]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/time/timekeeping.c
timekeeping: Use tk_read_base as argument for timekeeping_get_ns()
[mirror_ubuntu-hirsute-kernel.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
34
35 /*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39 static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /* flag for if timekeeping is suspended */
48 int __read_mostly timekeeping_suspended;
49
50 /* Flag for if there is a persistent clock on this platform */
51 bool __read_mostly persistent_clock_exist = false;
52
53 static inline void tk_normalize_xtime(struct timekeeper *tk)
54 {
55 while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
56 tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
57 tk->xtime_sec++;
58 }
59 }
60
61 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
62 {
63 struct timespec64 ts;
64
65 ts.tv_sec = tk->xtime_sec;
66 ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
67 return ts;
68 }
69
70 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
71 {
72 tk->xtime_sec = ts->tv_sec;
73 tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
74 }
75
76 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
77 {
78 tk->xtime_sec += ts->tv_sec;
79 tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
80 tk_normalize_xtime(tk);
81 }
82
83 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
84 {
85 struct timespec64 tmp;
86
87 /*
88 * Verify consistency of: offset_real = -wall_to_monotonic
89 * before modifying anything
90 */
91 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
92 -tk->wall_to_monotonic.tv_nsec);
93 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
94 tk->wall_to_monotonic = wtm;
95 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
96 tk->offs_real = timespec64_to_ktime(tmp);
97 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
98 }
99
100 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
101 {
102 tk->offs_boot = ktime_add(tk->offs_boot, delta);
103 }
104
105 /**
106 * tk_setup_internals - Set up internals to use clocksource clock.
107 *
108 * @tk: The target timekeeper to setup.
109 * @clock: Pointer to clocksource.
110 *
111 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
112 * pair and interval request.
113 *
114 * Unless you're the timekeeping code, you should not be using this!
115 */
116 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
117 {
118 cycle_t interval;
119 u64 tmp, ntpinterval;
120 struct clocksource *old_clock;
121
122 old_clock = tk->tkr.clock;
123 tk->tkr.clock = clock;
124 tk->tkr.read = clock->read;
125 tk->tkr.mask = clock->mask;
126 tk->tkr.cycle_last = tk->tkr.read(clock);
127
128 /* Do the ns -> cycle conversion first, using original mult */
129 tmp = NTP_INTERVAL_LENGTH;
130 tmp <<= clock->shift;
131 ntpinterval = tmp;
132 tmp += clock->mult/2;
133 do_div(tmp, clock->mult);
134 if (tmp == 0)
135 tmp = 1;
136
137 interval = (cycle_t) tmp;
138 tk->cycle_interval = interval;
139
140 /* Go back from cycles -> shifted ns */
141 tk->xtime_interval = (u64) interval * clock->mult;
142 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
143 tk->raw_interval =
144 ((u64) interval * clock->mult) >> clock->shift;
145
146 /* if changing clocks, convert xtime_nsec shift units */
147 if (old_clock) {
148 int shift_change = clock->shift - old_clock->shift;
149 if (shift_change < 0)
150 tk->tkr.xtime_nsec >>= -shift_change;
151 else
152 tk->tkr.xtime_nsec <<= shift_change;
153 }
154 tk->tkr.shift = clock->shift;
155
156 tk->ntp_error = 0;
157 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
158
159 /*
160 * The timekeeper keeps its own mult values for the currently
161 * active clocksource. These value will be adjusted via NTP
162 * to counteract clock drifting.
163 */
164 tk->tkr.mult = clock->mult;
165 }
166
167 /* Timekeeper helper functions. */
168
169 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
170 static u32 default_arch_gettimeoffset(void) { return 0; }
171 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
172 #else
173 static inline u32 arch_gettimeoffset(void) { return 0; }
174 #endif
175
176 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
177 {
178 cycle_t cycle_now, delta;
179 s64 nsec;
180
181 /* read clocksource: */
182 cycle_now = tkr->read(tkr->clock);
183
184 /* calculate the delta since the last update_wall_time: */
185 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
186
187 nsec = delta * tkr->mult + tkr->xtime_nsec;
188 nsec >>= tkr->shift;
189
190 /* If arch requires, add in get_arch_timeoffset() */
191 return nsec + arch_gettimeoffset();
192 }
193
194 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
195 {
196 struct clocksource *clock = tk->tkr.clock;
197 cycle_t cycle_now, delta;
198 s64 nsec;
199
200 /* read clocksource: */
201 cycle_now = tk->tkr.read(clock);
202
203 /* calculate the delta since the last update_wall_time: */
204 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
205
206 /* convert delta to nanoseconds. */
207 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
208
209 /* If arch requires, add in get_arch_timeoffset() */
210 return nsec + arch_gettimeoffset();
211 }
212
213 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
214
215 static inline void update_vsyscall(struct timekeeper *tk)
216 {
217 struct timespec xt;
218
219 xt = tk_xtime(tk);
220 update_vsyscall_old(&xt, &tk->wall_to_monotonic, tk->tkr.clock, tk->tkr.mult,
221 tk->tkr.cycle_last);
222 }
223
224 static inline void old_vsyscall_fixup(struct timekeeper *tk)
225 {
226 s64 remainder;
227
228 /*
229 * Store only full nanoseconds into xtime_nsec after rounding
230 * it up and add the remainder to the error difference.
231 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
232 * by truncating the remainder in vsyscalls. However, it causes
233 * additional work to be done in timekeeping_adjust(). Once
234 * the vsyscall implementations are converted to use xtime_nsec
235 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
236 * users are removed, this can be killed.
