]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/time/timekeeping.c
Merge git://git.infradead.org/ubi-2.6
[mirror_ubuntu-bionic-kernel.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/sysdev.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
28 /* The shift value of the current clocksource. */
29 int shift;
30
31 /* Number of clock cycles in one NTP interval. */
32 cycle_t cycle_interval;
33 /* Number of clock shifted nano seconds in one NTP interval. */
34 u64 xtime_interval;
35 /* Raw nano seconds accumulated per NTP interval. */
36 u32 raw_interval;
37
38 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
39 u64 xtime_nsec;
40 /* Difference between accumulated time and NTP time in ntp
41 * shifted nano seconds. */
42 s64 ntp_error;
43 /* Shift conversion between clock shifted nano seconds and
44 * ntp shifted nano seconds. */
45 int ntp_error_shift;
46 /* NTP adjusted clock multiplier */
47 u32 mult;
48 };
49
50 struct timekeeper timekeeper;
51
52 /**
53 * timekeeper_setup_internals - Set up internals to use clocksource clock.
54 *
55 * @clock: Pointer to clocksource.
56 *
57 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
58 * pair and interval request.
59 *
60 * Unless you're the timekeeping code, you should not be using this!
61 */
62 static void timekeeper_setup_internals(struct clocksource *clock)
63 {
64 cycle_t interval;
65 u64 tmp;
66
67 timekeeper.clock = clock;
68 clock->cycle_last = clock->read(clock);
69
70 /* Do the ns -> cycle conversion first, using original mult */
71 tmp = NTP_INTERVAL_LENGTH;
72 tmp <<= clock->shift;
73 tmp += clock->mult/2;
74 do_div(tmp, clock->mult);
75 if (tmp == 0)
76 tmp = 1;
77
78 interval = (cycle_t) tmp;
79 timekeeper.cycle_interval = interval;
80
81 /* Go back from cycles -> shifted ns */
82 timekeeper.xtime_interval = (u64) interval * clock->mult;
83 timekeeper.raw_interval =
84 ((u64) interval * clock->mult) >> clock->shift;
85
86 timekeeper.xtime_nsec = 0;
87 timekeeper.shift = clock->shift;
88
89 timekeeper.ntp_error = 0;
90 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
91
92 /*
93 * The timekeeper keeps its own mult values for the currently
94 * active clocksource. These value will be adjusted via NTP
95 * to counteract clock drifting.
96 */
97 timekeeper.mult = clock->mult;
98 }
99
100 /* Timekeeper helper functions. */
101 static inline s64 timekeeping_get_ns(void)
102 {
103 cycle_t cycle_now, cycle_delta;
104 struct clocksource *clock;
105
106 /* read clocksource: */
107 clock = timekeeper.clock;
108 cycle_now = clock->read(clock);
109
110 /* calculate the delta since the last update_wall_time: */
111 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
112
113 /* return delta convert to nanoseconds using ntp adjusted mult. */
114 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
115 timekeeper.shift);
116 }
117
118 static inline s64 timekeeping_get_ns_raw(void)
119 {
120 cycle_t cycle_now, cycle_delta;
121 struct clocksource *clock;
122
123 /* read clocksource: */
124 clock = timekeeper.clock;
125 cycle_now = clock->read(clock);
126
127 /* calculate the delta since the last update_wall_time: */
128 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
129
130 /* return delta convert to nanoseconds using ntp adjusted mult. */
131 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
132 }
133
134 /*
135 * This read-write spinlock protects us from races in SMP while
136 * playing with xtime.
137 */
138 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
139
140
141 /*
142 * The current time
143 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
144 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
145 * at zero at system boot time, so wall_to_monotonic will be negative,
146 * however, we will ALWAYS keep the tv_nsec part positive so we can use
147 * the usual normalization.
148 *
149 * wall_to_monotonic is moved after resume from suspend for the monotonic
150 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
151 * to get the real boot based time offset.
152 *
153 * - wall_to_monotonic is no longer the boot time, getboottime must be
154 * used instead.
