t *offset = offsets[offs];
624 unsigned long seq;
625 ktime_t tconv;
626
627 do {
628 seq = read_seqcount_begin(&tk_core.seq);
629 tconv = ktime_add(tmono, *offset);
630 } while (read_seqcount_retry(&tk_core.seq, seq));
631
632 return tconv;
633 }
634 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
635
636 /**
637 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
638 */
639 ktime_t ktime_get_raw(void)
640 {
641 struct timekeeper *tk = &tk_core.timekeeper;
642 unsigned int seq;
643 ktime_t base;
644 s64 nsecs;
645
646 do {
647 seq = read_seqcount_begin(&tk_core.seq);
648 base = tk->base_raw;
649 nsecs = timekeeping_get_ns_raw(tk);
650
651 } while (read_seqcount_retry(&tk_core.seq, seq));
652
653 return ktime_add_ns(base, nsecs);
654 }
655 EXPORT_SYMBOL_GPL(ktime_get_raw);
656
657 /**
658 * ktime_get_ts64 - get the monotonic clock in timespec64 format
659 * @ts: pointer to timespec variable
660 *
661 * The function calculates the monotonic clock from the realtime
662 * clock and the wall_to_monotonic offset and stores the result
663 * in normalized timespec64 format in the variable pointed to by @ts.
664 */
665 void ktime_get_ts64(struct timespec64 *ts)
666 {
667 struct timekeeper *tk = &tk_core.timekeeper;
668 struct timespec64 tomono;
669 s64 nsec;
670 unsigned int seq;
671
672 WARN_ON(timekeeping_suspended);
673
674 do {
675 seq = read_seqcount_begin(&tk_core.seq);
676 ts->tv_sec = tk->xtime_sec;
677 nsec = timekeeping_get_ns(&tk->tkr);
678 tomono = tk->wall_to_monotonic;
679
680 } while (read_seqcount_retry(&tk_core.seq, seq));
681
682 ts->tv_sec += tomono.tv_sec;
683 ts->tv_nsec = 0;
684 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
685 }
686 EXPORT_SYMBOL_GPL(ktime_get_ts64);
687
688 /**
689 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
690 *
691 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
692 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
693 * works on both 32 and 64 bit systems. On 32 bit systems the readout
694 * covers ~136 years of uptime which should be enough to prevent
695 * premature wrap arounds.
696 */
697 time64_t ktime_get_seconds(void)
698 {
699 struct timekeeper *tk = &tk_core.timekeeper;
700
701 WARN_ON(timekeeping_suspended);
702 return tk->ktime_sec;
703 }
704 EXPORT_SYMBOL_GPL(ktime_get_seconds);
705
706 /**
707 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
708 *
709 * Returns the wall clock seconds since 1970. This replaces the
710 * get_seconds() interface which is not y2038 safe on 32bit systems.
711 *
712 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
713 * 32bit systems the access must be protected with the sequence
714 * counter to provide "atomic" access to the 64bit tk->xtime_sec
715 * value.
716 */
717 time64_t ktime_get_real_seconds(void)
718 {
719 struct timekeeper *tk = &tk_core.timekeeper;
720 time64_t seconds;
721 unsigned int seq;
722
723 if (IS_ENABLED(CONFIG_64BIT))
724 return tk->xtime_sec;
725
726 do {
727 seq = read_seqcount_begin(&tk_core.seq);
728 seconds = tk->xtime_sec;
729
730 } while (read_seqcount_retry(&tk_core.seq, seq));
731
732 return seconds;
733 }
734 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
735
736 #ifdef CONFIG_NTP_PPS
737
738 /**
739 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
740 * @ts_raw: pointer to the timespec to be set to raw monotonic time
741 * @ts_real: pointer to the timespec to be set to the time of day
742 *
743 * This function reads both the time of day and raw monotonic time at the
744 * same time atomically and stores the resulting timestamps in timespec
745 * format.
746 */
747 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
748 {
749 struct timekeeper *tk = &tk_core.timekeeper;
750 unsigned long seq;
751 s64 nsecs_raw, nsecs_real;
752
753 WARN_ON_ONCE(timekeeping_suspended);
754
755 do {
756 seq = read_seqcount_begin(&tk_core.seq);
757
758 *ts_raw = timespec64_to_timespec(tk->raw_time);
759 ts_real->tv_sec = tk->xtime_sec;
760 ts_real->tv_nsec = 0;
761
762 nsecs_raw = timekeeping_get_ns_raw(tk);
763 nsecs_real = timekeeping_get_ns(&tk->tkr);
764
765 } while (read_seqcount_retry(&tk_core.seq, seq));
766
767 timespec_add_ns(ts_raw, nsecs_raw);
768 timespec_add_ns(ts_real, nsecs_real);
769 }
770 EXPORT_SYMBOL(getnstime_raw_and_real);
771
772 #endif /* CONFIG_NTP_PPS */
773
774 /**
775 * do_gettimeofday - Returns the time of day in a timeval
776 * @tv: pointer to the timeval to be set
777 *
778 * NOTE: Users should be converted to using getnstimeofday()
779 */
780 void do_gettimeofday(struct timeval *tv)
781 {
782 struct timespec64 now;
783
784 getnstimeofday64(&now);
785 tv->tv_sec = now.tv_sec;
786 tv->tv_usec = now.tv_nsec/1000;
787 }
788 EXPORT_SYMBOL(do_gettimeofday);
789
790 /**
791 * do_settimeofday64 - Sets the time of day.
