]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/time/timekeeping.c
96b3f0dfa5dcdfb2d746d2a0c66c92620b605c46
[mirror_ubuntu-zesty-kernel.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sysdev.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22
23 /* Structure holding internal timekeeping values. */
24 struct timekeeper {
25 /* Current clocksource used for timekeeping. */
26 struct clocksource *clock;
27 /* The shift value of the current clocksource. */
28 int shift;
29
30 /* Number of clock cycles in one NTP interval. */
31 cycle_t cycle_interval;
32 /* Number of clock shifted nano seconds in one NTP interval. */
33 u64 xtime_interval;
34 /* Raw nano seconds accumulated per NTP interval. */
35 u32 raw_interval;
36
37 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
38 u64 xtime_nsec;
39 /* Difference between accumulated time and NTP time in ntp
40 * shifted nano seconds. */
41 s64 ntp_error;
42 /* Shift conversion between clock shifted nano seconds and
43 * ntp shifted nano seconds. */
44 int ntp_error_shift;
45 /* NTP adjusted clock multiplier */
46 u32 mult;
47 };
48
49 struct timekeeper timekeeper;
50
51 /**
52 * timekeeper_setup_internals - Set up internals to use clocksource clock.
53 *
54 * @clock: Pointer to clocksource.
55 *
56 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
57 * pair and interval request.
58 *
59 * Unless you're the timekeeping code, you should not be using this!
60 */
61 static void timekeeper_setup_internals(struct clocksource *clock)
62 {
63 cycle_t interval;
64 u64 tmp;
65
66 timekeeper.clock = clock;
67 clock->cycle_last = clock->read(clock);
68
69 /* Do the ns -> cycle conversion first, using original mult */
70 tmp = NTP_INTERVAL_LENGTH;
71 tmp <<= clock->shift;
72 tmp += clock->mult/2;
73 do_div(tmp, clock->mult);
74 if (tmp == 0)
75 tmp = 1;
76
77 interval = (cycle_t) tmp;
78 timekeeper.cycle_interval = interval;
79
80 /* Go back from cycles -> shifted ns */
81 timekeeper.xtime_interval = (u64) interval * clock->mult;
82 timekeeper.raw_interval =
83 ((u64) interval * clock->mult) >> clock->shift;
84
85 timekeeper.xtime_nsec = 0;
86 timekeeper.shift = clock->shift;
87
88 timekeeper.ntp_error = 0;
89 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
90
91 /*
92 * The timekeeper keeps its own mult values for the currently
93 * active clocksource. These value will be adjusted via NTP
94 * to counteract clock drifting.
95 */
96 timekeeper.mult = clock->mult;
97 }
98
99 /* Timekeeper helper functions. */
100 static inline s64 timekeeping_get_ns(void)
101 {
102 cycle_t cycle_now, cycle_delta;
103 struct clocksource *clock;
104
105 /* read clocksource: */
106 clock = timekeeper.clock;
107 cycle_now = clock->read(clock);
108
109 /* calculate the delta since the last update_wall_time: */
110 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
111
112 /* return delta convert to nanoseconds using ntp adjusted mult. */
113 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
114 timekeeper.shift);
115 }
116
117 static inline s64 timekeeping_get_ns_raw(void)
118 {
119 cycle_t cycle_now, cycle_delta;
120 struct clocksource *clock;
121
122 /* read clocksource: */
123 clock = timekeeper.clock;
124 cycle_now = clock->read(clock);
125
126 /* calculate the delta since the last update_wall_time: */
127 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
128
129 /* return delta convert to nanoseconds using ntp adjusted mult. */
130 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
131 }
132
133 /*
134 * This read-write spinlock protects us from races in SMP while
135 * playing with xtime.
136 */
137 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
138
139
140 /*
141 * The current time
142 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
143 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
144 * at zero at system boot time, so wall_to_monotonic will be negative,
145 * however, we will ALWAYS keep the tv_nsec part positive so we can use
146 * the usual normalization.
147 *
148 * wall_to_monotonic is moved after resume from suspend for the monotonic
149 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
150 * to get the real boot based time offset.
151 *
152 * - wall_to_monotonic is no longer the boot time, getboottime must be
153 * used instead.