155 */
156 struct timespec xtime __attribute__ ((aligned (16)));
157 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
158 static struct timespec total_sleep_time;
159
160 /*
161 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
162 */
163 struct timespec raw_time;
164
165 /* flag for if timekeeping is suspended */
166 int __read_mostly timekeeping_suspended;
167
168 static struct timespec xtime_cache __attribute__ ((aligned (16)));
169 void update_xtime_cache(u64 nsec)
170 {
171 xtime_cache = xtime;
172 timespec_add_ns(&xtime_cache, nsec);
173 }
174
175 /* must hold xtime_lock */
176 void timekeeping_leap_insert(int leapsecond)
177 {
178 xtime.tv_sec += leapsecond;
179 wall_to_monotonic.tv_sec -= leapsecond;
180 update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
181 }
182
183 #ifdef CONFIG_GENERIC_TIME
184
185 /**
186 * timekeeping_forward_now - update clock to the current time
187 *
188 * Forward the current clock to update its state since the last call to
189 * update_wall_time(). This is useful before significant clock changes,
190 * as it avoids having to deal with this time offset explicitly.
191 */
192 static void timekeeping_forward_now(void)
193 {
194 cycle_t cycle_now, cycle_delta;
195 struct clocksource *clock;
196 s64 nsec;
197
198 clock = timekeeper.clock;
199 cycle_now = clock->read(clock);
200 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
201 clock->cycle_last = cycle_now;
202
203 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
204 timekeeper.shift);
205
206 /* If arch requires, add in gettimeoffset() */
207 nsec += arch_gettimeoffset();
208
209 timespec_add_ns(&xtime, nsec);
210
211 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
212 timespec_add_ns(&raw_time, nsec);
213 }
214
215 /**
216 * getnstimeofday - Returns the time of day in a timespec
217 * @ts: pointer to the timespec to be set
218 *
219 * Returns the time of day in a timespec.
220 */
221 void getnstimeofday(struct timespec *ts)
222 {
223 unsigned long seq;
224 s64 nsecs;
225
226 WARN_ON(timekeeping_suspended);
227
228 do {
229 seq = read_seqbegin(&xtime_lock);
230
231 *ts = xtime;
232 nsecs = timekeeping_get_ns();
233
234 /* If arch requires, add in gettimeoffset() */
235 nsecs += arch_gettimeoffset();
236
237 } while (read_seqretry(&xtime_lock, seq));
238
239 timespec_add_ns(ts, nsecs);
240 }
241
242 EXPORT_SYMBOL(getnstimeofday);
243
244 ktime_t ktime_get(void)
245 {
246 unsigned int seq;
247 s64 secs, nsecs;
248
249 WARN_ON(timekeeping_suspended);
250
251 do {
252 seq = read_seqbegin(&xtime_lock);
253 secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
254 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
255 nsecs += timekeeping_get_ns();
256
257 } while (read_seqretry(&xtime_lock, seq));
258 /*
259 * Use ktime_set/ktime_add_ns to create a proper ktime on
260 * 32-bit architectures without CONFIG_KTIME_SCALAR.
261 */
262 return ktime_add_ns(ktime_set(secs, 0), nsecs);
263 }
264 EXPORT_SYMBOL_GPL(ktime_get);
265
266 /**
267 * ktime_get_ts - get the monotonic clock in timespec format
268 * @ts: pointer to timespec variable
269 *
270 * The function calculates the monotonic clock from the realtime
271 * clock and the wall_to_monotonic offset and stores the result
272 * in normalized timespec format in the variable pointed to by @ts.
273 */
274 void ktime_get_ts(struct timespec *ts)
275 {
276 struct timespec tomono;
277 unsigned int seq;
278 s64 nsecs;
279
280 WARN_ON(timekeeping_suspended);
281
282 do {
283 seq = read_seqbegin(&xtime_lock);
284 *ts = xtime;
285 tomono = wall_to_monotonic;
286 nsecs = timekeeping_get_ns();
287
288 } while (read_seqretry(&xtime_lock, seq));
289
290 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
291 ts->tv_nsec + tomono.tv_nsec + nsecs);
292 }
293 EXPORT_SYMBOL_GPL(ktime_get_ts);
294
295 /**
296 * do_gettimeofday - Returns the time of day in a timeval
297 * @tv: pointer to the timeval to be set
298 *
299 * NOTE: Users should be converted to using getnstimeofday()
300 */
301 void do_gettimeofday(struct timeval *tv)
302 {
303 struct timespec now;
304
305 getnstimeofday(&now);
306 tv->tv_sec = now.tv_sec;
307 tv->tv_usec = now.tv_nsec/1000;
308 }
309
310 EXPORT_SYMBOL(do_gettimeofday);
311 /**
312 * do_settimeofday - Sets the time of day
313 * @tv: pointer to the timespec variable containing the new time
314 *
