]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/time/timekeeping.c
Merge branch 'viafb-next' of git://git.lwn.net/linux-2.6
[mirror_ubuntu-bionic-kernel.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/sysdev.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
28 /* The shift value of the current clocksource. */
29 int shift;
30
31 /* Number of clock cycles in one NTP interval. */
32 cycle_t cycle_interval;
33 /* Number of clock shifted nano seconds in one NTP interval. */
34 u64 xtime_interval;
35 /* Raw nano seconds accumulated per NTP interval. */
36 u32 raw_interval;
37
38 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
39 u64 xtime_nsec;
40 /* Difference between accumulated time and NTP time in ntp
41 * shifted nano seconds. */
42 s64 ntp_error;
43 /* Shift conversion between clock shifted nano seconds and
44 * ntp shifted nano seconds. */
45 int ntp_error_shift;
46 /* NTP adjusted clock multiplier */
47 u32 mult;
48 };
49
50 struct timekeeper timekeeper;
51
52 /**
53 * timekeeper_setup_internals - Set up internals to use clocksource clock.
54 *
55 * @clock: Pointer to clocksource.
56 *
57 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
58 * pair and interval request.
59 *
60 * Unless you're the timekeeping code, you should not be using this!
61 */
62 static void timekeeper_setup_internals(struct clocksource *clock)
63 {
64 cycle_t interval;
65 u64 tmp;
66
67 timekeeper.clock = clock;
68 clock->cycle_last = clock->read(clock);
69
70 /* Do the ns -> cycle conversion first, using original mult */
71 tmp = NTP_INTERVAL_LENGTH;
72 tmp <<= clock->shift;
73 tmp += clock->mult/2;
74 do_div(tmp, clock->mult);
75 if (tmp == 0)
76 tmp = 1;
77
78 interval = (cycle_t) tmp;
79 timekeeper.cycle_interval = interval;
80
81 /* Go back from cycles -> shifted ns */
82 timekeeper.xtime_interval = (u64) interval * clock->mult;
83 timekeeper.raw_interval =
84 ((u64) interval * clock->mult) >> clock->shift;
85
86 timekeeper.xtime_nsec = 0;
87 timekeeper.shift = clock->shift;
88
89 timekeeper.ntp_error = 0;
90 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
91
92 /*
93 * The timekeeper keeps its own mult values for the currently
94 * active clocksource. These value will be adjusted via NTP
95 * to counteract clock drifting.
96 */
97 timekeeper.mult = clock->mult;
98 }
99
100 /* Timekeeper helper functions. */
101 static inline s64 timekeeping_get_ns(void)
102 {
103 cycle_t cycle_now, cycle_delta;
104 struct clocksource *clock;
105
106 /* read clocksource: */
107 clock = timekeeper.clock;
108 cycle_now = clock->read(clock);
109
110 /* calculate the delta since the last update_wall_time: */
111 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
112
113 /* return delta convert to nanoseconds using ntp adjusted mult. */
114 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
115 timekeeper.shift);
116 }
117
118 static inline s64 timekeeping_get_ns_raw(void)
119 {
120 cycle_t cycle_now, cycle_delta;
121 struct clocksource *clock;
122
123 /* read clocksource: */
124 clock = timekeeper.clock;
125 cycle_now = clock->read(clock);
126
127 /* calculate the delta since the last update_wall_time: */
128 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
129
130 /* return delta convert to nanoseconds using ntp adjusted mult. */
131 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
132 }
133
134 /*
135 * This read-write spinlock protects us from races in SMP while
136 * playing with xtime.
137 */
138 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
139
140
141 /*
142 * The current time
143 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
144 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
145 * at zero at system boot time, so wall_to_monotonic will be negative,
146 * however, we will ALWAYS keep the tv_nsec part positive so we can use
147 * the usual normalization.
148 *
149 * wall_to_monotonic is moved after resume from suspend for the monotonic
150 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
151 * to get the real boot based time offset.
152 *
153 * - wall_to_monotonic is no longer the boot time, getboottime must be
154 * used instead.