237 */
238 remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
239 tk->tkr.xtime_nsec -= remainder;
240 tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
241 tk->ntp_error += remainder << tk->ntp_error_shift;
242 tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
243 }
244 #else
245 #define old_vsyscall_fixup(tk)
246 #endif
247
248 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
249
250 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
251 {
252 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
253 }
254
255 /**
256 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
257 */
258 int pvclock_gtod_register_notifier(struct notifier_block *nb)
259 {
260 struct timekeeper *tk = &tk_core.timekeeper;
261 unsigned long flags;
262 int ret;
263
264 raw_spin_lock_irqsave(&timekeeper_lock, flags);
265 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
266 update_pvclock_gtod(tk, true);
267 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
268
269 return ret;
270 }
271 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
272
273 /**
274 * pvclock_gtod_unregister_notifier - unregister a pvclock
275 * timedata update listener
276 */
277 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
278 {
279 unsigned long flags;
280 int ret;
281
282 raw_spin_lock_irqsave(&timekeeper_lock, flags);
283 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
284 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
285
286 return ret;
287 }
288 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
289
290 /*
291 * Update the ktime_t based scalar nsec members of the timekeeper
292 */
293 static inline void tk_update_ktime_data(struct timekeeper *tk)
294 {
295 s64 nsec;
296
297 /*
298 * The xtime based monotonic readout is:
299 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
300 * The ktime based monotonic readout is:
301 * nsec = base_mono + now();
302 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
303 */
304 nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
305 nsec *= NSEC_PER_SEC;
306 nsec += tk->wall_to_monotonic.tv_nsec;
307 tk->tkr.base_mono = ns_to_ktime(nsec);
308
309 /* Update the monotonic raw base */
310 tk->base_raw = timespec64_to_ktime(tk->raw_time);
311 }
312
313 /* must hold timekeeper_lock */
314 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
315 {
316 if (action & TK_CLEAR_NTP) {
317 tk->ntp_error = 0;
318 ntp_clear();
319 }
320 update_vsyscall(tk);
321 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
322
323 tk_update_ktime_data(tk);
324
325 if (action & TK_MIRROR)
326 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
327 sizeof(tk_core.timekeeper));
328 }
329
330 /**
331 * timekeeping_forward_now - update clock to the current time
332 *
333 * Forward the current clock to update its state since the last call to
334 * update_wall_time(). This is useful before significant clock changes,
335 * as it avoids having to deal with this time offset explicitly.
336 */
337 static void timekeeping_forward_now(struct timekeeper *tk)
338 {
339 struct clocksource *clock = tk->tkr.clock;
340 cycle_t cycle_now, delta;
341 s64 nsec;
342
343 cycle_now = tk->tkr.read(clock);
344 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
345 tk->tkr.cycle_last = cycle_now;
346
347 tk->tkr.xtime_nsec += delta * tk->tkr.mult;
348
349 /* If arch requires, add in get_arch_timeoffset() */
350 tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
351
352 tk_normalize_xtime(tk);
353
354 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
355 timespec64_add_ns(&tk->raw_time, nsec);
356 }
357
358 /**
359 * __getnstimeofday64 - Returns the time of day in a timespec64.
360 * @ts: pointer to the timespec to be set
361 *
362 * Updates the time of day in the timespec.
363 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
364 */
365 int __getnstimeofday64(struct timespec64 *ts)
366 {
367 struct timekeeper *tk = &tk_core.timekeeper;
368 unsigned long seq;
369 s64 nsecs = 0;
370
371 do {
372 seq = read_seqcount_begin(&tk_core.seq);
373
374 ts->tv_sec = tk->xtime_sec;
375 nsecs = timekeeping_get_ns(&tk->tkr);
376
377 } while (read_seqcount_retry(&tk_core.seq, seq));
378
379 ts->tv_nsec = 0;
380 timespec64_add_ns(ts, nsecs);
381
382 /*
383 * Do not bail out early, in case there were callers still using
384 * the value, even in the face of the WARN_ON.
385 */
386 if (unlikely(timekeeping_suspended))
387 return -EAGAIN;
388 return 0;
389 }
390 EXPORT_SYMBOL(__getnstimeofday64);
391
392 /**
393 * getnstimeofday64 - Returns the time of day in a timespec64.
394 * @ts: pointer to the timespec to be set
395 *
396 * Returns the time of day in a timespec (WARN if suspended).
397 */
398 void getnstimeofday64(struct timespec64 *ts)
399 {
400 WARN_ON(__getnstimeofday64(ts));
401 }
402 EXPORT_SYMBOL(getnstimeofday64);
403
404 ktime_t ktime_get(void)
405 {
406 struct timekeeper *tk = &tk_core.timekeeper;
407 unsigned int seq;
408 ktime_t base;
409 s64 nsecs;
410
411 WARN_ON(timekeeping_suspended);
412
413 do {
414 seq = read_seqcount_begin(&tk_core.seq);
415 base = tk->tkr.base_mono;
416 nsecs = timekeeping_get_ns(&tk->tkr);
417
418 } while (read_seqcount_retry(&tk_core.seq, seq));
419
420 return ktime_add_ns(base, nsecs);
421 }
422 EXPORT_SYMBOL_GPL(ktime_get);
423
424 static ktime_t *offsets[TK_OFFS_MAX] = {
425 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
426 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
427 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
428 };
429
430 ktime_t ktime_get_with_offset(enum tk_offsets offs)
431 {
432 struct timekeeper *tk = &tk_core.timekeeper;
433 unsigned int seq;
434 ktime_t base, *offset = offsets[offs];
435 s64 nsecs;
436
437 WARN_ON(timekeeping_suspended);
438
439 do {
440 seq = read_seqcount_begin(&tk_core.seq);
441 base = ktime_add(tk->tkr.base_mono, *offset);
442 nsecs = timekeeping_get_ns(&tk->tkr);
443
444 } while (read_seqcount_retry(&tk_core.seq, seq));
445
446 return ktime_add_ns(base, nsecs);
447
448 }
449 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
450
451 /**
452 * ktime_mono_to_any() - convert mononotic time to any other time
453 * @tmono: time to convert.
454 * @offs: which offset to use
455 */
456 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
457 {
458 ktime_t *offset = offsets[offs];
459 unsigned long seq;
460 ktime_t tconv;
461
462 do {
463 seq = read_seqcount_begin(&tk_core.seq);
464 tconv = ktime_add(tmono, *offset);
465 } while (read_seqcount_retry(&tk_core.seq, seq));
466
467 return tconv;
468 }
469 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
470
471 /**
472 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
473 */
474 ktime_t ktime_get_raw(void)
475 {
476 struct timekeeper *tk = &tk_core.timekeeper;
477 unsigned int seq;
478 ktime_t base;
479 s64 nsecs;
480
481 do {
482 seq = read_seqcount_begin(&tk_core.seq);
483 base = tk->base_raw;
484 nsecs = timekeeping_get_ns_raw(tk);
485
486 } while (read_seqcount_retry(&tk_core.seq, seq));
487
488 return ktime_add_ns(base, nsecs);
489 }
490 EXPORT_SYMBOL_GPL(ktime_get_raw);
491
492 /**
493 * ktime_get_ts64 - get the monotonic clock in timespec64 format
494 * @ts: pointer to timespec variable
495 *
496 * The function calculates the monotonic clock from the realtime
497 * clock and the wall_to_monotonic offset and stores the result
498 * in normalized timespec format in the variable pointed to by @ts.