154 */
155 struct timespec xtime __attribute__ ((aligned (16)));
156 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
157 static struct timespec total_sleep_time;
158
159 /*
160 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
161 */
162 struct timespec raw_time;
163
164 /* flag for if timekeeping is suspended */
165 int __read_mostly timekeeping_suspended;
166
167 /* must hold xtime_lock */
168 void timekeeping_leap_insert(int leapsecond)
169 {
170 xtime.tv_sec += leapsecond;
171 wall_to_monotonic.tv_sec -= leapsecond;
172 update_vsyscall(&xtime, timekeeper.clock);
173 }
174
175 #ifdef CONFIG_GENERIC_TIME
176
177 /**
178 * timekeeping_forward_now - update clock to the current time
179 *
180 * Forward the current clock to update its state since the last call to
181 * update_wall_time(). This is useful before significant clock changes,
182 * as it avoids having to deal with this time offset explicitly.
183 */
184 static void timekeeping_forward_now(void)
185 {
186 cycle_t cycle_now, cycle_delta;
187 struct clocksource *clock;
188 s64 nsec;
189
190 clock = timekeeper.clock;
191 cycle_now = clock->read(clock);
192 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
193 clock->cycle_last = cycle_now;
194
195 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
196 timekeeper.shift);
197
198 /* If arch requires, add in gettimeoffset() */
199 nsec += arch_gettimeoffset();
200
201 timespec_add_ns(&xtime, nsec);
202
203 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
204 timespec_add_ns(&raw_time, nsec);
205 }
206
207 /**
208 * getnstimeofday - Returns the time of day in a timespec
209 * @ts: pointer to the timespec to be set
210 *
211 * Returns the time of day in a timespec.
212 */
213 void getnstimeofday(struct timespec *ts)
214 {
215 unsigned long seq;
216 s64 nsecs;
217
218 WARN_ON(timekeeping_suspended);
219
220 do {
221 seq = read_seqbegin(&xtime_lock);
222
223 *ts = xtime;
224 nsecs = timekeeping_get_ns();
225
226 /* If arch requires, add in gettimeoffset() */
227 nsecs += arch_gettimeoffset();
228
229 } while (read_seqretry(&xtime_lock, seq));
230
231 timespec_add_ns(ts, nsecs);
232 }
233
234 EXPORT_SYMBOL(getnstimeofday);
235
236 ktime_t ktime_get(void)
237 {
238 unsigned int seq;
239 s64 secs, nsecs;
240
241 WARN_ON(timekeeping_suspended);
242
243 do {
244 seq = read_seqbegin(&xtime_lock);
245 secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
246 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
247 nsecs += timekeeping_get_ns();
248
249 } while (read_seqretry(&xtime_lock, seq));
250 /*
251 * Use ktime_set/ktime_add_ns to create a proper ktime on
252 * 32-bit architectures without CONFIG_KTIME_SCALAR.
253 */
254 return ktime_add_ns(ktime_set(secs, 0), nsecs);
255 }
256 EXPORT_SYMBOL_GPL(ktime_get);
257
258 /**
259 * ktime_get_ts - get the monotonic clock in timespec format
260 * @ts: pointer to timespec variable
261 *
262 * The function calculates the monotonic clock from the realtime
263 * clock and the wall_to_monotonic offset and stores the result
264 * in normalized timespec format in the variable pointed to by @ts.