155 */
156 struct timespec xtime __attribute__ ((aligned (16)));
157 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
158 static struct timespec total_sleep_time;
159
160 /*
161 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
162 */
163 struct timespec raw_time;
164
165 /* flag for if timekeeping is suspended */
166 int __read_mostly timekeeping_suspended;
167
168 /* must hold xtime_lock */
169 void timekeeping_leap_insert(int leapsecond)
170 {
171 xtime.tv_sec += leapsecond;
172 wall_to_monotonic.tv_sec -= leapsecond;
173 update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
174 }
175
176 #ifdef CONFIG_GENERIC_TIME
177
178 /**
179 * timekeeping_forward_now - update clock to the current time
180 *
181 * Forward the current clock to update its state since the last call to
182 * update_wall_time(). This is useful before significant clock changes,
183 * as it avoids having to deal with this time offset explicitly.
184 */
185 static void timekeeping_forward_now(void)
186 {
187 cycle_t cycle_now, cycle_delta;
188 struct clocksource *clock;
189 s64 nsec;
190
191 clock = timekeeper.clock;
192 cycle_now = clock->read(clock);
193 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
194 clock->cycle_last = cycle_now;
195
196 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
197 timekeeper.shift);
198
199 /* If arch requires, add in gettimeoffset() */
200 nsec += arch_gettimeoffset();
201
202 timespec_add_ns(&xtime, nsec);
203
204 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
205 timespec_add_ns(&raw_time, nsec);
206 }
207
208 /**
209 * getnstimeofday - Returns the time of day in a timespec
210 * @ts: pointer to the timespec to be set
211 *
212 * Returns the time of day in a timespec.
213 */
214 void getnstimeofday(struct timespec *ts)
215 {
216 unsigned long seq;
217 s64 nsecs;
218
219 WARN_ON(timekeeping_suspended);
220
221 do {
222 seq = read_seqbegin(&xtime_lock);
223
224 *ts = xtime;
225 nsecs = timekeeping_get_ns();
226
227 /* If arch requires, add in gettimeoffset() */
228 nsecs += arch_gettimeoffset();
229
230 } while (read_seqretry(&xtime_lock, seq));
231
232 timespec_add_ns(ts, nsecs);
233 }
234
235 EXPORT_SYMBOL(getnstimeofday);
236
237 ktime_t ktime_get(void)
238 {
239 unsigned int seq;
240 s64 secs, nsecs;
241
242 WARN_ON(timekeeping_suspended);
243
244 do {
245 seq = read_seqbegin(&xtime_lock);
246 secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
247 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
248 nsecs += timekeeping_get_ns();
249
250 } while (read_seqretry(&xtime_lock, seq));
251 /*
252 * Use ktime_set/ktime_add_ns to create a proper ktime on
253 * 32-bit architectures without CONFIG_KTIME_SCALAR.
254 */
255 return ktime_add_ns(ktime_set(secs, 0), nsecs);
256 }
257 EXPORT_SYMBOL_GPL(ktime_get);
258
259 /**
260 * ktime_get_ts - get the monotonic clock in timespec format
261 * @ts: pointer to timespec variable
262 *
263 * The function calculates the monotonic clock from the realtime
264 * clock and the wall_to_monotonic offset and stores the result
265 * in normalized timespec format in the variable pointed to by @ts.
266 */
267 void ktime_get_ts(struct timespec *ts)
268 {
269 struct timespec tomono;
270 unsigned int seq;
271 s64 nsecs;
272
273 WARN_ON(timekeeping_suspended);
274
275 do {
276 seq = read_seqbegin(&xtime_lock);
277 *ts = xtime;
278 tomono = wall_to_monotonic;
279 nsecs = timekeeping_get_ns();
280
281 } while (read_seqretry(&xtime_lock, seq));
282
283 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
284 ts->tv_nsec + tomono.tv_nsec + nsecs);
285 }
286 EXPORT_SYMBOL_GPL(ktime_get_ts);
287
288 /**
289 * do_gettimeofday - Returns the time of day in a timeval
290 * @tv: pointer to the timeval to be set
291 *
292 * NOTE: Users should be converted to using getnstimeofday()
293 */
294 void do_gettimeofday(struct timeval *tv)
295 {
296 struct timespec now;
297
298 getnstimeofday(&now);
299 tv->tv_sec = now.tv_sec;
300 tv->tv_usec = now.tv_nsec/1000;
301 }
302
303 EXPORT_SYMBOL(do_gettimeofday);
304 /**
305 * do_settimeofday - Sets the time of day
306 * @tv: pointer to the timespec variable containing the new time
307 *
308 * Sets the time of day to the new time and update NTP and notify hrtimers
309 */
310 int do_settimeofday(struct timespec *tv)
311 {
312 struct timespec ts_delta;
313 unsigned long flags;
314
315 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
316 return -EINVAL;
317
318 write_seqlock_irqsave(&xtime_lock, flags);
319
320 timekeeping_forward_now();
321
322 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
323 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
324 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
325
326 xtime = *tv;
327
328 timekeeper.ntp_error = 0;
329 ntp_clear();
330
331 update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
332
333 write_sequnlock_irqrestore(&xtime_lock, flags);
334
335 /* signal hrtimers about time change */
336 clock_was_set();
337
338 return 0;
339 }
340
341 EXPORT_SYMBOL(do_settimeofday);
342
343 /**
344 * change_clocksource - Swaps clocksources if a new one is available
345 *
346 * Accumulates current time interval and initializes new clocksource
347 */
348 static int change_clocksource(void *data)
349 {
350 struct clocksource *new, *old;
351
352 new = (struct clocksource *) data;
353
354 timekeeping_forward_now();
355 if (!new->enable || new->enable(new) == 0) {
356 old = timekeeper.clock;
357 timekeeper_setup_internals(new);
358 if (old->disable)
359 old->disable(old);
360 }
361 return 0;
362 }
363
364 /**
365 * timekeeping_notify - Install a new clock source
366 * @clock: pointer to the clock source
367 *
368 * This function is called from clocksource.c after a new, better clock
369 * source has been registered. The caller holds the clocksource_mutex.