499 */
500 void ktime_get_ts64(struct timespec64 *ts)
501 {
502 struct timekeeper *tk = &tk_core.timekeeper;
503 struct timespec64 tomono;
504 s64 nsec;
505 unsigned int seq;
506
507 WARN_ON(timekeeping_suspended);
508
509 do {
510 seq = read_seqcount_begin(&tk_core.seq);
511 ts->tv_sec = tk->xtime_sec;
512 nsec = timekeeping_get_ns(&tk->tkr);
513 tomono = tk->wall_to_monotonic;
514
515 } while (read_seqcount_retry(&tk_core.seq, seq));
516
517 ts->tv_sec += tomono.tv_sec;
518 ts->tv_nsec = 0;
519 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
520 }
521 EXPORT_SYMBOL_GPL(ktime_get_ts64);
522
523 #ifdef CONFIG_NTP_PPS
524
525 /**
526 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
527 * @ts_raw: pointer to the timespec to be set to raw monotonic time
528 * @ts_real: pointer to the timespec to be set to the time of day
529 *
530 * This function reads both the time of day and raw monotonic time at the
531 * same time atomically and stores the resulting timestamps in timespec
532 * format.
533 */
534 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
535 {
536 struct timekeeper *tk = &tk_core.timekeeper;
537 unsigned long seq;
538 s64 nsecs_raw, nsecs_real;
539
540 WARN_ON_ONCE(timekeeping_suspended);
541
542 do {
543 seq = read_seqcount_begin(&tk_core.seq);
544
545 *ts_raw = timespec64_to_timespec(tk->raw_time);
546 ts_real->tv_sec = tk->xtime_sec;
547 ts_real->tv_nsec = 0;
548
549 nsecs_raw = timekeeping_get_ns_raw(tk);
550 nsecs_real = timekeeping_get_ns(&tk->tkr);
551
552 } while (read_seqcount_retry(&tk_core.seq, seq));
553
554 timespec_add_ns(ts_raw, nsecs_raw);
555 timespec_add_ns(ts_real, nsecs_real);
556 }
557 EXPORT_SYMBOL(getnstime_raw_and_real);
558
559 #endif /* CONFIG_NTP_PPS */
560
561 /**
562 * do_gettimeofday - Returns the time of day in a timeval
563 * @tv: pointer to the timeval to be set
564 *
565 * NOTE: Users should be converted to using getnstimeofday()
566 */
567 void do_gettimeofday(struct timeval *tv)
568 {
569 struct timespec64 now;
570
571 getnstimeofday64(&now);
572 tv->tv_sec = now.tv_sec;
573 tv->tv_usec = now.tv_nsec/1000;
574 }
575 EXPORT_SYMBOL(do_gettimeofday);
576
577 /**
578 * do_settimeofday - Sets the time of day
579 * @tv: pointer to the timespec variable containing the new time
580 *
581 * Sets the time of day to the new time and update NTP and notify hrtimers
582 */
583 int do_settimeofday(const struct timespec *tv)
584 {
585 struct timekeeper *tk = &tk_core.timekeeper;
586 struct timespec64 ts_delta, xt, tmp;
587 unsigned long flags;
588
589 if (!timespec_valid_strict(tv))
590 return -EINVAL;
591
592 raw_spin_lock_irqsave(&timekeeper_lock, flags);
593 write_seqcount_begin(&tk_core.seq);
594
595 timekeeping_forward_now(tk);
596
597 xt = tk_xtime(tk);
598 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
599 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
600
601 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
602
603 tmp = timespec_to_timespec64(*tv);
604 tk_set_xtime(tk, &tmp);
605
606 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
607
608 write_seqcount_end(&tk_core.seq);
609 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
610
611 /* signal hrtimers about time change */
612 clock_was_set();
613
614 return 0;
615 }
616 EXPORT_SYMBOL(do_settimeofday);
617
618 /**
619 * timekeeping_inject_offset - Adds or subtracts from the current time.
620 * @tv: pointer to the timespec variable containing the offset
621 *
622 * Adds or subtracts an offset value from the current time.
623 */
624 int timekeeping_inject_offset(struct timespec *ts)
625 {
626 struct timekeeper *tk = &tk_core.timekeeper;
627 unsigned long flags;
628 struct timespec64 ts64, tmp;
629 int ret = 0;
630
631 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
632 return -EINVAL;
633
634 ts64 = timespec_to_timespec64(*ts);
635
636 raw_spin_lock_irqsave(&timekeeper_lock, flags);
637 write_seqcount_begin(&tk_core.seq);
638
639 timekeeping_forward_now(tk);
640
641 /* Make sure the proposed value is valid */
642 tmp = timespec64_add(tk_xtime(tk), ts64);
643 if (!timespec64_valid_strict(&tmp)) {
644 ret = -EINVAL;
645 goto error;
646 }
647
648 tk_xtime_add(tk, &ts64);
649 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
650
651 error: /* even if we error out, we forwarded the time, so call update */
652 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
653
654 write_seqcount_end(&tk_core.seq);
655 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
656
657 /* signal hrtimers about time change */
658 clock_was_set();
659
660 return ret;
661 }
662 EXPORT_SYMBOL(timekeeping_inject_offset);
663
664
665 /**
666 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
667 *
668 */
669 s32 timekeeping_get_tai_offset(void)
670 {
671 struct timekeeper *tk = &tk_core.timekeeper;
672 unsigned int seq;
673 s32 ret;
674
675 do {
676 seq = read_seqcount_begin(&tk_core.seq);
677 ret = tk->tai_offset;
678 } while (read_seqcount_retry(&tk_core.seq, seq));
679
680 return ret;
681 }
682
683 /**
684 * __timekeeping_set_tai_offset - Lock free worker function
685 *
686 */
687 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
688 {
689 tk->tai_offset = tai_offset;
690 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
691 }
692
693 /**
694 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
695 *
696 */
697 void timekeeping_set_tai_offset(s32 tai_offset)
698 {
699 struct timekeeper *tk = &tk_core.timekeeper;
700 unsigned long flags;
701
702 raw_spin_lock_irqsave(&timekeeper_lock, flags);
703 write_seqcount_begin(&tk_core.seq);
704 __timekeeping_set_tai_offset(tk, tai_offset);
705 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
706 write_seqcount_end(&tk_core.seq);
707 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
708 clock_was_set();
709 }
710
711 /**
712 * change_clocksource - Swaps clocksources if a new one is available
713 *
714 * Accumulates current time interval and initializes new clocksource
715 */
716 static int change_clocksource(void *data)
717 {
718 struct timekeeper *tk = &tk_core.timekeeper;
719 struct clocksource *new, *old;
720 unsigned long flags;
721
722 new = (struct clocksource *) data;
723
724 raw_spin_lock_irqsave(&timekeeper_lock, flags);
725 write_seqcount_begin(&tk_core.seq);
726
727 timekeeping_forward_now(tk);
728 /*
729 * If the cs is in module, get a module reference. Succeeds
730 * for built-in code (owner == NULL) as well.