265 */
266 void ktime_get_ts(struct timespec *ts)
267 {
268 struct timespec tomono;
269 unsigned int seq;
270 s64 nsecs;
271
272 WARN_ON(timekeeping_suspended);
273
274 do {
275 seq = read_seqbegin(&xtime_lock);
276 *ts = xtime;
277 tomono = wall_to_monotonic;
278 nsecs = timekeeping_get_ns();
279
280 } while (read_seqretry(&xtime_lock, seq));
281
282 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
283 ts->tv_nsec + tomono.tv_nsec + nsecs);
284 }
285 EXPORT_SYMBOL_GPL(ktime_get_ts);
286
287 /**
288 * do_gettimeofday - Returns the time of day in a timeval
289 * @tv: pointer to the timeval to be set
290 *
291 * NOTE: Users should be converted to using getnstimeofday()
292 */
293 void do_gettimeofday(struct timeval *tv)
294 {
295 struct timespec now;
296
297 getnstimeofday(&now);
298 tv->tv_sec = now.tv_sec;
299 tv->tv_usec = now.tv_nsec/1000;
300 }
301
302 EXPORT_SYMBOL(do_gettimeofday);
303 /**
304 * do_settimeofday - Sets the time of day
305 * @tv: pointer to the timespec variable containing the new time
306 *
307 * Sets the time of day to the new time and update NTP and notify hrtimers
308 */
309 int do_settimeofday(struct timespec *tv)
310 {
311 struct timespec ts_delta;
312 unsigned long flags;
313
314 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
315 return -EINVAL;
316
317 write_seqlock_irqsave(&xtime_lock, flags);
318
319 timekeeping_forward_now();
320
321 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
322 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
323 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
324
325 xtime = *tv;
326
327 timekeeper.ntp_error = 0;
328 ntp_clear();
329
330 update_vsyscall(&xtime, timekeeper.clock);
331
332 write_sequnlock_irqrestore(&xtime_lock, flags);
333
334 /* signal hrtimers about time change */
335 clock_was_set();
336
337 return 0;
338 }
339
340 EXPORT_SYMBOL(do_settimeofday);
341
342 /**
343 * change_clocksource - Swaps clocksources if a new one is available
344 *
345 * Accumulates current time interval and initializes new clocksource
346 */
347 static int change_clocksource(void *data)
348 {
349 struct clocksource *new, *old;
350
351 new = (struct clocksource *) data;
352
353 timekeeping_forward_now();
354 if (!new->enable || new->enable(new) == 0) {
355 old = timekeeper.clock;
356 timekeeper_setup_internals(new);
357 if (old->disable)
358 old->disable(old);
359 }
360 return 0;
361 }
362
363 /**
364 * timekeeping_notify - Install a new clock source
365 * @clock: pointer to the clock source
366 *
367 * This function is called from clocksource.c after a new, better clock
368 * source has been registered. The caller holds the clocksource_mutex.
369 */
370 void timekeeping_notify(struct clocksource *clock)
371 {
372 if (timekeeper.clock == clock)
373 return;
374 stop_machine(change_clocksource, clock, NULL);
375 tick_clock_notify();
376 }
377
378 #else /* GENERIC_TIME */
379
380 static inline void timekeeping_forward_now(void) { }
381
382 /**
383 * ktime_get - get the monotonic time in ktime_t format
384 *
385 * returns the time in ktime_t format
386 */
387 ktime_t ktime_get(void)
388 {
389 struct timespec now;
390
391 ktime_get_ts(&now);
392
393 return timespec_to_ktime(now);
394 }
395 EXPORT_SYMBOL_GPL(ktime_get);
396
397 /**
398 * ktime_get_ts - get the monotonic clock in timespec format
399 * @ts: pointer to timespec variable
400 *
401 * The function calculates the monotonic clock from the realtime
402 * clock and the wall_to_monotonic offset and stores the result
403 * in normalized timespec format in the variable pointed to by @ts.
404 */
405 void ktime_get_ts(struct timespec *ts)
406 {
407 struct timespec tomono;
408 unsigned long seq;
409
410 do {
411 seq = read_seqbegin(&xtime_lock);
412 getnstimeofday(ts);
413 tomono = wall_to_monotonic;
414
415 } while (read_seqretry(&xtime_lock, seq));
416
417 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
418 ts->tv_nsec + tomono.tv_nsec);
419 }
420 EXPORT_SYMBOL_GPL(ktime_get_ts);
421
422 #endif /* !GENERIC_TIME */
423
424 /**
425 * ktime_get_real - get the real (wall-) time in ktime_t format
426 *
427 * returns the time in ktime_t format
428 */
429 ktime_t ktime_get_real(void)
430 {
431 struct timespec now;
432
433 getnstimeofday(&now);
434
435 return timespec_to_ktime(now);
436 }
437 EXPORT_SYMBOL_GPL(ktime_get_real);
438
439 /**
440 * getrawmonotonic - Returns the raw monotonic time in a timespec
441 * @ts: pointer to the timespec to be set
442 *
443 * Returns the raw monotonic time (completely un-modified by ntp)
444 */
445 void getrawmonotonic(struct timespec *ts)
446 {
447 unsigned long seq;
448 s64 nsecs;
449
450 do {
451 seq = read_seqbegin(&xtime_lock);
452 nsecs = timekeeping_get_ns_raw();
453 *ts = raw_time;
454
455 } while (read_seqretry(&xtime_lock, seq));
456
457 timespec_add_ns(ts, nsecs);
458 }
459 EXPORT_SYMBOL(getrawmonotonic);
460
461
462 /**
463 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
464 */
465 int timekeeping_valid_for_hres(void)
466 {
467 unsigned long seq;
468 int ret;
469
470 do {
471 seq = read_seqbegin(&xtime_lock);
472
473 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
474
475 } while (read_seqretry(&xtime_lock, seq));
476
477 return ret;
478 }
479
480 /**
481 * read_persistent_clock - Return time from the persistent clock.