792 * @ts: pointer to the timespec64 variable containing the new time
793 *
794 * Sets the time of day to the new time and update NTP and notify hrtimers
795 */
796 int do_settimeofday64(const struct timespec64 *ts)
797 {
798 struct timekeeper *tk = &tk_core.timekeeper;
799 struct timespec64 ts_delta, xt;
800 unsigned long flags;
801
802 if (!timespec64_valid_strict(ts))
803 return -EINVAL;
804
805 raw_spin_lock_irqsave(&timekeeper_lock, flags);
806 write_seqcount_begin(&tk_core.seq);
807
808 timekeeping_forward_now(tk);
809
810 xt = tk_xtime(tk);
811 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
812 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
813
814 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
815
816 tk_set_xtime(tk, ts);
817
818 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
819
820 write_seqcount_end(&tk_core.seq);
821 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
822
823 /* signal hrtimers about time change */
824 clock_was_set();
825
826 return 0;
827 }
828 EXPORT_SYMBOL(do_settimeofday64);
829
830 /**
831 * timekeeping_inject_offset - Adds or subtracts from the current time.
832 * @tv: pointer to the timespec variable containing the offset
833 *
834 * Adds or subtracts an offset value from the current time.
835 */
836 int timekeeping_inject_offset(struct timespec *ts)
837 {
838 struct timekeeper *tk = &tk_core.timekeeper;
839 unsigned long flags;
840 struct timespec64 ts64, tmp;
841 int ret = 0;
842
843 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
844 return -EINVAL;
845
846 ts64 = timespec_to_timespec64(*ts);
847
848 raw_spin_lock_irqsave(&timekeeper_lock, flags);
849 write_seqcount_begin(&tk_core.seq);
850
851 timekeeping_forward_now(tk);
852
853 /* Make sure the proposed value is valid */
854 tmp = timespec64_add(tk_xtime(tk), ts64);
855 if (!timespec64_valid_strict(&tmp)) {
856 ret = -EINVAL;
857 goto error;
858 }
859
860 tk_xtime_add(tk, &ts64);
861 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
862
863 error: /* even if we error out, we forwarded the time, so call update */
864 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
865
866 write_seqcount_end(&tk_core.seq);
867 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
868
869 /* signal hrtimers about time change */
870 clock_was_set();
871
872 return ret;
873 }
874 EXPORT_SYMBOL(timekeeping_inject_offset);
875
876
877 /**
878 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
879 *
880 */
881 s32 timekeeping_get_tai_offset(void)
882 {
883 struct timekeeper *tk = &tk_core.timekeeper;
884 unsigned int seq;
885 s32 ret;
886
887 do {
888 seq = read_seqcount_begin(&tk_core.seq);
889 ret = tk->tai_offset;
890 } while (read_seqcount_retry(&tk_core.seq, seq));
891
892 return ret;
893 }
894
895 /**
896 * __timekeeping_set_tai_offset - Lock free worker function
897 *
898 */
899 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
900 {
901 tk->tai_offset = tai_offset;
902 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
903 }
904
905 /**
906 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
907 *
908 */
909 void timekeeping_set_tai_offset(s32 tai_offset)
910 {
911 struct timekeeper *tk = &tk_core.timekeeper;
912 unsigned long flags;
913
914 raw_spin_lock_irqsave(&timekeeper_lock, flags);
915 write_seqcount_begin(&tk_core.seq);
916 __timekeeping_set_tai_offset(tk, tai_offset);
917 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
918 write_seqcount_end(&tk_core.seq);
919 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
920 clock_was_set();
921 }
922
923 /**
924 * change_clocksource - Swaps clocksources if a new one is available
925 *
926 * Accumulates current time interval and initializes new clocksource
927 */
928 static int change_clocksource(void *data)
929 {
930 struct timekeeper *tk = &tk_core.timekeeper;
931 struct clocksource *new, *old;
932 unsigned long flags;
933
934 new = (struct clocksource *) data;
935
936 raw_spin_lock_irqsave(&timekeeper_lock, flags);
937 write_seqcount_begin(&tk_core.seq);
938
939 timekeeping_forward_now(tk);
940 /*
941 * If the cs is in module, get a module reference. Succeeds
942 * for built-in code (owner == NULL) as well.
943 */
944 if (try_module_get(new->owner)) {
945 if (!new->enable || new->enable(new) == 0) {
946 old = tk->tkr.clock;
947 tk_setup_internals(tk, new);
948 if (old->disable)
949 old->disable(old);
950 module_put(old->owner);
951 } else {
952 module_put(new->owner);
953 }
954 }
955 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
956
957 write_seqcount_end(&tk_core.seq);
958 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
959
960 return 0;
961 }
962
963 /**
964 * timekeeping_notify - Install a new clock source
965 * @clock: pointer to the clock source
966 *
967 * This function is called from clocksource.c after a new, better clock
968 * source has been registered. The caller holds the clocksource_mutex.