731 */
732 if (try_module_get(new->owner)) {
733 if (!new->enable || new->enable(new) == 0) {
734 old = tk->tkr.clock;
735 tk_setup_internals(tk, new);
736 if (old->disable)
737 old->disable(old);
738 module_put(old->owner);
739 } else {
740 module_put(new->owner);
741 }
742 }
743 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
744
745 write_seqcount_end(&tk_core.seq);
746 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
747
748 return 0;
749 }
750
751 /**
752 * timekeeping_notify - Install a new clock source
753 * @clock: pointer to the clock source
754 *
755 * This function is called from clocksource.c after a new, better clock
756 * source has been registered. The caller holds the clocksource_mutex.
757 */
758 int timekeeping_notify(struct clocksource *clock)
759 {
760 struct timekeeper *tk = &tk_core.timekeeper;
761
762 if (tk->tkr.clock == clock)
763 return 0;
764 stop_machine(change_clocksource, clock, NULL);
765 tick_clock_notify();
766 return tk->tkr.clock == clock ? 0 : -1;
767 }
768
769 /**
770 * getrawmonotonic - Returns the raw monotonic time in a timespec
771 * @ts: pointer to the timespec to be set
772 *
773 * Returns the raw monotonic time (completely un-modified by ntp)
774 */
775 void getrawmonotonic(struct timespec *ts)
776 {
777 struct timekeeper *tk = &tk_core.timekeeper;
778 struct timespec64 ts64;
779 unsigned long seq;
780 s64 nsecs;
781
782 do {
783 seq = read_seqcount_begin(&tk_core.seq);
784 nsecs = timekeeping_get_ns_raw(tk);
785 ts64 = tk->raw_time;
786
787 } while (read_seqcount_retry(&tk_core.seq, seq));
788
789 timespec64_add_ns(&ts64, nsecs);
790 *ts = timespec64_to_timespec(ts64);
791 }
792 EXPORT_SYMBOL(getrawmonotonic);
793
794 /**
795 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
796 */
797 int timekeeping_valid_for_hres(void)
798 {
799 struct timekeeper *tk = &tk_core.timekeeper;
800 unsigned long seq;
801 int ret;
802
803 do {
804 seq = read_seqcount_begin(&tk_core.seq);
805
806 ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
807
808 } while (read_seqcount_retry(&tk_core.seq, seq));
809
810 return ret;
811 }
812
813 /**
814 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
815 */
816 u64 timekeeping_max_deferment(void)
817 {
818 struct timekeeper *tk = &tk_core.timekeeper;
819 unsigned long seq;
820 u64 ret;
821
822 do {
823 seq = read_seqcount_begin(&tk_core.seq);
824
825 ret = tk->tkr.clock->max_idle_ns;
826
827 } while (read_seqcount_retry(&tk_core.seq, seq));
828
829 return ret;
830 }
831
832 /**
833 * read_persistent_clock - Return time from the persistent clock.
834 *
835 * Weak dummy function for arches that do not yet support it.
836 * Reads the time from the battery backed persistent clock.
837 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
838 *
839 * XXX - Do be sure to remove it once all arches implement it.
840 */
841 void __weak read_persistent_clock(struct timespec *ts)
842 {
843 ts->tv_sec = 0;
844 ts->tv_nsec = 0;
845 }
846
847 /**
848 * read_boot_clock - Return time of the system start.
849 *
850 * Weak dummy function for arches that do not yet support it.
851 * Function to read the exact time the system has been started.
852 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
853 *
854 * XXX - Do be sure to remove it once all arches implement it.
855 */
856 void __weak read_boot_clock(struct timespec *ts)
857 {
858 ts->tv_sec = 0;
859 ts->tv_nsec = 0;
860 }
861
862 /*
863 * timekeeping_init - Initializes the clocksource and common timekeeping values
864 */
865 void __init timekeeping_init(void)
866 {
867 struct timekeeper *tk = &tk_core.timekeeper;
868 struct clocksource *clock;
869 unsigned long flags;
870 struct timespec64 now, boot, tmp;
871 struct timespec ts;
872
873 read_persistent_clock(&ts);
874 now = timespec_to_timespec64(ts);
875 if (!timespec64_valid_strict(&now)) {
876 pr_warn("WARNING: Persistent clock returned invalid value!\n"
877 " Check your CMOS/BIOS settings.\n");
878 now.tv_sec = 0;
879 now.tv_nsec = 0;
880 } else if (now.tv_sec || now.tv_nsec)
881 persistent_clock_exist = true;
882
883 read_boot_clock(&ts);
884 boot = timespec_to_timespec64(ts);
885 if (!timespec64_valid_strict(&boot)) {
886 pr_warn("WARNING: Boot clock returned invalid value!\n"
887 " Check your CMOS/BIOS settings.\n");
888 boot.tv_sec = 0;
889 boot.tv_nsec = 0;
890 }
891
892 raw_spin_lock_irqsave(&timekeeper_lock, flags);
893 write_seqcount_begin(&tk_core.seq);
894 ntp_init();
895
896 clock = clocksource_default_clock();
897 if (clock->enable)
898 clock->enable(clock);
899 tk_setup_internals(tk, clock);
900
901 tk_set_xtime(tk, &now);
902 tk->raw_time.tv_sec = 0;
903 tk->raw_time.tv_nsec = 0;
904 tk->base_raw.tv64 = 0;
905 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
906 boot = tk_xtime(tk);
907
908 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
909 tk_set_wall_to_mono(tk, tmp);
910
911 timekeeping_update(tk, TK_MIRROR);
912
913 write_seqcount_end(&tk_core.seq);
914 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
915 }
916
917 /* time in seconds when suspend began */
918 static struct timespec64 timekeeping_suspend_time;
919
920 /**
921 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
922 * @delta: pointer to a timespec delta value
923 *
924 * Takes a timespec offset measuring a suspend interval and properly
925 * adds the sleep offset to the timekeeping variables.