315 * Sets the time of day to the new time and update NTP and notify hrtimers
316 */
317 int do_settimeofday(struct timespec *tv)
318 {
319 struct timespec ts_delta;
320 unsigned long flags;
321
322 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
323 return -EINVAL;
324
325 write_seqlock_irqsave(&xtime_lock, flags);
326
327 timekeeping_forward_now();
328
329 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
330 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
331 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
332
333 xtime = *tv;
334
335 update_xtime_cache(0);
336
337 timekeeper.ntp_error = 0;
338 ntp_clear();
339
340 update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
341
342 write_sequnlock_irqrestore(&xtime_lock, flags);
343
344 /* signal hrtimers about time change */
345 clock_was_set();
346
347 return 0;
348 }
349
350 EXPORT_SYMBOL(do_settimeofday);
351
352 /**
353 * change_clocksource - Swaps clocksources if a new one is available
354 *
355 * Accumulates current time interval and initializes new clocksource
356 */
357 static int change_clocksource(void *data)
358 {
359 struct clocksource *new, *old;
360
361 new = (struct clocksource *) data;
362
363 timekeeping_forward_now();
364 if (!new->enable || new->enable(new) == 0) {
365 old = timekeeper.clock;
366 timekeeper_setup_internals(new);
367 if (old->disable)
368 old->disable(old);
369 }
370 return 0;
371 }
372
373 /**
374 * timekeeping_notify - Install a new clock source
375 * @clock: pointer to the clock source
376 *
377 * This function is called from clocksource.c after a new, better clock
378 * source has been registered. The caller holds the clocksource_mutex.
379 */
380 void timekeeping_notify(struct clocksource *clock)
381 {
382 if (timekeeper.clock == clock)
383 return;
384 stop_machine(change_clocksource, clock, NULL);
385 tick_clock_notify();
386 }
387
388 #else /* GENERIC_TIME */
389
390 static inline void timekeeping_forward_now(void) { }
391
392 /**
393 * ktime_get - get the monotonic time in ktime_t format
394 *
395 * returns the time in ktime_t format
396 */
397 ktime_t ktime_get(void)
398 {
399 struct timespec now;
400
401 ktime_get_ts(&now);
402
403 return timespec_to_ktime(now);
404 }
405 EXPORT_SYMBOL_GPL(ktime_get);
406
407 /**
408 * ktime_get_ts - get the monotonic clock in timespec format
409 * @ts: pointer to timespec variable
410 *
411 * The function calculates the monotonic clock from the realtime
412 * clock and the wall_to_monotonic offset and stores the result
413 * in normalized timespec format in the variable pointed to by @ts.
414 */
415 void ktime_get_ts(struct timespec *ts)
416 {
417 struct timespec tomono;
418 unsigned long seq;
419
420 do {
421 seq = read_seqbegin(&xtime_lock);
422 getnstimeofday(ts);
423 tomono = wall_to_monotonic;
424
425 } while (read_seqretry(&xtime_lock, seq));
426
427 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
428 ts->tv_nsec + tomono.tv_nsec);
429 }
430 EXPORT_SYMBOL_GPL(ktime_get_ts);
431
432 #endif /* !GENERIC_TIME */
433
434 /**
435 * ktime_get_real - get the real (wall-) time in ktime_t format
436 *
437 * returns the time in ktime_t format
438 */
439 ktime_t ktime_get_real(void)
440 {
441 struct timespec now;
442
443 getnstimeofday(&now);
444
445 return timespec_to_ktime(now);
446 }
447 EXPORT_SYMBOL_GPL(ktime_get_real);
448
449 /**
450 * getrawmonotonic - Returns the raw monotonic time in a timespec
451 * @ts: pointer to the timespec to be set
452 *
453 * Returns the raw monotonic time (completely un-modified by ntp)
454 */
455 void getrawmonotonic(struct timespec *ts)
456 {
457 unsigned long seq;
458 s64 nsecs;
459
460 do {
461 seq = read_seqbegin(&xtime_lock);
462 nsecs = timekeeping_get_ns_raw();
463 *ts = raw_time;
464
465 } while (read_seqretry(&xtime_lock, seq));
466
467 timespec_add_ns(ts, nsecs);
468 }
469 EXPORT_SYMBOL(getrawmonotonic);
470
471
472 /**
473 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
474 */
475 int timekeeping_valid_for_hres(void)
476 {
477 unsigned long seq;
478 int ret;
479
480 do {
481 seq = read_seqbegin(&xtime_lock);
482
483 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
484
485 } while (read_seqretry(&xtime_lock, seq));
486
487 return ret;
488 }
489
490 /**
491 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
492 *
493 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
494 * ensure that the clocksource does not change!