370 */
371 void timekeeping_notify(struct clocksource *clock)
372 {
373 if (timekeeper.clock == clock)
374 return;
375 stop_machine(change_clocksource, clock, NULL);
376 tick_clock_notify();
377 }
378
379 #else /* GENERIC_TIME */
380
381 static inline void timekeeping_forward_now(void) { }
382
383 /**
384 * ktime_get - get the monotonic time in ktime_t format
385 *
386 * returns the time in ktime_t format
387 */
388 ktime_t ktime_get(void)
389 {
390 struct timespec now;
391
392 ktime_get_ts(&now);
393
394 return timespec_to_ktime(now);
395 }
396 EXPORT_SYMBOL_GPL(ktime_get);
397
398 /**
399 * ktime_get_ts - get the monotonic clock in timespec format
400 * @ts: pointer to timespec variable
401 *
402 * The function calculates the monotonic clock from the realtime
403 * clock and the wall_to_monotonic offset and stores the result
404 * in normalized timespec format in the variable pointed to by @ts.
405 */
406 void ktime_get_ts(struct timespec *ts)
407 {
408 struct timespec tomono;
409 unsigned long seq;
410
411 do {
412 seq = read_seqbegin(&xtime_lock);
413 getnstimeofday(ts);
414 tomono = wall_to_monotonic;
415
416 } while (read_seqretry(&xtime_lock, seq));
417
418 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
419 ts->tv_nsec + tomono.tv_nsec);
420 }
421 EXPORT_SYMBOL_GPL(ktime_get_ts);
422
423 #endif /* !GENERIC_TIME */
424
425 /**
426 * ktime_get_real - get the real (wall-) time in ktime_t format
427 *
428 * returns the time in ktime_t format
429 */
430 ktime_t ktime_get_real(void)
431 {
432 struct timespec now;
433
434 getnstimeofday(&now);
435
436 return timespec_to_ktime(now);
437 }
438 EXPORT_SYMBOL_GPL(ktime_get_real);
439
440 /**
441 * getrawmonotonic - Returns the raw monotonic time in a timespec
442 * @ts: pointer to the timespec to be set
443 *
444 * Returns the raw monotonic time (completely un-modified by ntp)
445 */
446 void getrawmonotonic(struct timespec *ts)
447 {
448 unsigned long seq;
449 s64 nsecs;
450
451 do {
452 seq = read_seqbegin(&xtime_lock);
453 nsecs = timekeeping_get_ns_raw();
454 *ts = raw_time;
455
456 } while (read_seqretry(&xtime_lock, seq));
457
458 timespec_add_ns(ts, nsecs);
459 }
460 EXPORT_SYMBOL(getrawmonotonic);
461
462
463 /**
464 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
465 */
466 int timekeeping_valid_for_hres(void)
467 {
468 unsigned long seq;
469 int ret;
470
471 do {
472 seq = read_seqbegin(&xtime_lock);
473
474 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
475
476 } while (read_seqretry(&xtime_lock, seq));
477
478 return ret;
479 }
480
481 /**
482 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
483 *
484 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
485 * ensure that the clocksource does not change!