926 */
927 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
928 struct timespec64 *delta)
929 {
930 if (!timespec64_valid_strict(delta)) {
931 printk_deferred(KERN_WARNING
932 "__timekeeping_inject_sleeptime: Invalid "
933 "sleep delta value!\n");
934 return;
935 }
936 tk_xtime_add(tk, delta);
937 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
938 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
939 tk_debug_account_sleep_time(delta);
940 }
941
942 /**
943 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
944 * @delta: pointer to a timespec delta value
945 *
946 * This hook is for architectures that cannot support read_persistent_clock
947 * because their RTC/persistent clock is only accessible when irqs are enabled.
948 *
949 * This function should only be called by rtc_resume(), and allows
950 * a suspend offset to be injected into the timekeeping values.
951 */
952 void timekeeping_inject_sleeptime(struct timespec *delta)
953 {
954 struct timekeeper *tk = &tk_core.timekeeper;
955 struct timespec64 tmp;
956 unsigned long flags;
957
958 /*
959 * Make sure we don't set the clock twice, as timekeeping_resume()
960 * already did it
961 */
962 if (has_persistent_clock())
963 return;
964
965 raw_spin_lock_irqsave(&timekeeper_lock, flags);
966 write_seqcount_begin(&tk_core.seq);
967
968 timekeeping_forward_now(tk);
969
970 tmp = timespec_to_timespec64(*delta);
971 __timekeeping_inject_sleeptime(tk, &tmp);
972
973 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
974
975 write_seqcount_end(&tk_core.seq);
976 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
977
978 /* signal hrtimers about time change */
979 clock_was_set();
980 }
981
982 /**
983 * timekeeping_resume - Resumes the generic timekeeping subsystem.
984 *
985 * This is for the generic clocksource timekeeping.
986 * xtime/wall_to_monotonic/jiffies/etc are
987 * still managed by arch specific suspend/resume code.
988 */
989 static void timekeeping_resume(void)
990 {
991 struct timekeeper *tk = &tk_core.timekeeper;
992 struct clocksource *clock = tk->tkr.clock;
993 unsigned long flags;
994 struct timespec64 ts_new, ts_delta;
995 struct timespec tmp;
996 cycle_t cycle_now, cycle_delta;
997 bool suspendtime_found = false;
998
999 read_persistent_clock(&tmp);
1000 ts_new = timespec_to_timespec64(tmp);
1001
1002 clockevents_resume();
1003 clocksource_resume();
1004
1005 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1006 write_seqcount_begin(&tk_core.seq);
1007
1008 /*
1009 * After system resumes, we need to calculate the suspended time and
1010 * compensate it for the OS time. There are 3 sources that could be
1011 * used: Nonstop clocksource during suspend, persistent clock and rtc
1012 * device.
1013 *
1014 * One specific platform may have 1 or 2 or all of them, and the
1015 * preference will be:
1016 * suspend-nonstop clocksource -> persistent clock -> rtc
1017 * The less preferred source will only be tried if there is no better
1018 * usable source. The rtc part is handled separately in rtc core code.
1019 */
1020 cycle_now = tk->tkr.read(clock);
1021 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1022 cycle_now > tk->tkr.cycle_last) {
1023 u64 num, max = ULLONG_MAX;
1024 u32 mult = clock->mult;
1025 u32 shift = clock->shift;
1026 s64 nsec = 0;
1027
1028 cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1029 tk->tkr.mask);
1030
1031 /*
1032 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1033 * suspended time is too long. In that case we need do the
1034 * 64 bits math carefully
1035 */
1036 do_div(max, mult);
1037 if (cycle_delta > max) {
1038 num = div64_u64(cycle_delta, max);
1039 nsec = (((u64) max * mult) >> shift) * num;
1040 cycle_delta -= num * max;
1041 }
1042 nsec += ((u64) cycle_delta * mult) >> shift;
1043
1044 ts_delta = ns_to_timespec64(nsec);
1045 suspendtime_found = true;
1046 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1047 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1048 suspendtime_found = true;
1049 }
1050
1051 if (suspendtime_found)
1052 __timekeeping_inject_sleeptime(tk, &ts_delta);
1053
1054 /* Re-base the last cycle value */
1055 tk->tkr.cycle_last = cycle_now;
1056 tk->ntp_error = 0;
1057 timekeeping_suspended = 0;
1058 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1059 write_seqcount_end(&tk_core.seq);
1060 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1061
1062 touch_softlockup_watchdog();
1063
1064 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1065
1066 /* Resume hrtimers */
1067 hrtimers_resume();
1068 }
1069
1070 static int timekeeping_suspend(void)
1071 {
1072 struct timekeeper *tk = &tk_core.timekeeper;
1073 unsigned long flags;
1074 struct timespec64 delta, delta_delta;
1075 static struct timespec64 old_delta;
1076 struct timespec tmp;
1077
1078 read_persistent_clock(&tmp);
1079 timekeeping_suspend_time = timespec_to_timespec64(tmp);
1080
1081 /*
1082 * On some systems the persistent_clock can not be detected at
1083 * timekeeping_init by its return value, so if we see a valid
1084 * value returned, update the persistent_clock_exists flag.
1085 */
1086 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1087 persistent_clock_exist = true;
1088
1089 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1090 write_seqcount_begin(&tk_core.seq);
1091 timekeeping_forward_now(tk);
1092 timekeeping_suspended = 1;
1093
1094 /*
1095 * To avoid drift caused by repeated suspend/resumes,
1096 * which each can add ~1 second drift error,
1097 * try to compensate so the difference in system time
1098 * and persistent_clock time stays close to constant.
1099 */
1100 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1101 delta_delta = timespec64_sub(delta, old_delta);
1102 if (abs(delta_delta.tv_sec) >= 2) {
1103 /*
1104 * if delta_delta is too large, assume time correction
1105 * has occured and set old_delta to the current delta.
1106 */
1107 old_delta = delta;
1108 } else {
1109 /* Otherwise try to adjust old_system to compensate */
1110 timekeeping_suspend_time =
1111 timespec64_add(timekeeping_suspend_time, delta_delta);
1112 }
1113
1114 timekeeping_update(tk, TK_MIRROR);
1115 write_seqcount_end(&tk_core.seq);
1116 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1117
1118 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1119 clocksource_suspend();
1120 clockevents_suspend();
1121
1122 return 0;
1123 }
1124
1125 /* sysfs resume/suspend bits for timekeeping */
1126 static struct syscore_ops timekeeping_syscore_ops = {
1127 .resume = timekeeping_resume,
1128 .suspend = timekeeping_suspend,
1129 };
1130
1131 static int __init timekeeping_init_ops(void)
1132 {
1133 register_syscore_ops(&timekeeping_syscore_ops);
1134 return 0;
1135 }
1136
1137 device_initcall(timekeeping_init_ops);
1138
1139 /*
1140 * If the error is already larger, we look ahead even further
1141 * to compensate for late or lost adjustments.