969 */
970 int timekeeping_notify(struct clocksource *clock)
971 {
972 struct timekeeper *tk = &tk_core.timekeeper;
973
974 if (tk->tkr.clock == clock)
975 return 0;
976 stop_machine(change_clocksource, clock, NULL);
977 tick_clock_notify();
978 return tk->tkr.clock == clock ? 0 : -1;
979 }
980
981 /**
982 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
983 * @ts: pointer to the timespec64 to be set
984 *
985 * Returns the raw monotonic time (completely un-modified by ntp)
986 */
987 void getrawmonotonic64(struct timespec64 *ts)
988 {
989 struct timekeeper *tk = &tk_core.timekeeper;
990 struct timespec64 ts64;
991 unsigned long seq;
992 s64 nsecs;
993
994 do {
995 seq = read_seqcount_begin(&tk_core.seq);
996 nsecs = timekeeping_get_ns_raw(tk);
997 ts64 = tk->raw_time;
998
999 } while (read_seqcount_retry(&tk_core.seq, seq));
1000
1001 timespec64_add_ns(&ts64, nsecs);
1002 *ts = ts64;
1003 }
1004 EXPORT_SYMBOL(getrawmonotonic64);
1005
1006
1007 /**
1008 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1009 */
1010 int timekeeping_valid_for_hres(void)
1011 {
1012 struct timekeeper *tk = &tk_core.timekeeper;
1013 unsigned long seq;
1014 int ret;
1015
1016 do {
1017 seq = read_seqcount_begin(&tk_core.seq);
1018
1019 ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1020
1021 } while (read_seqcount_retry(&tk_core.seq, seq));
1022
1023 return ret;
1024 }
1025
1026 /**
1027 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1028 */
1029 u64 timekeeping_max_deferment(void)
1030 {
1031 struct timekeeper *tk = &tk_core.timekeeper;
1032 unsigned long seq;
1033 u64 ret;
1034
1035 do {
1036 seq = read_seqcount_begin(&tk_core.seq);
1037
1038 ret = tk->tkr.clock->max_idle_ns;
1039
1040 } while (read_seqcount_retry(&tk_core.seq, seq));
1041
1042 return ret;
1043 }
1044
1045 /**
1046 * read_persistent_clock - Return time from the persistent clock.
1047 *
1048 * Weak dummy function for arches that do not yet support it.
1049 * Reads the time from the battery backed persistent clock.
1050 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1051 *
1052 * XXX - Do be sure to remove it once all arches implement it.
1053 */
1054 void __weak read_persistent_clock(struct timespec *ts)
1055 {
1056 ts->tv_sec = 0;
1057 ts->tv_nsec = 0;
1058 }
1059
1060 /**
1061 * read_boot_clock - Return time of the system start.
1062 *
1063 * Weak dummy function for arches that do not yet support it.
1064 * Function to read the exact time the system has been started.
1065 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1066 *
1067 * XXX - Do be sure to remove it once all arches implement it.
1068 */
1069 void __weak read_boot_clock(struct timespec *ts)
1070 {
1071 ts->tv_sec = 0;
1072 ts->tv_nsec = 0;
1073 }
1074
1075 /*
1076 * timekeeping_init - Initializes the clocksource and common timekeeping values
1077 */
1078 void __init timekeeping_init(void)
1079 {
1080 struct timekeeper *tk = &tk_core.timekeeper;
1081 struct clocksource *clock;
1082 unsigned long flags;
1083 struct timespec64 now, boot, tmp;
1084 struct timespec ts;
1085
1086 read_persistent_clock(&ts);
1087 now = timespec_to_timespec64(ts);
1088 if (!timespec64_valid_strict(&now)) {
1089 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1090 " Check your CMOS/BIOS settings.\n");
1091 now.tv_sec = 0;
1092 now.tv_nsec = 0;
1093 } else if (now.tv_sec || now.tv_nsec)
1094 persistent_clock_exist = true;
1095
1096 read_boot_clock(&ts);
1097 boot = timespec_to_timespec64(ts);
1098 if (!timespec64_valid_strict(&boot)) {
1099 pr_warn("WARNING: Boot clock returned invalid value!\n"
1100 " Check your CMOS/BIOS settings.\n");
1101 boot.tv_sec = 0;
1102 boot.tv_nsec = 0;
1103 }
1104
1105 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1106 write_seqcount_begin(&tk_core.seq);
1107 ntp_init();
1108
1109 clock = clocksource_default_clock();
1110 if (clock->enable)
1111 clock->enable(clock);
1112 tk_setup_internals(tk, clock);
1113
1114 tk_set_xtime(tk, &now);
1115 tk->raw_time.tv_sec = 0;
1116 tk->raw_time.tv_nsec = 0;
1117 tk->base_raw.tv64 = 0;
1118 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1119 boot = tk_xtime(tk);
1120
1121 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1122 tk_set_wall_to_mono(tk, tmp);
1123
1124 timekeeping_update(tk, TK_MIRROR);
1125
1126 write_seqcount_end(&tk_core.seq);
1127 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1128 }
1129
1130 /* time in seconds when suspend began */
1131 static struct timespec64 timekeeping_suspend_time;
1132
1133 /**
1134 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1135 * @delta: pointer to a timespec delta value
1136 *
1137 * Takes a timespec offset measuring a suspend interval and properly
1138 * adds the sleep offset to the timekeeping variables.