495 */
496 u64 timekeeping_max_deferment(void)
497 {
498 return timekeeper.clock->max_idle_ns;
499 }
500
501 /**
502 * read_persistent_clock - Return time from the persistent clock.
503 *
504 * Weak dummy function for arches that do not yet support it.
505 * Reads the time from the battery backed persistent clock.
506 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
507 *
508 * XXX - Do be sure to remove it once all arches implement it.
509 */
510 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
511 {
512 ts->tv_sec = 0;
513 ts->tv_nsec = 0;
514 }
515
516 /**
517 * read_boot_clock - Return time of the system start.
518 *
519 * Weak dummy function for arches that do not yet support it.
520 * Function to read the exact time the system has been started.
521 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
522 *
523 * XXX - Do be sure to remove it once all arches implement it.
524 */
525 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
526 {
527 ts->tv_sec = 0;
528 ts->tv_nsec = 0;
529 }
530
531 /*
532 * timekeeping_init - Initializes the clocksource and common timekeeping values
533 */
534 void __init timekeeping_init(void)
535 {
536 struct clocksource *clock;
537 unsigned long flags;
538 struct timespec now, boot;
539
540 read_persistent_clock(&now);
541 read_boot_clock(&boot);
542
543 write_seqlock_irqsave(&xtime_lock, flags);
544
545 ntp_init();
546
547 clock = clocksource_default_clock();
548 if (clock->enable)
549 clock->enable(clock);
550 timekeeper_setup_internals(clock);
551
552 xtime.tv_sec = now.tv_sec;
553 xtime.tv_nsec = now.tv_nsec;
554 raw_time.tv_sec = 0;
555 raw_time.tv_nsec = 0;
556 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
557 boot.tv_sec = xtime.tv_sec;
558 boot.tv_nsec = xtime.tv_nsec;
559 }
560 set_normalized_timespec(&wall_to_monotonic,
561 -boot.tv_sec, -boot.tv_nsec);
562 update_xtime_cache(0);
563 total_sleep_time.tv_sec = 0;
564 total_sleep_time.tv_nsec = 0;
565 write_sequnlock_irqrestore(&xtime_lock, flags);
566 }
567
568 /* time in seconds when suspend began */
569 static struct timespec timekeeping_suspend_time;
570
571 /**
572 * timekeeping_resume - Resumes the generic timekeeping subsystem.
573 * @dev: unused
574 *
575 * This is for the generic clocksource timekeeping.
576 * xtime/wall_to_monotonic/jiffies/etc are
577 * still managed by arch specific suspend/resume code.
578 */
579 static int timekeeping_resume(struct sys_device *dev)
580 {
581 unsigned long flags;
582 struct timespec ts;
583
584 read_persistent_clock(&ts);
585
586 clocksource_resume();
587
588 write_seqlock_irqsave(&xtime_lock, flags);
589
590 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
591 ts = timespec_sub(ts, timekeeping_suspend_time);
592 xtime = timespec_add_safe(xtime, ts);
593 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
594 total_sleep_time = timespec_add_safe(total_sleep_time, ts);
595 }
596 update_xtime_cache(0);
597 /* re-base the last cycle value */
598 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
599 timekeeper.ntp_error = 0;
600 timekeeping_suspended = 0;
601 write_sequnlock_irqrestore(&xtime_lock, flags);
602
603 touch_softlockup_watchdog();
604
605 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
606
607 /* Resume hrtimers */
608 hres_timers_resume();
609
610 return 0;
611 }
612
613 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
614 {
615 unsigned long flags;
616
617 read_persistent_clock(&timekeeping_suspend_time);
618
619 write_seqlock_irqsave(&xtime_lock, flags);
620 timekeeping_forward_now();
621 timekeeping_suspended = 1;
622 write_sequnlock_irqrestore(&xtime_lock, flags);
623
624 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
625 clocksource_suspend();
626
627 return 0;
628 }
629
630 /* sysfs resume/suspend bits for timekeeping */
631 static struct sysdev_class timekeeping_sysclass = {
632 .name = "timekeeping",
633 .resume = timekeeping_resume,
634 .suspend = timekeeping_suspend,
635 };
636
637 static struct sys_device device_timer = {
638 .id = 0,
639 .cls = &timekeeping_sysclass,
640 };
641
642 static int __init timekeeping_init_device(void)
643 {
644 int error = sysdev_class_register(&timekeeping_sysclass);
645 if (!error)
646 error = sysdev_register(&device_timer);
647 return error;
648 }
649
650 device_initcall(timekeeping_init_device);
651
652 /*
653 * If the error is already larger, we look ahead even further
654 * to compensate for late or lost adjustments.