482 *
483 * Weak dummy function for arches that do not yet support it.
484 * Reads the time from the battery backed persistent clock.
485 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
486 *
487 * XXX - Do be sure to remove it once all arches implement it.
488 */
489 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
490 {
491 ts->tv_sec = 0;
492 ts->tv_nsec = 0;
493 }
494
495 /**
496 * read_boot_clock - Return time of the system start.
497 *
498 * Weak dummy function for arches that do not yet support it.
499 * Function to read the exact time the system has been started.
500 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
501 *
502 * XXX - Do be sure to remove it once all arches implement it.
503 */
504 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
505 {
506 ts->tv_sec = 0;
507 ts->tv_nsec = 0;
508 }
509
510 /*
511 * timekeeping_init - Initializes the clocksource and common timekeeping values
512 */
513 void __init timekeeping_init(void)
514 {
515 struct clocksource *clock;
516 unsigned long flags;
517 struct timespec now, boot;
518
519 read_persistent_clock(&now);
520 read_boot_clock(&boot);
521
522 write_seqlock_irqsave(&xtime_lock, flags);
523
524 ntp_init();
525
526 clock = clocksource_default_clock();
527 if (clock->enable)
528 clock->enable(clock);
529 timekeeper_setup_internals(clock);
530
531 xtime.tv_sec = now.tv_sec;
532 xtime.tv_nsec = now.tv_nsec;
533 raw_time.tv_sec = 0;
534 raw_time.tv_nsec = 0;
535 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
536 boot.tv_sec = xtime.tv_sec;
537 boot.tv_nsec = xtime.tv_nsec;
538 }
539 set_normalized_timespec(&wall_to_monotonic,
540 -boot.tv_sec, -boot.tv_nsec);
541 total_sleep_time.tv_sec = 0;
542 total_sleep_time.tv_nsec = 0;
543 write_sequnlock_irqrestore(&xtime_lock, flags);
544 }
545
546 /* time in seconds when suspend began */
547 static struct timespec timekeeping_suspend_time;
548
549 /**
550 * timekeeping_resume - Resumes the generic timekeeping subsystem.
551 * @dev: unused
552 *
553 * This is for the generic clocksource timekeeping.
554 * xtime/wall_to_monotonic/jiffies/etc are
555 * still managed by arch specific suspend/resume code.
556 */
557 static int timekeeping_resume(struct sys_device *dev)
558 {
559 unsigned long flags;
560 struct timespec ts;
561
562 read_persistent_clock(&ts);
563
564 clocksource_resume();
565
566 write_seqlock_irqsave(&xtime_lock, flags);
567
568 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
569 ts = timespec_sub(ts, timekeeping_suspend_time);
570 xtime = timespec_add_safe(xtime, ts);
571 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
572 total_sleep_time = timespec_add_safe(total_sleep_time, ts);
573 }
574 /* re-base the last cycle value */
575 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
576 timekeeper.ntp_error = 0;
577 timekeeping_suspended = 0;
578 write_sequnlock_irqrestore(&xtime_lock, flags);
579
580 touch_softlockup_watchdog();
581
582 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
583
584 /* Resume hrtimers */
585 hres_timers_resume();
586
587 return 0;
588 }
589
590 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
591 {
592 unsigned long flags;
593
594 read_persistent_clock(&timekeeping_suspend_time);
595
596 write_seqlock_irqsave(&xtime_lock, flags);
597 timekeeping_forward_now();
598 timekeeping_suspended = 1;
599 write_sequnlock_irqrestore(&xtime_lock, flags);
600
601 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
602
603 return 0;
604 }
605
606 /* sysfs resume/suspend bits for timekeeping */
607 static struct sysdev_class timekeeping_sysclass = {
608 .name = "timekeeping",
609 .resume = timekeeping_resume,
610 .suspend = timekeeping_suspend,
611 };
612
613 static struct sys_device device_timer = {
614 .id = 0,
615 .cls = &timekeeping_sysclass,
616 };
617
618 static int __init timekeeping_init_device(void)
619 {
620 int error = sysdev_class_register(&timekeeping_sysclass);
621 if (!error)
622 error = sysdev_register(&device_timer);
623 return error;
624 }
625
626 device_initcall(timekeeping_init_device);
627
628 /*
629 * If the error is already larger, we look ahead even further
630 * to compensate for late or lost adjustments.