486 */
487 u64 timekeeping_max_deferment(void)
488 {
489 return timekeeper.clock->max_idle_ns;
490 }
491
492 /**
493 * read_persistent_clock - Return time from the persistent clock.
494 *
495 * Weak dummy function for arches that do not yet support it.
496 * Reads the time from the battery backed persistent clock.
497 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
498 *
499 * XXX - Do be sure to remove it once all arches implement it.
500 */
501 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
502 {
503 ts->tv_sec = 0;
504 ts->tv_nsec = 0;
505 }
506
507 /**
508 * read_boot_clock - Return time of the system start.
509 *
510 * Weak dummy function for arches that do not yet support it.
511 * Function to read the exact time the system has been started.
512 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
513 *
514 * XXX - Do be sure to remove it once all arches implement it.
515 */
516 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
517 {
518 ts->tv_sec = 0;
519 ts->tv_nsec = 0;
520 }
521
522 /*
523 * timekeeping_init - Initializes the clocksource and common timekeeping values
524 */
525 void __init timekeeping_init(void)
526 {
527 struct clocksource *clock;
528 unsigned long flags;
529 struct timespec now, boot;
530
531 read_persistent_clock(&now);
532 read_boot_clock(&boot);
533
534 write_seqlock_irqsave(&xtime_lock, flags);
535
536 ntp_init();
537
538 clock = clocksource_default_clock();
539 if (clock->enable)
540 clock->enable(clock);
541 timekeeper_setup_internals(clock);
542
543 xtime.tv_sec = now.tv_sec;
544 xtime.tv_nsec = now.tv_nsec;
545 raw_time.tv_sec = 0;
546 raw_time.tv_nsec = 0;
547 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
548 boot.tv_sec = xtime.tv_sec;
549 boot.tv_nsec = xtime.tv_nsec;
550 }
551 set_normalized_timespec(&wall_to_monotonic,
552 -boot.tv_sec, -boot.tv_nsec);
553 total_sleep_time.tv_sec = 0;
554 total_sleep_time.tv_nsec = 0;
555 write_sequnlock_irqrestore(&xtime_lock, flags);
556 }
557
558 /* time in seconds when suspend began */
559 static struct timespec timekeeping_suspend_time;
560
561 /**
562 * timekeeping_resume - Resumes the generic timekeeping subsystem.
563 * @dev: unused
564 *
565 * This is for the generic clocksource timekeeping.
566 * xtime/wall_to_monotonic/jiffies/etc are
567 * still managed by arch specific suspend/resume code.
568 */
569 static int timekeeping_resume(struct sys_device *dev)
570 {
571 unsigned long flags;
572 struct timespec ts;
573
574 read_persistent_clock(&ts);
575
576 clocksource_resume();
577
578 write_seqlock_irqsave(&xtime_lock, flags);
579
580 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
581 ts = timespec_sub(ts, timekeeping_suspend_time);
582 xtime = timespec_add_safe(xtime, ts);
583 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
584 total_sleep_time = timespec_add_safe(total_sleep_time, ts);
585 }
586 /* re-base the last cycle value */
587 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
588 timekeeper.ntp_error = 0;
589 timekeeping_suspended = 0;
590 write_sequnlock_irqrestore(&xtime_lock, flags);
591
592 touch_softlockup_watchdog();
593
594 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
595
596 /* Resume hrtimers */
597 hres_timers_resume();
598
599 return 0;
600 }
601
602 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
603 {
604 unsigned long flags;
605
606 read_persistent_clock(&timekeeping_suspend_time);
607
608 write_seqlock_irqsave(&xtime_lock, flags);
609 timekeeping_forward_now();
610 timekeeping_suspended = 1;
611 write_sequnlock_irqrestore(&xtime_lock, flags);
612
613 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
614 clocksource_suspend();
615
616 return 0;
617 }
618
619 /* sysfs resume/suspend bits for timekeeping */
620 static struct sysdev_class timekeeping_sysclass = {
621 .name = "timekeeping",
622 .resume = timekeeping_resume,
623 .suspend = timekeeping_suspend,
624 };
625
626 static struct sys_device device_timer = {
627 .id = 0,
628 .cls = &timekeeping_sysclass,
629 };
630
631 static int __init timekeeping_init_device(void)
632 {
633 int error = sysdev_class_register(&timekeeping_sysclass);
634 if (!error)
635 error = sysdev_register(&device_timer);
636 return error;
637 }
638
639 device_initcall(timekeeping_init_device);
640
641 /*
642 * If the error is already larger, we look ahead even further
643 * to compensate for late or lost adjustments.