655 */
656 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
657 s64 *offset)
658 {
659 s64 tick_error, i;
660 u32 look_ahead, adj;
661 s32 error2, mult;
662
663 /*
664 * Use the current error value to determine how much to look ahead.
665 * The larger the error the slower we adjust for it to avoid problems
666 * with losing too many ticks, otherwise we would overadjust and
667 * produce an even larger error. The smaller the adjustment the
668 * faster we try to adjust for it, as lost ticks can do less harm
669 * here. This is tuned so that an error of about 1 msec is adjusted
670 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
671 */
672 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
673 error2 = abs(error2);
674 for (look_ahead = 0; error2 > 0; look_ahead++)
675 error2 >>= 2;
676
677 /*
678 * Now calculate the error in (1 << look_ahead) ticks, but first
679 * remove the single look ahead already included in the error.
680 */
681 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
682 tick_error -= timekeeper.xtime_interval >> 1;
683 error = ((error - tick_error) >> look_ahead) + tick_error;
684
685 /* Finally calculate the adjustment shift value. */
686 i = *interval;
687 mult = 1;
688 if (error < 0) {
689 error = -error;
690 *interval = -*interval;
691 *offset = -*offset;
692 mult = -1;
693 }
694 for (adj = 0; error > i; adj++)
695 error >>= 1;
696
697 *interval <<= adj;
698 *offset <<= adj;
699 return mult << adj;
700 }
701
702 /*
703 * Adjust the multiplier to reduce the error value,
704 * this is optimized for the most common adjustments of -1,0,1,
705 * for other values we can do a bit more work.
706 */
707 static void timekeeping_adjust(s64 offset)
708 {
709 s64 error, interval = timekeeper.cycle_interval;
710 int adj;
711
712 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
713 if (error > interval) {
714 error >>= 2;
715 if (likely(error <= interval))
716 adj = 1;
717 else
718 adj = timekeeping_bigadjust(error, &interval, &offset);
719 } else if (error < -interval) {
720 error >>= 2;
721 if (likely(error >= -interval)) {
722 adj = -1;
723 interval = -interval;
724 offset = -offset;
725 } else
726 adj = timekeeping_bigadjust(error, &interval, &offset);
727 } else
728 return;
729
730 timekeeper.mult += adj;
731 timekeeper.xtime_interval += interval;
732 timekeeper.xtime_nsec -= offset;
733 timekeeper.ntp_error -= (interval - offset) <<
734 timekeeper.ntp_error_shift;
735 }
736
737
738 /**
739 * logarithmic_accumulation - shifted accumulation of cycles
740 *
741 * This functions accumulates a shifted interval of cycles into
742 * into a shifted interval nanoseconds. Allows for O(log) accumulation
743 * loop.
744 *
745 * Returns the unconsumed cycles.
746 */
747 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
748 {
749 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
750
751 /* If the offset is smaller then a shifted interval, do nothing */
752 if (offset < timekeeper.cycle_interval<<shift)
753 return offset;
754
755 /* Accumulate one shifted interval */
756 offset -= timekeeper.cycle_interval << shift;
757 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
758
759 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
760 while (timekeeper.xtime_nsec >= nsecps) {
761 timekeeper.xtime_nsec -= nsecps;
762 xtime.tv_sec++;
763 second_overflow();
764 }
765
766 /* Accumulate into raw time */
767 raw_time.tv_nsec += timekeeper.raw_interval << shift;;
768 while (raw_time.tv_nsec >= NSEC_PER_SEC) {
769 raw_time.tv_nsec -= NSEC_PER_SEC;
770 raw_time.tv_sec++;
771 }
772
773 /* Accumulate error between NTP and clock interval */
774 timekeeper.ntp_error += tick_length << shift;
775 timekeeper.ntp_error -= timekeeper.xtime_interval <<
776 (timekeeper.ntp_error_shift + shift);
777
778 return offset;
779 }
780
781
782 /**
783 * update_wall_time - Uses the current clocksource to increment the wall time
784 *
785 * Called from the timer interrupt, must hold a write on xtime_lock.