1142 */
1143 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
1144 s64 error, s64 *interval,
1145 s64 *offset)
1146 {
1147 s64 tick_error, i;
1148 u32 look_ahead, adj;
1149 s32 error2, mult;
1150
1151 /*
1152 * Use the current error value to determine how much to look ahead.
1153 * The larger the error the slower we adjust for it to avoid problems
1154 * with losing too many ticks, otherwise we would overadjust and
1155 * produce an even larger error. The smaller the adjustment the
1156 * faster we try to adjust for it, as lost ticks can do less harm
1157 * here. This is tuned so that an error of about 1 msec is adjusted
1158 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
1159 */
1160 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1161 error2 = abs(error2);
1162 for (look_ahead = 0; error2 > 0; look_ahead++)
1163 error2 >>= 2;
1164
1165 /*
1166 * Now calculate the error in (1 << look_ahead) ticks, but first
1167 * remove the single look ahead already included in the error.
1168 */
1169 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
1170 tick_error -= tk->xtime_interval >> 1;
1171 error = ((error - tick_error) >> look_ahead) + tick_error;
1172
1173 /* Finally calculate the adjustment shift value. */
1174 i = *interval;
1175 mult = 1;
1176 if (error < 0) {
1177 error = -error;
1178 *interval = -*interval;
1179 *offset = -*offset;
1180 mult = -1;
1181 }
1182 for (adj = 0; error > i; adj++)
1183 error >>= 1;
1184
1185 *interval <<= adj;
1186 *offset <<= adj;
1187 return mult << adj;
1188 }
1189
1190 /*
1191 * Adjust the multiplier to reduce the error value,
1192 * this is optimized for the most common adjustments of -1,0,1,
1193 * for other values we can do a bit more work.
1194 */
1195 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1196 {
1197 s64 error, interval = tk->cycle_interval;
1198 int adj;
1199
1200 /*
1201 * The point of this is to check if the error is greater than half
1202 * an interval.
1203 *
1204 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
1205 *
1206 * Note we subtract one in the shift, so that error is really error*2.
1207 * This "saves" dividing(shifting) interval twice, but keeps the
1208 * (error > interval) comparison as still measuring if error is
1209 * larger than half an interval.
1210 *
1211 * Note: It does not "save" on aggravation when reading the code.
1212 */
1213 error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1214 if (error > interval) {
1215 /*
1216 * We now divide error by 4(via shift), which checks if
1217 * the error is greater than twice the interval.
1218 * If it is greater, we need a bigadjust, if its smaller,
1219 * we can adjust by 1.
1220 */
1221 error >>= 2;
1222 if (likely(error <= interval))
1223 adj = 1;
1224 else
1225 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1226 } else {
1227 if (error < -interval) {
1228 /* See comment above, this is just switched for the negative */
1229 error >>= 2;
1230 if (likely(error >= -interval)) {
1231 adj = -1;
1232 interval = -interval;
1233 offset = -offset;
1234 } else {
1235 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1236 }
1237 } else {
1238 goto out_adjust;
1239 }
1240 }
1241
1242 if (unlikely(tk->tkr.clock->maxadj &&
1243 (tk->tkr.mult + adj > tk->tkr.clock->mult + tk->tkr.clock->maxadj))) {
1244 printk_deferred_once(KERN_WARNING
1245 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1246 tk->tkr.clock->name, (long)tk->tkr.mult + adj,
1247 (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1248 }
1249 /*
1250 * So the following can be confusing.
1251 *
1252 * To keep things simple, lets assume adj == 1 for now.
1253 *
1254 * When adj != 1, remember that the interval and offset values
1255 * have been appropriately scaled so the math is the same.
1256 *
1257 * The basic idea here is that we're increasing the multiplier
1258 * by one, this causes the xtime_interval to be incremented by
1259 * one cycle_interval. This is because:
1260 * xtime_interval = cycle_interval * mult
1261 * So if mult is being incremented by one:
1262 * xtime_interval = cycle_interval * (mult + 1)
1263 * Its the same as:
1264 * xtime_interval = (cycle_interval * mult) + cycle_interval
1265 * Which can be shortened to:
1266 * xtime_interval += cycle_interval
1267 *
1268 * So offset stores the non-accumulated cycles. Thus the current
1269 * time (in shifted nanoseconds) is:
1270 * now = (offset * adj) + xtime_nsec
1271 * Now, even though we're adjusting the clock frequency, we have
1272 * to keep time consistent. In other words, we can't jump back
1273 * in time, and we also want to avoid jumping forward in time.
1274 *
1275 * So given the same offset value, we need the time to be the same
1276 * both before and after the freq adjustment.
1277 * now = (offset * adj_1) + xtime_nsec_1
1278 * now = (offset * adj_2) + xtime_nsec_2
1279 * So:
1280 * (offset * adj_1) + xtime_nsec_1 =
1281 * (offset * adj_2) + xtime_nsec_2
1282 * And we know:
1283 * adj_2 = adj_1 + 1
1284 * So:
1285 * (offset * adj_1) + xtime_nsec_1 =
1286 * (offset * (adj_1+1)) + xtime_nsec_2
1287 * (offset * adj_1) + xtime_nsec_1 =
1288 * (offset * adj_1) + offset + xtime_nsec_2
1289 * Canceling the sides:
1290 * xtime_nsec_1 = offset + xtime_nsec_2
1291 * Which gives us:
1292 * xtime_nsec_2 = xtime_nsec_1 - offset
1293 * Which simplfies to:
1294 * xtime_nsec -= offset
1295 *
1296 * XXX - TODO: Doc ntp_error calculation.
1297 */
1298 tk->tkr.mult += adj;
1299 tk->xtime_interval += interval;
1300 tk->tkr.xtime_nsec -= offset;
1301 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1302
1303 out_adjust:
1304 /*
1305 * It may be possible that when we entered this function, xtime_nsec
1306 * was very small. Further, if we're slightly speeding the clocksource
1307 * in the code above, its possible the required corrective factor to
1308 * xtime_nsec could cause it to underflow.
1309 *
1310 * Now, since we already accumulated the second, cannot simply roll
1311 * the accumulated second back, since the NTP subsystem has been
1312 * notified via second_overflow. So instead we push xtime_nsec forward
1313 * by the amount we underflowed, and add that amount into the error.
1314 *
1315 * We'll correct this error next time through this function, when
1316 * xtime_nsec is not as small.
