]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/time/timekeeping.c
Merge tag 'asm-generic-timers-5.11' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / kernel / time / timekeeping.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
5 */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
24 #include <linux/audit.h>
25
26 #include "tick-internal.h"
27 #include "ntp_internal.h"
28 #include "timekeeping_internal.h"
29
30 #define TK_CLEAR_NTP (1 << 0)
31 #define TK_MIRROR (1 << 1)
32 #define TK_CLOCK_WAS_SET (1 << 2)
33
34 enum timekeeping_adv_mode {
35 /* Update timekeeper when a tick has passed */
36 TK_ADV_TICK,
37
38 /* Update timekeeper on a direct frequency change */
39 TK_ADV_FREQ
40 };
41
42 DEFINE_RAW_SPINLOCK(timekeeper_lock);
43
44 /*
45 * The most important data for readout fits into a single 64 byte
46 * cache line.
47 */
48 static struct {
49 seqcount_raw_spinlock_t seq;
50 struct timekeeper timekeeper;
51 } tk_core ____cacheline_aligned = {
52 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
53 };
54
55 static struct timekeeper shadow_timekeeper;
56
57 /* flag for if timekeeping is suspended */
58 int __read_mostly timekeeping_suspended;
59
60 /**
61 * struct tk_fast - NMI safe timekeeper
62 * @seq: Sequence counter for protecting updates. The lowest bit
63 * is the index for the tk_read_base array
64 * @base: tk_read_base array. Access is indexed by the lowest bit of
65 * @seq.
66 *
67 * See @update_fast_timekeeper() below.
68 */
69 struct tk_fast {
70 seqcount_latch_t seq;
71 struct tk_read_base base[2];
72 };
73
74 /* Suspend-time cycles value for halted fast timekeeper. */
75 static u64 cycles_at_suspend;
76
77 static u64 dummy_clock_read(struct clocksource *cs)
78 {
79 if (timekeeping_suspended)
80 return cycles_at_suspend;
81 return local_clock();
82 }
83
84 static struct clocksource dummy_clock = {
85 .read = dummy_clock_read,
86 };
87
88 /*
89 * Boot time initialization which allows local_clock() to be utilized
90 * during early boot when clocksources are not available. local_clock()
91 * returns nanoseconds already so no conversion is required, hence mult=1
92 * and shift=0. When the first proper clocksource is installed then
93 * the fast time keepers are updated with the correct values.
94 */
95 #define FAST_TK_INIT \
96 { \
97 .clock = &dummy_clock, \
98 .mask = CLOCKSOURCE_MASK(64), \
99 .mult = 1, \
100 .shift = 0, \
101 }
102
103 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
104 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
105 .base[0] = FAST_TK_INIT,
106 .base[1] = FAST_TK_INIT,
107 };
108
109 static struct tk_fast tk_fast_raw ____cacheline_aligned = {
110 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
111 .base[0] = FAST_TK_INIT,
112 .base[1] = FAST_TK_INIT,
113 };
114
115 static inline void tk_normalize_xtime(struct timekeeper *tk)
116 {
117 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
118 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
119 tk->xtime_sec++;
120 }
121 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
122 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
123 tk->raw_sec++;
124 }
125 }
126
127 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
128 {
129 struct timespec64 ts;
130
131 ts.tv_sec = tk->xtime_sec;
132 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
133 return ts;
134 }
135
136 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
137 {
138 tk->xtime_sec = ts->tv_sec;
139 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
140 }
141
142 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
143 {
144 tk->xtime_sec += ts->tv_sec;
145 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
146 tk_normalize_xtime(tk);
147 }
148
149 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
150 {
151 struct timespec64 tmp;
152
153 /*
154 * Verify consistency of: offset_real = -wall_to_monotonic
155 * before modifying anything
156 */
157 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
158 -tk->wall_to_monotonic.tv_nsec);
159 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
160 tk->wall_to_monotonic = wtm;
161 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
162 tk->offs_real = timespec64_to_ktime(tmp);
163 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
164 }
165
166 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
167 {
168 tk->offs_boot = ktime_add(tk->offs_boot, delta);
169 /*
170 * Timespec representation for VDSO update to avoid 64bit division
171 * on every update.
172 */
173 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
174 }
175
176 /*
177 * tk_clock_read - atomic clocksource read() helper
178 *
179 * This helper is necessary to use in the read paths because, while the
180 * seqcount ensures we don't return a bad value while structures are updated,
181 * it doesn't protect from potential crashes. There is the possibility that
182 * the tkr's clocksource may change between the read reference, and the
183 * clock reference passed to the read function. This can cause crashes if
184 * the wrong clocksource is passed to the wrong read function.
185 * This isn't necessary to use when holding the timekeeper_lock or doing
186 * a read of the fast-timekeeper tkrs (which is protected by its own locking
187 * and update logic).