631 */
632 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
633 s64 *offset)
634 {
635 s64 tick_error, i;
636 u32 look_ahead, adj;
637 s32 error2, mult;
638
639 /*
640 * Use the current error value to determine how much to look ahead.
641 * The larger the error the slower we adjust for it to avoid problems
642 * with losing too many ticks, otherwise we would overadjust and
643 * produce an even larger error. The smaller the adjustment the
644 * faster we try to adjust for it, as lost ticks can do less harm
645 * here. This is tuned so that an error of about 1 msec is adjusted
646 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
647 */
648 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
649 error2 = abs(error2);
650 for (look_ahead = 0; error2 > 0; look_ahead++)
651 error2 >>= 2;
652
653 /*
654 * Now calculate the error in (1 << look_ahead) ticks, but first
655 * remove the single look ahead already included in the error.
656 */
657 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
658 tick_error -= timekeeper.xtime_interval >> 1;
659 error = ((error - tick_error) >> look_ahead) + tick_error;
660
661 /* Finally calculate the adjustment shift value. */
662 i = *interval;
663 mult = 1;
664 if (error < 0) {
665 error = -error;
666 *interval = -*interval;
667 *offset = -*offset;
668 mult = -1;
669 }
670 for (adj = 0; error > i; adj++)
671 error >>= 1;
672
673 *interval <<= adj;
674 *offset <<= adj;
675 return mult << adj;
676 }
677
678 /*
679 * Adjust the multiplier to reduce the error value,
680 * this is optimized for the most common adjustments of -1,0,1,
681 * for other values we can do a bit more work.
682 */
683 static void timekeeping_adjust(s64 offset)
684 {
685 s64 error, interval = timekeeper.cycle_interval;
686 int adj;
687
688 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
689 if (error > interval) {
690 error >>= 2;
691 if (likely(error <= interval))
692 adj = 1;
693 else
694 adj = timekeeping_bigadjust(error, &interval, &offset);
695 } else if (error < -interval) {
696 error >>= 2;
697 if (likely(error >= -interval)) {
698 adj = -1;
699 interval = -interval;
700 offset = -offset;
701 } else
702 adj = timekeeping_bigadjust(error, &interval, &offset);
703 } else
704 return;
705
706 timekeeper.mult += adj;
707 timekeeper.xtime_interval += interval;
708 timekeeper.xtime_nsec -= offset;
709 timekeeper.ntp_error -= (interval - offset) <<
710 timekeeper.ntp_error_shift;
711 }
712
713 /**
714 * logarithmic_accumulation - shifted accumulation of cycles
715 *
716 * This functions accumulates a shifted interval of cycles into
717 * into a shifted interval nanoseconds. Allows for O(log) accumulation
718 * loop.
719 *
720 * Returns the unconsumed cycles.
721 */
722 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
723 {
724 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
725
726 /* If the offset is smaller then a shifted interval, do nothing */
727 if (offset < timekeeper.cycle_interval<<shift)
728 return offset;
729
730 /* Accumulate one shifted interval */
731 offset -= timekeeper.cycle_interval << shift;
732 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
733
734 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
735 while (timekeeper.xtime_nsec >= nsecps) {
736 timekeeper.xtime_nsec -= nsecps;
737 xtime.tv_sec++;
738 second_overflow();
739 }
740
741 /* Accumulate into raw time */
742 raw_time.tv_nsec += timekeeper.raw_interval << shift;;
743 while (raw_time.tv_nsec >= NSEC_PER_SEC) {
744 raw_time.tv_nsec -= NSEC_PER_SEC;
745 raw_time.tv_sec++;
746 }
747
748 /* Accumulate error between NTP and clock interval */
749 timekeeper.ntp_error += tick_length << shift;
750 timekeeper.ntp_error -= timekeeper.xtime_interval <<
751 (timekeeper.ntp_error_shift + shift);
752
753 return offset;
754 }
755
756 /**
757 * update_wall_time - Uses the current clocksource to increment the wall time
758 *
759 * Called from the timer interrupt, must hold a write on xtime_lock.