1317 */
1318 if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1319 s64 neg = -(s64)tk->tkr.xtime_nsec;
1320 tk->tkr.xtime_nsec = 0;
1321 tk->ntp_error += neg << tk->ntp_error_shift;
1322 }
1323
1324 }
1325
1326 /**
1327 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1328 *
1329 * Helper function that accumulates a the nsecs greater then a second
1330 * from the xtime_nsec field to the xtime_secs field.
1331 * It also calls into the NTP code to handle leapsecond processing.
1332 *
1333 */
1334 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1335 {
1336 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1337 unsigned int clock_set = 0;
1338
1339 while (tk->tkr.xtime_nsec >= nsecps) {
1340 int leap;
1341
1342 tk->tkr.xtime_nsec -= nsecps;
1343 tk->xtime_sec++;
1344
1345 /* Figure out if its a leap sec and apply if needed */
1346 leap = second_overflow(tk->xtime_sec);
1347 if (unlikely(leap)) {
1348 struct timespec64 ts;
1349
1350 tk->xtime_sec += leap;
1351
1352 ts.tv_sec = leap;
1353 ts.tv_nsec = 0;
1354 tk_set_wall_to_mono(tk,
1355 timespec64_sub(tk->wall_to_monotonic, ts));
1356
1357 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1358
1359 clock_set = TK_CLOCK_WAS_SET;
1360 }
1361 }
1362 return clock_set;
1363 }
1364
1365 /**
1366 * logarithmic_accumulation - shifted accumulation of cycles
1367 *
1368 * This functions accumulates a shifted interval of cycles into
1369 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1370 * loop.
1371 *
1372 * Returns the unconsumed cycles.
1373 */
1374 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1375 u32 shift,
1376 unsigned int *clock_set)
1377 {
1378 cycle_t interval = tk->cycle_interval << shift;
1379 u64 raw_nsecs;
1380
1381 /* If the offset is smaller then a shifted interval, do nothing */
1382 if (offset < interval)
1383 return offset;
1384
1385 /* Accumulate one shifted interval */
1386 offset -= interval;
1387 tk->tkr.cycle_last += interval;
1388
1389 tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1390 *clock_set |= accumulate_nsecs_to_secs(tk);
1391
1392 /* Accumulate raw time */
1393 raw_nsecs = (u64)tk->raw_interval << shift;
1394 raw_nsecs += tk->raw_time.tv_nsec;
1395 if (raw_nsecs >= NSEC_PER_SEC) {
1396 u64 raw_secs = raw_nsecs;
1397 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1398 tk->raw_time.tv_sec += raw_secs;
1399 }
1400 tk->raw_time.tv_nsec = raw_nsecs;
1401
1402 /* Accumulate error between NTP and clock interval */
1403 tk->ntp_error += ntp_tick_length() << shift;
1404 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1405 (tk->ntp_error_shift + shift);
1406
1407 return offset;
1408 }
1409
1410 /**
1411 * update_wall_time - Uses the current clocksource to increment the wall time
1412 *
1413 */
1414 void update_wall_time(void)
1415 {
1416 struct timekeeper *real_tk = &tk_core.timekeeper;
1417 struct timekeeper *tk = &shadow_timekeeper;
1418 cycle_t offset;
1419 int shift = 0, maxshift;
1420 unsigned int clock_set = 0;
1421 unsigned long flags;
1422
1423 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1424
1425 /* Make sure we're fully resumed: */
1426 if (unlikely(timekeeping_suspended))
1427 goto out;
1428
1429 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1430 offset = real_tk->cycle_interval;
1431 #else
1432 offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1433 tk->tkr.cycle_last, tk->tkr.mask);
1434 #endif
1435
1436 /* Check if there's really nothing to do */
1437 if (offset < real_tk->cycle_interval)
1438 goto out;
1439
1440 /*
1441 * With NO_HZ we may have to accumulate many cycle_intervals
1442 * (think "ticks") worth of time at once. To do this efficiently,
1443 * we calculate the largest doubling multiple of cycle_intervals
1444 * that is smaller than the offset. We then accumulate that
1445 * chunk in one go, and then try to consume the next smaller
1446 * doubled multiple.
1447 */
1448 shift = ilog2(offset) - ilog2(tk->cycle_interval);
1449 shift = max(0, shift);
1450 /* Bound shift to one less than what overflows tick_length */
1451 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1452 shift = min(shift, maxshift);
1453 while (offset >= tk->cycle_interval) {
1454 offset = logarithmic_accumulation(tk, offset, shift,
1455 &clock_set);
1456 if (offset < tk->cycle_interval<<shift)
1457 shift--;
1458 }
1459
1460 /* correct the clock when NTP error is too big */
1461 timekeeping_adjust(tk, offset);
1462
1463 /*
1464 * XXX This can be killed once everyone converts
1465 * to the new update_vsyscall.
1466 */
1467 old_vsyscall_fixup(tk);
1468
1469 /*
1470 * Finally, make sure that after the rounding
1471 * xtime_nsec isn't larger than NSEC_PER_SEC
1472 */
1473 clock_set |= accumulate_nsecs_to_secs(tk);
1474
1475 write_seqcount_begin(&tk_core.seq);
1476 /*
1477 * Update the real timekeeper.
1478 *
1479 * We could avoid this memcpy by switching pointers, but that
1480 * requires changes to all other timekeeper usage sites as
1481 * well, i.e. move the timekeeper pointer getter into the
1482 * spinlocked/seqcount protected sections. And we trade this
1483 * memcpy under the tk_core.seq against one before we start
1484 * updating.
1485 */
1486 memcpy(real_tk, tk, sizeof(*tk));
1487 timekeeping_update(real_tk, clock_set);
1488 write_seqcount_end(&tk_core.seq);
1489 out:
1490 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1491 if (clock_set)
1492 /* Have to call _delayed version, since in irq context*/
1493 clock_was_set_delayed();
1494 }
1495
1496 /**
1497 * getboottime - Return the real time of system boot.
1498 * @ts: pointer to the timespec to be set
1499 *
1500 * Returns the wall-time of boot in a timespec.
1501 *
1502 * This is based on the wall_to_monotonic offset and the total suspend
1503 * time. Calls to settimeofday will affect the value returned (which
1504 * basically means that however wrong your real time clock is at boot time,
1505 * you get the right time here).