1139 */
1140 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1141 struct timespec64 *delta)
1142 {
1143 if (!timespec64_valid_strict(delta)) {
1144 printk_deferred(KERN_WARNING
1145 "__timekeeping_inject_sleeptime: Invalid "
1146 "sleep delta value!\n");
1147 return;
1148 }
1149 tk_xtime_add(tk, delta);
1150 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1151 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1152 tk_debug_account_sleep_time(delta);
1153 }
1154
1155 /**
1156 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1157 * @delta: pointer to a timespec64 delta value
1158 *
1159 * This hook is for architectures that cannot support read_persistent_clock
1160 * because their RTC/persistent clock is only accessible when irqs are enabled.
1161 *
1162 * This function should only be called by rtc_resume(), and allows
1163 * a suspend offset to be injected into the timekeeping values.
1164 */
1165 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1166 {
1167 struct timekeeper *tk = &tk_core.timekeeper;
1168 unsigned long flags;
1169
1170 /*
1171 * Make sure we don't set the clock twice, as timekeeping_resume()
1172 * already did it
1173 */
1174 if (has_persistent_clock())
1175 return;
1176
1177 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1178 write_seqcount_begin(&tk_core.seq);
1179
1180 timekeeping_forward_now(tk);
1181
1182 __timekeeping_inject_sleeptime(tk, delta);
1183
1184 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1185
1186 write_seqcount_end(&tk_core.seq);
1187 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1188
1189 /* signal hrtimers about time change */
1190 clock_was_set();
1191 }
1192
1193 /**
1194 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1195 *
1196 * This is for the generic clocksource timekeeping.
1197 * xtime/wall_to_monotonic/jiffies/etc are
1198 * still managed by arch specific suspend/resume code.
1199 */
1200 void timekeeping_resume(void)
1201 {
1202 struct timekeeper *tk = &tk_core.timekeeper;
1203 struct clocksource *clock = tk->tkr.clock;
1204 unsigned long flags;
1205 struct timespec64 ts_new, ts_delta;
1206 struct timespec tmp;
1207 cycle_t cycle_now, cycle_delta;
1208 bool suspendtime_found = false;
1209
1210 read_persistent_clock(&tmp);
1211 ts_new = timespec_to_timespec64(tmp);
1212
1213 clockevents_resume();
1214 clocksource_resume();
1215
1216 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1217 write_seqcount_begin(&tk_core.seq);
1218
1219 /*
1220 * After system resumes, we need to calculate the suspended time and
1221 * compensate it for the OS time. There are 3 sources that could be
1222 * used: Nonstop clocksource during suspend, persistent clock and rtc
1223 * device.
1224 *
1225 * One specific platform may have 1 or 2 or all of them, and the
1226 * preference will be:
1227 * suspend-nonstop clocksource -> persistent clock -> rtc
1228 * The less preferred source will only be tried if there is no better
1229 * usable source. The rtc part is handled separately in rtc core code.
1230 */
1231 cycle_now = tk->tkr.read(clock);
1232 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1233 cycle_now > tk->tkr.cycle_last) {
1234 u64 num, max = ULLONG_MAX;
1235 u32 mult = clock->mult;
1236 u32 shift = clock->shift;
1237 s64 nsec = 0;
1238
1239 cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1240 tk->tkr.mask);
1241
1242 /*
1243 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1244 * suspended time is too long. In that case we need do the
1245 * 64 bits math carefully
1246 */
1247 do_div(max, mult);
1248 if (cycle_delta > max) {
1249 num = div64_u64(cycle_delta, max);
1250 nsec = (((u64) max * mult) >> shift) * num;
1251 cycle_delta -= num * max;
1252 }
1253 nsec += ((u64) cycle_delta * mult) >> shift;
1254
1255 ts_delta = ns_to_timespec64(nsec);
1256 suspendtime_found = true;
1257 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1258 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1259 suspendtime_found = true;
1260 }
1261
1262 if (suspendtime_found)
1263 __timekeeping_inject_sleeptime(tk, &ts_delta);
1264
1265 /* Re-base the last cycle value */
1266 tk->tkr.cycle_last = cycle_now;
1267 tk->ntp_error = 0;
1268 timekeeping_suspended = 0;
1269 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1270 write_seqcount_end(&tk_core.seq);
1271 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1272
1273 touch_softlockup_watchdog();
1274
1275 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1276
1277 /* Resume hrtimers */
1278 hrtimers_resume();
1279 }
1280
1281 int timekeeping_suspend(void)
1282 {
1283 struct timekeeper *tk = &tk_core.timekeeper;
1284 unsigned long flags;
1285 struct timespec64 delta, delta_delta;
1286 static struct timespec64 old_delta;
1287 struct timespec tmp;
1288
1289 read_persistent_clock(&tmp);
1290 timekeeping_suspend_time = timespec_to_timespec64(tmp);
1291
1292 /*
1293 * On some systems the persistent_clock can not be detected at
1294 * timekeeping_init by its return value, so if we see a valid
1295 * value returned, update the persistent_clock_exists flag.