760 */
761 void update_wall_time(void)
762 {
763 struct clocksource *clock;
764 cycle_t offset;
765 int shift = 0, maxshift;
766
767 /* Make sure we're fully resumed: */
768 if (unlikely(timekeeping_suspended))
769 return;
770
771 clock = timekeeper.clock;
772 #ifdef CONFIG_GENERIC_TIME
773 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
774 #else
775 offset = timekeeper.cycle_interval;
776 #endif
777 timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
778
779 /*
780 * With NO_HZ we may have to accumulate many cycle_intervals
781 * (think "ticks") worth of time at once. To do this efficiently,
782 * we calculate the largest doubling multiple of cycle_intervals
783 * that is smaller then the offset. We then accumulate that
784 * chunk in one go, and then try to consume the next smaller
785 * doubled multiple.
786 */
787 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
788 shift = max(0, shift);
789 /* Bound shift to one less then what overflows tick_length */
790 maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
791 shift = min(shift, maxshift);
792 while (offset >= timekeeper.cycle_interval) {
793 offset = logarithmic_accumulation(offset, shift);
794 shift--;
795 }
796
797 /* correct the clock when NTP error is too big */
798 timekeeping_adjust(offset);
799
800 /*
801 * Since in the loop above, we accumulate any amount of time
802 * in xtime_nsec over a second into xtime.tv_sec, its possible for
803 * xtime_nsec to be fairly small after the loop. Further, if we're
804 * slightly speeding the clocksource up in timekeeping_adjust(),
805 * its possible the required corrective factor to xtime_nsec could
806 * cause it to underflow.
807 *
808 * Now, we cannot simply roll the accumulated second back, since
809 * the NTP subsystem has been notified via second_overflow. So
810 * instead we push xtime_nsec forward by the amount we underflowed,
811 * and add that amount into the error.
812 *
813 * We'll correct this error next time through this function, when
814 * xtime_nsec is not as small.
815 */
816 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
817 s64 neg = -(s64)timekeeper.xtime_nsec;
818 timekeeper.xtime_nsec = 0;
819 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
820 }
821
822 /* store full nanoseconds into xtime after rounding it up and
823 * add the remainder to the error difference.
824 */
825 xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
826 timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
827 timekeeper.ntp_error += timekeeper.xtime_nsec <<
828 timekeeper.ntp_error_shift;
829
830 /* check to see if there is a new clocksource to use */
831 update_vsyscall(&xtime, timekeeper.clock);
832 }
833
834 /**
835 * getboottime - Return the real time of system boot.
836 * @ts: pointer to the timespec to be set
837 *
838 * Returns the time of day in a timespec.
839 *
840 * This is based on the wall_to_monotonic offset and the total suspend
841 * time. Calls to settimeofday will affect the value returned (which
842 * basically means that however wrong your real time clock is at boot time,
843 * you get the right time here).
844 */
845 void getboottime(struct timespec *ts)
846 {
847 struct timespec boottime = {
848 .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
849 .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
850 };
851
852 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
853 }
854
855 /**
856 * monotonic_to_bootbased - Convert the monotonic time to boot based.
857 * @ts: pointer to the timespec to be converted
858 */
859 void monotonic_to_bootbased(struct timespec *ts)
860 {
861 *ts = timespec_add_safe(*ts, total_sleep_time);
862 }
863
864 unsigned long get_seconds(void)
865 {
866 return xtime.tv_sec;
867 }
868 EXPORT_SYMBOL(get_seconds);
869
870 struct timespec __current_kernel_time(void)
871 {
872 return xtime;
873 }
874
875 struct timespec current_kernel_time(void)
876 {
877 struct timespec now;
878 unsigned long seq;
879
880 do {
881 seq = read_seqbegin(&xtime_lock);
882 now = xtime;
883 } while (read_seqretry(&xtime_lock, seq));
884
885 return now;
886 }
887 EXPORT_SYMBOL(current_kernel_time);
888
889 struct timespec get_monotonic_coarse(void)
890 {
891 struct timespec now, mono;
892 unsigned long seq;
893
894 do {
895 seq = read_seqbegin(&xtime_lock);
896 now = xtime;
897 mono = wall_to_monotonic;
898 } while (read_seqretry(&xtime_lock, seq));
899
900 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
901 now.tv_nsec + mono.tv_nsec);
902 return now;
903 }