786 */
787 void update_wall_time(void)
788 {
789 struct clocksource *clock;
790 cycle_t offset;
791 u64 nsecs;
792 int shift = 0, maxshift;
793
794 /* Make sure we're fully resumed: */
795 if (unlikely(timekeeping_suspended))
796 return;
797
798 clock = timekeeper.clock;
799 #ifdef CONFIG_GENERIC_TIME
800 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
801 #else
802 offset = timekeeper.cycle_interval;
803 #endif
804 timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
805
806 /*
807 * With NO_HZ we may have to accumulate many cycle_intervals
808 * (think "ticks") worth of time at once. To do this efficiently,
809 * we calculate the largest doubling multiple of cycle_intervals
810 * that is smaller then the offset. We then accumulate that
811 * chunk in one go, and then try to consume the next smaller
812 * doubled multiple.
813 */
814 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
815 shift = max(0, shift);
816 /* Bound shift to one less then what overflows tick_length */
817 maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
818 shift = min(shift, maxshift);
819 while (offset >= timekeeper.cycle_interval) {
820 offset = logarithmic_accumulation(offset, shift);
821 shift--;
822 }
823
824 /* correct the clock when NTP error is too big */
825 timekeeping_adjust(offset);
826
827 /*
828 * Since in the loop above, we accumulate any amount of time
829 * in xtime_nsec over a second into xtime.tv_sec, its possible for
830 * xtime_nsec to be fairly small after the loop. Further, if we're
831 * slightly speeding the clocksource up in timekeeping_adjust(),
832 * its possible the required corrective factor to xtime_nsec could
833 * cause it to underflow.
834 *
835 * Now, we cannot simply roll the accumulated second back, since
836 * the NTP subsystem has been notified via second_overflow. So
837 * instead we push xtime_nsec forward by the amount we underflowed,
838 * and add that amount into the error.
839 *
840 * We'll correct this error next time through this function, when
841 * xtime_nsec is not as small.
842 */
843 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
844 s64 neg = -(s64)timekeeper.xtime_nsec;
845 timekeeper.xtime_nsec = 0;
846 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
847 }
848
849 /* store full nanoseconds into xtime after rounding it up and
850 * add the remainder to the error difference.
851 */
852 xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
853 timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
854 timekeeper.ntp_error += timekeeper.xtime_nsec <<
855 timekeeper.ntp_error_shift;
856
857 nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift);
858 update_xtime_cache(nsecs);
859
860 /* check to see if there is a new clocksource to use */
861 update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
862 }
863
864 /**
865 * getboottime - Return the real time of system boot.
866 * @ts: pointer to the timespec to be set
867 *
868 * Returns the time of day in a timespec.
869 *
870 * This is based on the wall_to_monotonic offset and the total suspend
871 * time. Calls to settimeofday will affect the value returned (which
872 * basically means that however wrong your real time clock is at boot time,
873 * you get the right time here).
874 */
875 void getboottime(struct timespec *ts)
876 {
877 struct timespec boottime = {
878 .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
879 .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
880 };
881
882 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
883 }
884 EXPORT_SYMBOL_GPL(getboottime);
885
886 /**
887 * monotonic_to_bootbased - Convert the monotonic time to boot based.
888 * @ts: pointer to the timespec to be converted
889 */
890 void monotonic_to_bootbased(struct timespec *ts)
891 {
892 *ts = timespec_add_safe(*ts, total_sleep_time);
893 }
894 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
895
896 unsigned long get_seconds(void)
897 {
898 return xtime_cache.tv_sec;
899 }
900 EXPORT_SYMBOL(get_seconds);
901
902 struct timespec __current_kernel_time(void)
903 {
904 return xtime_cache;
905 }
906
907 struct timespec current_kernel_time(void)
908 {
909 struct timespec now;
910 unsigned long seq;
911
912 do {
913 seq = read_seqbegin(&xtime_lock);
914
915 now = xtime_cache;
916 } while (read_seqretry(&xtime_lock, seq));
917
918 return now;
919 }
920 EXPORT_SYMBOL(current_kernel_time);
921
922 struct timespec get_monotonic_coarse(void)
923 {
924 struct timespec now, mono;
925 unsigned long seq;
926
927 do {
928 seq = read_seqbegin(&xtime_lock);
929
930 now = xtime_cache;
931 mono = wall_to_monotonic;
932 } while (read_seqretry(&xtime_lock, seq));
933
934 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
935 now.tv_nsec + mono.tv_nsec);
936 return now;
937 }