1296 */
1297 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1298 persistent_clock_exist = true;
1299
1300 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1301 write_seqcount_begin(&tk_core.seq);
1302 timekeeping_forward_now(tk);
1303 timekeeping_suspended = 1;
1304
1305 /*
1306 * To avoid drift caused by repeated suspend/resumes,
1307 * which each can add ~1 second drift error,
1308 * try to compensate so the difference in system time
1309 * and persistent_clock time stays close to constant.
1310 */
1311 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1312 delta_delta = timespec64_sub(delta, old_delta);
1313 if (abs(delta_delta.tv_sec) >= 2) {
1314 /*
1315 * if delta_delta is too large, assume time correction
1316 * has occured and set old_delta to the current delta.
1317 */
1318 old_delta = delta;
1319 } else {
1320 /* Otherwise try to adjust old_system to compensate */
1321 timekeeping_suspend_time =
1322 timespec64_add(timekeeping_suspend_time, delta_delta);
1323 }
1324
1325 timekeeping_update(tk, TK_MIRROR);
1326 halt_fast_timekeeper(tk);
1327 write_seqcount_end(&tk_core.seq);
1328 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1329
1330 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1331 clocksource_suspend();
1332 clockevents_suspend();
1333
1334 return 0;
1335 }
1336
1337 /* sysfs resume/suspend bits for timekeeping */
1338 static struct syscore_ops timekeeping_syscore_ops = {
1339 .resume = timekeeping_resume,
1340 .suspend = timekeeping_suspend,
1341 };
1342
1343 static int __init timekeeping_init_ops(void)
1344 {
1345 register_syscore_ops(&timekeeping_syscore_ops);
1346 return 0;
1347 }
1348 device_initcall(timekeeping_init_ops);
1349
1350 /*
1351 * Apply a multiplier adjustment to the timekeeper
1352 */
1353 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1354 s64 offset,
1355 bool negative,
1356 int adj_scale)
1357 {
1358 s64 interval = tk->cycle_interval;
1359 s32 mult_adj = 1;
1360
1361 if (negative) {
1362 mult_adj = -mult_adj;
1363 interval = -interval;
1364 offset = -offset;
1365 }
1366 mult_adj <<= adj_scale;
1367 interval <<= adj_scale;
1368 offset <<= adj_scale;
1369
1370 /*
1371 * So the following can be confusing.
1372 *
1373 * To keep things simple, lets assume mult_adj == 1 for now.
1374 *
1375 * When mult_adj != 1, remember that the interval and offset values
1376 * have been appropriately scaled so the math is the same.
1377 *
1378 * The basic idea here is that we're increasing the multiplier
1379 * by one, this causes the xtime_interval to be incremented by
1380 * one cycle_interval. This is because:
1381 * xtime_interval = cycle_interval * mult
1382 * So if mult is being incremented by one:
1383 * xtime_interval = cycle_interval * (mult + 1)
1384 * Its the same as:
1385 * xtime_interval = (cycle_interval * mult) + cycle_interval
1386 * Which can be shortened to:
1387 * xtime_interval += cycle_interval
1388 *
1389 * So offset stores the non-accumulated cycles. Thus the current
1390 * time (in shifted nanoseconds) is:
1391 * now = (offset * adj) + xtime_nsec
1392 * Now, even though we're adjusting the clock frequency, we have
1393 * to keep time consistent. In other words, we can't jump back
1394 * in time, and we also want to avoid jumping forward in time.
1395 *
1396 * So given the same offset value, we need the time to be the same
1397 * both before and after the freq adjustment.
1398 * now = (offset * adj_1) + xtime_nsec_1
1399 * now = (offset * adj_2) + xtime_nsec_2
1400 * So:
1401 * (offset * adj_1) + xtime_nsec_1 =
1402 * (offset * adj_2) + xtime_nsec_2
1403 * And we know:
1404 * adj_2 = adj_1 + 1
1405 * So:
1406 * (offset * adj_1) + xtime_nsec_1 =
1407 * (offset * (adj_1+1)) + xtime_nsec_2
1408 * (offset * adj_1) + xtime_nsec_1 =
1409 * (offset * adj_1) + offset + xtime_nsec_2
1410 * Canceling the sides:
1411 * xtime_nsec_1 = offset + xtime_nsec_2
1412 * Which gives us:
1413 * xtime_nsec_2 = xtime_nsec_1 - offset
1414 * Which simplfies to:
1415 * xtime_nsec -= offset
1416 *
1417 * XXX - TODO: Doc ntp_error calculation.