644 */
645 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
646 s64 *offset)
647 {
648 s64 tick_error, i;
649 u32 look_ahead, adj;
650 s32 error2, mult;
651
652 /*
653 * Use the current error value to determine how much to look ahead.
654 * The larger the error the slower we adjust for it to avoid problems
655 * with losing too many ticks, otherwise we would overadjust and
656 * produce an even larger error. The smaller the adjustment the
657 * faster we try to adjust for it, as lost ticks can do less harm
658 * here. This is tuned so that an error of about 1 msec is adjusted
659 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
660 */
661 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
662 error2 = abs(error2);
663 for (look_ahead = 0; error2 > 0; look_ahead++)
664 error2 >>= 2;
665
666 /*
667 * Now calculate the error in (1 << look_ahead) ticks, but first
668 * remove the single look ahead already included in the error.
669 */
670 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
671 tick_error -= timekeeper.xtime_interval >> 1;
672 error = ((error - tick_error) >> look_ahead) + tick_error;
673
674 /* Finally calculate the adjustment shift value. */
675 i = *interval;
676 mult = 1;
677 if (error < 0) {
678 error = -error;
679 *interval = -*interval;
680 *offset = -*offset;
681 mult = -1;
682 }
683 for (adj = 0; error > i; adj++)
684 error >>= 1;
685
686 *interval <<= adj;
687 *offset <<= adj;
688 return mult << adj;
689 }
690
691 /*
692 * Adjust the multiplier to reduce the error value,
693 * this is optimized for the most common adjustments of -1,0,1,
694 * for other values we can do a bit more work.
695 */
696 static void timekeeping_adjust(s64 offset)
697 {
698 s64 error, interval = timekeeper.cycle_interval;
699 int adj;
700
701 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
702 if (error > interval) {
703 error >>= 2;
704 if (likely(error <= interval))
705 adj = 1;
706 else
707 adj = timekeeping_bigadjust(error, &interval, &offset);
708 } else if (error < -interval) {
709 error >>= 2;
710 if (likely(error >= -interval)) {
711 adj = -1;
712 interval = -interval;
713 offset = -offset;
714 } else
715 adj = timekeeping_bigadjust(error, &interval, &offset);
716 } else
717 return;
718
719 timekeeper.mult += adj;
720 timekeeper.xtime_interval += interval;
721 timekeeper.xtime_nsec -= offset;
722 timekeeper.ntp_error -= (interval - offset) <<
723 timekeeper.ntp_error_shift;
724 }
725
726
727 /**
728 * logarithmic_accumulation - shifted accumulation of cycles
729 *
730 * This functions accumulates a shifted interval of cycles into
731 * into a shifted interval nanoseconds. Allows for O(log) accumulation
732 * loop.
733 *
734 * Returns the unconsumed cycles.
735 */
736 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
737 {
738 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
739
740 /* If the offset is smaller then a shifted interval, do nothing */
741 if (offset < timekeeper.cycle_interval<<shift)
742 return offset;
743
744 /* Accumulate one shifted interval */
745 offset -= timekeeper.cycle_interval << shift;
746 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
747
748 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
749 while (timekeeper.xtime_nsec >= nsecps) {
750 timekeeper.xtime_nsec -= nsecps;
751 xtime.tv_sec++;
752 second_overflow();
753 }
754
755 /* Accumulate into raw time */
756 raw_time.tv_nsec += timekeeper.raw_interval << shift;;
757 while (raw_time.tv_nsec >= NSEC_PER_SEC) {
758 raw_time.tv_nsec -= NSEC_PER_SEC;
759 raw_time.tv_sec++;
760 }
761
762 /* Accumulate error between NTP and clock interval */
763 timekeeper.ntp_error += tick_length << shift;
764 timekeeper.ntp_error -= timekeeper.xtime_interval <<
765 (timekeeper.ntp_error_shift + shift);
766
767 return offset;
768 }
769
770
771 /**
772 * update_wall_time - Uses the current clocksource to increment the wall time
773 *
774 * Called from the timer interrupt, must hold a write on xtime_lock.