1506 */
1507 void getboottime(struct timespec *ts)
1508 {
1509 struct timekeeper *tk = &tk_core.timekeeper;
1510 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1511
1512 *ts = ktime_to_timespec(t);
1513 }
1514 EXPORT_SYMBOL_GPL(getboottime);
1515
1516 unsigned long get_seconds(void)
1517 {
1518 struct timekeeper *tk = &tk_core.timekeeper;
1519
1520 return tk->xtime_sec;
1521 }
1522 EXPORT_SYMBOL(get_seconds);
1523
1524 struct timespec __current_kernel_time(void)
1525 {
1526 struct timekeeper *tk = &tk_core.timekeeper;
1527
1528 return timespec64_to_timespec(tk_xtime(tk));
1529 }
1530
1531 struct timespec current_kernel_time(void)
1532 {
1533 struct timekeeper *tk = &tk_core.timekeeper;
1534 struct timespec64 now;
1535 unsigned long seq;
1536
1537 do {
1538 seq = read_seqcount_begin(&tk_core.seq);
1539
1540 now = tk_xtime(tk);
1541 } while (read_seqcount_retry(&tk_core.seq, seq));
1542
1543 return timespec64_to_timespec(now);
1544 }
1545 EXPORT_SYMBOL(current_kernel_time);
1546
1547 struct timespec get_monotonic_coarse(void)
1548 {
1549 struct timekeeper *tk = &tk_core.timekeeper;
1550 struct timespec64 now, mono;
1551 unsigned long seq;
1552
1553 do {
1554 seq = read_seqcount_begin(&tk_core.seq);
1555
1556 now = tk_xtime(tk);
1557 mono = tk->wall_to_monotonic;
1558 } while (read_seqcount_retry(&tk_core.seq, seq));
1559
1560 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1561 now.tv_nsec + mono.tv_nsec);
1562
1563 return timespec64_to_timespec(now);
1564 }
1565
1566 /*
1567 * Must hold jiffies_lock
1568 */
1569 void do_timer(unsigned long ticks)
1570 {
1571 jiffies_64 += ticks;
1572 calc_global_load(ticks);
1573 }
1574
1575 /**
1576 * ktime_get_update_offsets_tick - hrtimer helper
1577 * @offs_real: pointer to storage for monotonic -> realtime offset
1578 * @offs_boot: pointer to storage for monotonic -> boottime offset
1579 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1580 *
1581 * Returns monotonic time at last tick and various offsets
1582 */
1583 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1584 ktime_t *offs_tai)
1585 {
1586 struct timekeeper *tk = &tk_core.timekeeper;
1587 unsigned int seq;
1588 ktime_t base;
1589 u64 nsecs;
1590
1591 do {
1592 seq = read_seqcount_begin(&tk_core.seq);
1593
1594 base = tk->tkr.base_mono;
1595 nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1596
1597 *offs_real = tk->offs_real;
1598 *offs_boot = tk->offs_boot;
1599 *offs_tai = tk->offs_tai;
1600 } while (read_seqcount_retry(&tk_core.seq, seq));
1601
1602 return ktime_add_ns(base, nsecs);
1603 }
1604
1605 #ifdef CONFIG_HIGH_RES_TIMERS
1606 /**
1607 * ktime_get_update_offsets_now - hrtimer helper
1608 * @offs_real: pointer to storage for monotonic -> realtime offset
1609 * @offs_boot: pointer to storage for monotonic -> boottime offset
1610 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1611 *
1612 * Returns current monotonic time and updates the offsets
1613 * Called from hrtimer_interrupt() or retrigger_next_event()
1614 */
1615 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1616 ktime_t *offs_tai)
1617 {
1618 struct timekeeper *tk = &tk_core.timekeeper;
1619 unsigned int seq;
1620 ktime_t base;
1621 u64 nsecs;
1622
1623 do {
1624 seq = read_seqcount_begin(&tk_core.seq);
1625
1626 base = tk->tkr.base_mono;
1627 nsecs = timekeeping_get_ns(&tk->tkr);
1628
1629 *offs_real = tk->offs_real;
1630 *offs_boot = tk->offs_boot;
1631 *offs_tai = tk->offs_tai;
1632 } while (read_seqcount_retry(&tk_core.seq, seq));
1633
1634 return ktime_add_ns(base, nsecs);
1635 }
1636 #endif
1637
1638 /**
1639 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1640 */
1641 int do_adjtimex(struct timex *txc)
1642 {
1643 struct timekeeper *tk = &tk_core.timekeeper;
1644 unsigned long flags;
1645 struct timespec64 ts;
1646 s32 orig_tai, tai;
1647 int ret;
1648
1649 /* Validate the data before disabling interrupts */
1650 ret = ntp_validate_timex(txc);
1651 if (ret)
1652 return ret;
1653
1654 if (txc->modes & ADJ_SETOFFSET) {
1655 struct timespec delta;
1656 delta.tv_sec = txc->time.tv_sec;
1657 delta.tv_nsec = txc->time.tv_usec;
1658 if (!(txc->modes & ADJ_NANO))
1659 delta.tv_nsec *= 1000;
1660 ret = timekeeping_inject_offset(&delta);
1661 if (ret)
1662 return ret;
1663 }
1664
1665 getnstimeofday64(&ts);
1666
1667 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1668 write_seqcount_begin(&tk_core.seq);
1669
1670 orig_tai = tai = tk->tai_offset;
1671 ret = __do_adjtimex(txc, &ts, &tai);
1672
1673 if (tai != orig_tai) {
1674 __timekeeping_set_tai_offset(tk, tai);
1675 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1676 }
1677 write_seqcount_end(&tk_core.seq);
1678 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1679
1680 if (tai != orig_tai)
1681 clock_was_set();
1682
1683 ntp_notify_cmos_timer();
1684
1685 return ret;
1686 }
1687
1688 #ifdef CONFIG_NTP_PPS
1689 /**
1690 * hardpps() - Accessor function to NTP __hardpps function
1691 */
1692 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1693 {
1694 unsigned long flags;
1695
1696 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1697 write_seqcount_begin(&tk_core.seq);
1698
1699 __hardpps(phase_ts, raw_ts);
1700
1701 write_seqcount_end(&tk_core.seq);
1702 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1703 }
1704 EXPORT_SYMBOL(hardpps);
1705 #endif
1706
1707 /**
1708 * xtime_update() - advances the timekeeping infrastructure
1709 * @ticks: number of ticks, that have elapsed since the last call.
1710 *
1711 * Must be called with interrupts disabled.
1712 */
1713 void xtime_update(unsigned long ticks)
1714 {
1715 write_seqlock(&jiffies_lock);
1716 do_timer(ticks);
1717 write_sequnlock(&jiffies_lock);
1718 update_wall_time();
1719 }