1418 */
1419 if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) {
1420 /* NTP adjustment caused clocksource mult overflow */
1421 WARN_ON_ONCE(1);
1422 return;
1423 }
1424
1425 tk->tkr.mult += mult_adj;
1426 tk->xtime_interval += interval;
1427 tk->tkr.xtime_nsec -= offset;
1428 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1429 }
1430
1431 /*
1432 * Calculate the multiplier adjustment needed to match the frequency
1433 * specified by NTP
1434 */
1435 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1436 s64 offset)
1437 {
1438 s64 interval = tk->cycle_interval;
1439 s64 xinterval = tk->xtime_interval;
1440 s64 tick_error;
1441 bool negative;
1442 u32 adj;
1443
1444 /* Remove any current error adj from freq calculation */
1445 if (tk->ntp_err_mult)
1446 xinterval -= tk->cycle_interval;
1447
1448 tk->ntp_tick = ntp_tick_length();
1449
1450 /* Calculate current error per tick */
1451 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1452 tick_error -= (xinterval + tk->xtime_remainder);
1453
1454 /* Don't worry about correcting it if its small */
1455 if (likely((tick_error >= 0) && (tick_error <= interval)))
1456 return;
1457
1458 /* preserve the direction of correction */
1459 negative = (tick_error < 0);
1460
1461 /* Sort out the magnitude of the correction */
1462 tick_error = abs(tick_error);
1463 for (adj = 0; tick_error > interval; adj++)
1464 tick_error >>= 1;
1465
1466 /* scale the corrections */
1467 timekeeping_apply_adjustment(tk, offset, negative, adj);
1468 }
1469
1470 /*
1471 * Adjust the timekeeper's multiplier to the correct frequency
1472 * and also to reduce the accumulated error value.
1473 */
1474 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1475 {
1476 /* Correct for the current frequency error */
1477 timekeeping_freqadjust(tk, offset);
1478
1479 /* Next make a small adjustment to fix any cumulative error */
1480 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1481 tk->ntp_err_mult = 1;
1482 timekeeping_apply_adjustment(tk, offset, 0, 0);
1483 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1484 /* Undo any existing error adjustment */
1485 timekeeping_apply_adjustment(tk, offset, 1, 0);
1486 tk->ntp_err_mult = 0;
1487 }
1488
1489 if (unlikely(tk->tkr.clock->maxadj &&
1490 (abs(tk->tkr.mult - tk->tkr.clock->mult)
1491 > tk->tkr.clock->maxadj))) {
1492 printk_once(KERN_WARNING
1493 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1494 tk->tkr.clock->name, (long)tk->tkr.mult,
1495 (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1496 }
1497
1498 /*
1499 * It may be possible that when we entered this function, xtime_nsec
1500 * was very small. Further, if we're slightly speeding the clocksource
1501 * in the code above, its possible the required corrective factor to
1502 * xtime_nsec could cause it to underflow.
1503 *
1504 * Now, since we already accumulated the second, cannot simply roll
1505 * the accumulated second back, since the NTP subsystem has been
1506 * notified via second_overflow. So instead we push xtime_nsec forward
1507 * by the amount we underflowed, and add that amount into the error.
1508 *
1509 * We'll correct this error next time through this function, when
1510 * xtime_nsec is not as small.
1511 */
1512 if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1513 s64 neg = -(s64)tk->tkr.xtime_nsec;
1514 tk->tkr.xtime_nsec = 0;
1515 tk->ntp_error += neg << tk->ntp_error_shift;
1516 }
1517 }
1518
1519 /**
1520 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1521 *
1522 * Helper function that accumulates a the nsecs greater then a second
1523 * from the xtime_nsec field to the xtime_secs field.
1524 * It also calls into the NTP code to handle leapsecond processing.
1525 *
1526 */
1527 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1528 {
1529 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1530 unsigned int clock_set = 0;
1531
1532 while (tk->tkr.xtime_nsec >= nsecps) {
1533 int leap;
1534
1535 tk->tkr.xtime_nsec -= nsecps;
1536 tk->xtime_sec++;
1537
1538 /* Figure out if its a leap sec and apply if needed */
1539 leap = second_overflow(tk->xtime_sec);
1540 if (unlikely(leap)) {
1541 struct timespec64 ts;
1542
1543 tk->xtime_sec += leap;
1544
1545 ts.tv_sec = leap;
1546 ts.tv_nsec = 0;
1547 tk_set_wall_to_mono(tk,
1548 timespec64_sub(tk->wall_to_monotonic, ts));
1549
1550 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1551
1552 clock_set = TK_CLOCK_WAS_SET;
1553 }
1554 }
1555 return clock_set;
1556 }
1557
1558 /**
1559 * logarithmic_accumulation - shifted accumulation of cycles
1560 *
1561 * This functions accumulates a shifted interval of cycles into
1562 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1563 * loop.
1564 *
1565 * Returns the unconsumed cycles.