775 */
776 void update_wall_time(void)
777 {
778 struct clocksource *clock;
779 cycle_t offset;
780 int shift = 0, maxshift;
781
782 /* Make sure we're fully resumed: */
783 if (unlikely(timekeeping_suspended))
784 return;
785
786 clock = timekeeper.clock;
787 #ifdef CONFIG_GENERIC_TIME
788 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
789 #else
790 offset = timekeeper.cycle_interval;
791 #endif
792 timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
793
794 /*
795 * With NO_HZ we may have to accumulate many cycle_intervals
796 * (think "ticks") worth of time at once. To do this efficiently,
797 * we calculate the largest doubling multiple of cycle_intervals
798 * that is smaller then the offset. We then accumulate that
799 * chunk in one go, and then try to consume the next smaller
800 * doubled multiple.
801 */
802 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
803 shift = max(0, shift);
804 /* Bound shift to one less then what overflows tick_length */
805 maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
806 shift = min(shift, maxshift);
807 while (offset >= timekeeper.cycle_interval) {
808 offset = logarithmic_accumulation(offset, shift);
809 if(offset < timekeeper.cycle_interval<<shift)
810 shift--;
811 }
812
813 /* correct the clock when NTP error is too big */
814 timekeeping_adjust(offset);
815
816 /*
817 * Since in the loop above, we accumulate any amount of time
818 * in xtime_nsec over a second into xtime.tv_sec, its possible for
819 * xtime_nsec to be fairly small after the loop. Further, if we're
820 * slightly speeding the clocksource up in timekeeping_adjust(),
821 * its possible the required corrective factor to xtime_nsec could
822 * cause it to underflow.
823 *
824 * Now, we cannot simply roll the accumulated second back, since
825 * the NTP subsystem has been notified via second_overflow. So
826 * instead we push xtime_nsec forward by the amount we underflowed,
827 * and add that amount into the error.
828 *
829 * We'll correct this error next time through this function, when
830 * xtime_nsec is not as small.
831 */
832 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
833 s64 neg = -(s64)timekeeper.xtime_nsec;
834 timekeeper.xtime_nsec = 0;
835 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
836 }
837
838
839 /*
840 * Store full nanoseconds into xtime after rounding it up and
841 * add the remainder to the error difference.
842 */
843 xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
844 timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
845 timekeeper.ntp_error += timekeeper.xtime_nsec <<
846 timekeeper.ntp_error_shift;
847
848 /*
849 * Finally, make sure that after the rounding
850 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
851 */
852 if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
853 xtime.tv_nsec -= NSEC_PER_SEC;
854 xtime.tv_sec++;
855 second_overflow();
856 }
857
858 /* check to see if there is a new clocksource to use */
859 update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
860 }
861
862 /**
863 * getboottime - Return the real time of system boot.
864 * @ts: pointer to the timespec to be set
865 *
866 * Returns the time of day in a timespec.
867 *
868 * This is based on the wall_to_monotonic offset and the total suspend
869 * time. Calls to settimeofday will affect the value returned (which
870 * basically means that however wrong your real time clock is at boot time,
871 * you get the right time here).
872 */
873 void getboottime(struct timespec *ts)
874 {
875 struct timespec boottime = {
876 .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
877 .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
878 };
879
880 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
881 }
882 EXPORT_SYMBOL_GPL(getboottime);
883
884 /**
885 * monotonic_to_bootbased - Convert the monotonic time to boot based.
886 * @ts: pointer to the timespec to be converted
887 */
888 void monotonic_to_bootbased(struct timespec *ts)
889 {
890 *ts = timespec_add_safe(*ts, total_sleep_time);
891 }
892 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
893
894 unsigned long get_seconds(void)
895 {
896 return xtime.tv_sec;
897 }
898 EXPORT_SYMBOL(get_seconds);
899
900 struct timespec __current_kernel_time(void)
901 {
902 return xtime;
903 }
904
905 struct timespec current_kernel_time(void)
906 {
907 struct timespec now;
908 unsigned long seq;
909
910 do {
911 seq = read_seqbegin(&xtime_lock);
912
913 now = xtime;
914 } while (read_seqretry(&xtime_lock, seq));
915
916 return now;
917 }
918 EXPORT_SYMBOL(current_kernel_time);
919
920 struct timespec get_monotonic_coarse(void)
921 {
922 struct timespec now, mono;
923 unsigned long seq;
924
925 do {
926 seq = read_seqbegin(&xtime_lock);
927
928 now = xtime;
929 mono = wall_to_monotonic;
930 } while (read_seqretry(&xtime_lock, seq));
931
932 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
933 now.tv_nsec + mono.tv_nsec);
934 return now;
935 }