1566 */
1567 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1568 u32 shift,
1569 unsigned int *clock_set)
1570 {
1571 cycle_t interval = tk->cycle_interval << shift;
1572 u64 raw_nsecs;
1573
1574 /* If the offset is smaller then a shifted interval, do nothing */
1575 if (offset < interval)
1576 return offset;
1577
1578 /* Accumulate one shifted interval */
1579 offset -= interval;
1580 tk->tkr.cycle_last += interval;
1581
1582 tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1583 *clock_set |= accumulate_nsecs_to_secs(tk);
1584
1585 /* Accumulate raw time */
1586 raw_nsecs = (u64)tk->raw_interval << shift;
1587 raw_nsecs += tk->raw_time.tv_nsec;
1588 if (raw_nsecs >= NSEC_PER_SEC) {
1589 u64 raw_secs = raw_nsecs;
1590 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1591 tk->raw_time.tv_sec += raw_secs;
1592 }
1593 tk->raw_time.tv_nsec = raw_nsecs;
1594
1595 /* Accumulate error between NTP and clock interval */
1596 tk->ntp_error += tk->ntp_tick << shift;
1597 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1598 (tk->ntp_error_shift + shift);
1599
1600 return offset;
1601 }
1602
1603 /**
1604 * update_wall_time - Uses the current clocksource to increment the wall time
1605 *
1606 */
1607 void update_wall_time(void)
1608 {
1609 struct timekeeper *real_tk = &tk_core.timekeeper;
1610 struct timekeeper *tk = &shadow_timekeeper;
1611 cycle_t offset;
1612 int shift = 0, maxshift;
1613 unsigned int clock_set = 0;
1614 unsigned long flags;
1615
1616 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1617
1618 /* Make sure we're fully resumed: */
1619 if (unlikely(timekeeping_suspended))
1620 goto out;
1621
1622 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1623 offset = real_tk->cycle_interval;
1624 #else
1625 offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1626 tk->tkr.cycle_last, tk->tkr.mask);
1627 #endif
1628
1629 /* Check if there's really nothing to do */
1630 if (offset < real_tk->cycle_interval)
1631 goto out;
1632
1633 /*
1634 * With NO_HZ we may have to accumulate many cycle_intervals
1635 * (think "ticks") worth of time at once. To do this efficiently,
1636 * we calculate the largest doubling multiple of cycle_intervals
1637 * that is smaller than the offset. We then accumulate that
1638 * chunk in one go, and then try to consume the next smaller
1639 * doubled multiple.
1640 */
1641 shift = ilog2(offset) - ilog2(tk->cycle_interval);
1642 shift = max(0, shift);
1643 /* Bound shift to one less than what overflows tick_length */
1644 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1645 shift = min(shift, maxshift);
1646 while (offset >= tk->cycle_interval) {
1647 offset = logarithmic_accumulation(tk, offset, shift,
1648 &clock_set);
1649 if (offset < tk->cycle_interval<<shift)
1650 shift--;
1651 }
1652
1653 /* correct the clock when NTP error is too big */
1654 timekeeping_adjust(tk, offset);
1655
1656 /*
1657 * XXX This can be killed once everyone converts
1658 * to the new update_vsyscall.
1659 */
1660 old_vsyscall_fixup(tk);
1661
1662 /*
1663 * Finally, make sure that after the rounding
1664 * xtime_nsec isn't larger than NSEC_PER_SEC
1665 */
1666 clock_set |= accumulate_nsecs_to_secs(tk);
1667
1668 write_seqcount_begin(&tk_core.seq);
1669 /*
1670 * Update the real timekeeper.
1671 *
1672 * We could avoid this memcpy by switching pointers, but that
1673 * requires changes to all other timekeeper usage sites as
1674 * well, i.e. move the timekeeper pointer getter into the
1675 * spinlocked/seqcount protected sections. And we trade this
1676 * memcpy under the tk_core.seq against one before we start
1677 * updating.
1678 */
1679 memcpy(real_tk, tk, sizeof(*tk));
1680 timekeeping_update(real_tk, clock_set);
1681 write_seqcount_end(&tk_core.seq);
1682 out:
1683 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1684 if (clock_set)
1685 /* Have to call _delayed version, since in irq context*/
1686 clock_was_set_delayed();
1687 }
1688
1689 /**
1690 * getboottime64 - Return the real time of system boot.
1691 * @ts: pointer to the timespec64 to be set
1692 *
1693 * Returns the wall-time of boot in a timespec64.
1694 *
1695 * This is based on the wall_to_monotonic offset and the total suspend
1696 * time. Calls to settimeofday will affect the value returned (which
1697 * basically means that however wrong your real time clock is at boot time,
1698 * you get the right time here).
1699 */
1700 void getboottime64(struct timespec64 *ts)
1701 {
1702 struct timekeeper *tk = &tk_core.timekeeper;
1703 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1704
1705 *ts = ktime_to_timespec64(t);
1706 }
1707 EXPORT_SYMBOL_GPL(getboottime64);
1708
1709 unsigned long get_seconds(void)
1710 {
1711 struct timekeeper *tk = &tk_core.timekeeper;
1712
1713 return tk->xtime_sec;
1714 }
1715 EXPORT_SYMBOL(get_seconds);
1716
1717 struct timespec __current_kernel_time(void)
1718 {
1719 struct timekeeper *tk = &tk_core.timekeeper;
1720
1721 return timespec64_to_timespec(tk_xtime(tk));
1722 }
1723
1724 struct timespec current_kernel_time(void)
1725 {
1726 struct timekeeper *tk = &tk_core.timekeeper;
1727 struct timespec64 now;
1728 unsigned long seq;
1729
1730 do {
1731 seq = read_seqcount_begin(&tk_core.seq);
1732
1733 now = tk_xtime(tk);
1734 } while (read_seqcount_retry(&tk_core.seq, seq));
1735
1736 return timespec64_to_timespec(now);
1737 }
1738 EXPORT_SYMBOL(current_kernel_time);
1739
1740 struct timespec64 get_monotonic_coarse64(void)
1741 {
1742 struct timekeeper *tk = &tk_core.timekeeper;
1743 struct timespec64 now, mono;
1744 unsigned long seq;
1745
1746 do {
1747 seq = read_seqcount_begin(&tk_core.seq);
1748
1749 now = tk_xtime(tk);
1750 mono = tk->wall_to_monotonic;
1751 } while (read_seqcount_retry(&tk_core.seq, seq));
1752
1753 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1754 now.tv_nsec + mono.tv_nsec);
1755
1756 return now;
1757 }
1758
1759 /*
1760 * Must hold jiffies_lock
1761 */
1762 void do_timer(unsigned long ticks)
1763 {
1764 jiffies_64 += ticks;
1765 calc_global_load(ticks);
1766 }
1767
1768 /**
1769 * ktime_get_update_offsets_tick - hrtimer helper
1770 * @offs_real: pointer to storage for monotonic -> realtime offset
1771 * @offs_boot: pointer to storage for monotonic -> boottime offset
1772 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1773 *
1774 * Returns monotonic time at last tick and various offsets
1775 */
1776 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1777 ktime_t *offs_tai)
1778 {
1779 struct timekeeper *tk = &tk_core.timekeeper;
1780 unsigned int seq;
1781 ktime_t base;
1782 u64 nsecs;
1783
1784 do {
1785 seq = read_seqcount_begin(&tk_core.seq);
1786
1787 base = tk->tkr.base_mono;
1788 nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1789
1790 *offs_real = tk->offs_real;
1791 *offs_boot = tk->offs_boot;
1792 *offs_tai = tk->offs_tai;
1793 } while (read_seqcount_retry(&tk_core.seq, seq));
1794
1795 return ktime_add_ns(base, nsecs);
1796 }
1797
1798 #ifdef CONFIG_HIGH_RES_TIMERS
1799 /**
1800 * ktime_get_update_offsets_now - hrtimer helper
1801 * @offs_real: pointer to storage for monotonic -> realtime offset
1802 * @offs_boot: pointer to storage for monotonic -> boottime offset
1803 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1804 *
1805 * Returns current monotonic time and updates the offsets
1806 * Called from hrtimer_interrupt() or retrigger_next_event()
1807 */
1808 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1809 ktime_t *offs_tai)
1810 {
1811 struct timekeeper *tk = &tk_core.timekeeper;
1812 unsigned int seq;
1813 ktime_t base;
1814 u64 nsecs;
1815
1816 do {
1817 seq = read_seqcount_begin(&tk_core.seq);
1818
1819 base = tk->tkr.base_mono;
1820 nsecs = timekeeping_get_ns(&tk->tkr);
1821
1822 *offs_real = tk->offs_real;
1823 *offs_boot = tk->offs_boot;
1824 *offs_tai = tk->offs_tai;
1825 } while (read_seqcount_retry(&tk_core.seq, seq));
1826
1827 return ktime_add_ns(base, nsecs);
1828 }
1829 #endif
1830
1831 /**
1832 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1833 */
1834 int do_adjtimex(struct timex *txc)
1835 {
1836 struct timekeeper *tk = &tk_core.timekeeper;
1837 unsigned long flags;
1838 struct timespec64 ts;
1839 s32 orig_tai, tai;
1840 int ret;
1841
1842 /* Validate the data before disabling interrupts */
1843 ret = ntp_validate_timex(txc);
1844 if (ret)
1845 return ret;
1846
1847 if (txc->modes & ADJ_SETOFFSET) {
1848 struct timespec delta;
1849 delta.tv_sec = txc->time.tv_sec;
1850 delta.tv_nsec = txc->time.tv_usec;
1851 if (!(txc->modes & ADJ_NANO))
1852 delta.tv_nsec *= 1000;
1853 ret = timekeeping_inject_offset(&delta);
1854 if (ret)
1855 return ret;
1856 }
1857
1858 getnstimeofday64(&ts);
1859
1860 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1861 write_seqcount_begin(&tk_core.seq);
1862
1863 orig_tai = tai = tk->tai_offset;
1864 ret = __do_adjtimex(txc, &ts, &tai);
1865
1866 if (tai != orig_tai) {
1867 __timekeeping_set_tai_offset(tk, tai);
1868 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1869 }
1870 write_seqcount_end(&tk_core.seq);
1871 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1872
1873 if (tai != orig_tai)
1874 clock_was_set();
1875
1876 ntp_notify_cmos_timer();
1877
1878 return ret;
1879 }
1880
1881 #ifdef CONFIG_NTP_PPS
1882 /**
1883 * hardpps() - Accessor function to NTP __hardpps function
1884 */
1885 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1886 {
1887 unsigned long flags;
1888
1889 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1890 write_seqcount_begin(&tk_core.seq);
1891
1892 __hardpps(phase_ts, raw_ts);
1893
1894 write_seqcount_end(&tk_core.seq);
1895 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1896 }
1897 EXPORT_SYMBOL(hardpps);
1898 #endif
1899
1900 /**
1901 * xtime_update() - advances the timekeeping infrastructure
1902 * @ticks: number of ticks, that have elapsed since the last call.
1903 *
1904 * Must be called with interrupts disabled.
1905 */
1906 void xtime_update(unsigned long ticks)
1907 {
1908 write_seqlock(&jiffies_lock);
1909 do_timer(ticks);
1910 write_sequnlock(&jiffies_lock);
1911 update_wall_time();
1912 }