188 */
189 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
190 {
191 struct clocksource *clock = READ_ONCE(tkr->clock);
192
193 return clock->read(clock);
194 }
195
196 #ifdef CONFIG_DEBUG_TIMEKEEPING
197 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
198
199 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
200 {
201
202 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
203 const char *name = tk->tkr_mono.clock->name;
204
205 if (offset > max_cycles) {
206 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
207 offset, name, max_cycles);
208 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
209 } else {
210 if (offset > (max_cycles >> 1)) {
211 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
212 offset, name, max_cycles >> 1);
213 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
214 }
215 }
216
217 if (tk->underflow_seen) {
218 if (jiffies - tk->last_warning > WARNING_FREQ) {
219 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
220 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
221 printk_deferred(" Your kernel is probably still fine.\n");
222 tk->last_warning = jiffies;
223 }
224 tk->underflow_seen = 0;
225 }
226
227 if (tk->overflow_seen) {
228 if (jiffies - tk->last_warning > WARNING_FREQ) {
229 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
230 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
231 printk_deferred(" Your kernel is probably still fine.\n");
232 tk->last_warning = jiffies;
233 }
234 tk->overflow_seen = 0;
235 }
236 }
237
238 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
239 {
240 struct timekeeper *tk = &tk_core.timekeeper;
241 u64 now, last, mask, max, delta;
242 unsigned int seq;
243
244 /*
245 * Since we're called holding a seqcount, the data may shift
246 * under us while we're doing the calculation. This can cause
247 * false positives, since we'd note a problem but throw the
248 * results away. So nest another seqcount here to atomically
249 * grab the points we are checking with.
250 */
251 do {
252 seq = read_seqcount_begin(&tk_core.seq);
253 now = tk_clock_read(tkr);
254 last = tkr->cycle_last;
255 mask = tkr->mask;
256 max = tkr->clock->max_cycles;
257 } while (read_seqcount_retry(&tk_core.seq, seq));
258
259 delta = clocksource_delta(now, last, mask);
260
261 /*
262 * Try to catch underflows by checking if we are seeing small
263 * mask-relative negative values.
264 */
265 if (unlikely((~delta & mask) < (mask >> 3))) {
266 tk->underflow_seen = 1;
267 delta = 0;
268 }
269
270 /* Cap delta value to the max_cycles values to avoid mult overflows */
271 if (unlikely(delta > max)) {
272 tk->overflow_seen = 1;
273 delta = tkr->clock->max_cycles;
274 }
275
276 return delta;
277 }
278 #else
279 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
280 {
281 }
282 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
283 {
284 u64 cycle_now, delta;
285
286 /* read clocksource */
287 cycle_now = tk_clock_read(tkr);
288
289 /* calculate the delta since the last update_wall_time */
290 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
291
292 return delta;
293 }
294 #endif
295
296 /**
297 * tk_setup_internals - Set up internals to use clocksource clock.
298 *
299 * @tk: The target timekeeper to setup.
300 * @clock: Pointer to clocksource.
301 *
302 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
303 * pair and interval request.
304 *
305 * Unless you're the timekeeping code, you should not be using this!
306 */
307 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
308 {
309 u64 interval;
310 u64 tmp, ntpinterval;
311 struct clocksource *old_clock;
312
313 ++tk->cs_was_changed_seq;
314 old_clock = tk->tkr_mono.clock;
315 tk->tkr_mono.clock = clock;
316 tk->tkr_mono.mask = clock->mask;
317 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
318
319 tk->tkr_raw.clock = clock;
320 tk->tkr_raw.mask = clock->mask;
321 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
322
323 /* Do the ns -> cycle conversion first, using original mult */
324 tmp = NTP_INTERVAL_LENGTH;
325 tmp <<= clock->shift;
326 ntpinterval = tmp;
327 tmp += clock->mult/2;
328 do_div(tmp, clock->mult);
329 if (tmp == 0)
330 tmp = 1;
331
332 interval = (u64) tmp;
333 tk->cycle_interval = interval;
334
335 /* Go back from cycles -> shifted ns */
336 tk->xtime_interval = interval * clock->mult;
337 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
338 tk->raw_interval = interval * clock->mult;
339
340 /* if changing clocks, convert xtime_nsec shift units */
341 if (old_clock) {
342 int shift_change = clock->shift - old_clock->shift;
343 if (shift_change < 0) {
344 tk->tkr_mono.xtime_nsec >>= -shift_change;
345 tk->tkr_raw.xtime_nsec >>= -shift_change;
346 } else {
347 tk->tkr_mono.xtime_nsec <<= shift_change;
348 tk->tkr_raw.xtime_nsec <<= shift_change;
349 }
350 }
351
352 tk->tkr_mono.shift = clock->shift;
353 tk->tkr_raw.shift = clock->shift;
354
355 tk->ntp_error = 0;
356 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
357 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
358
359 /*
360 * The timekeeper keeps its own mult values for the currently
361 * active clocksource. These value will be adjusted via NTP
362 * to counteract clock drifting.
363 */
364 tk->tkr_mono.mult = clock->mult;
365 tk->tkr_raw.mult = clock->mult;
366 tk->ntp_err_mult = 0;
367 tk->skip_second_overflow = 0;
368 }
369
370 /* Timekeeper helper functions. */
371
372 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
373 {
374 u64 nsec;
375
376 nsec = delta * tkr->mult + tkr->xtime_nsec;
377 nsec >>= tkr->shift;
378
379 return nsec;
380 }
381
382 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
383 {
384 u64 delta;
385
386 delta = timekeeping_get_delta(tkr);
387 return timekeeping_delta_to_ns(tkr, delta);
388 }
389
390 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
391 {
392 u64 delta;
393
394 /* calculate the delta since the last update_wall_time */
395 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
396 return timekeeping_delta_to_ns(tkr, delta);
397 }
398
399 /**
400 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
401 * @tkr: Timekeeping readout base from which we take the update
402 * @tkf: Pointer to NMI safe timekeeper
403 *
404 * We want to use this from any context including NMI and tracing /
405 * instrumenting the timekeeping code itself.
406 *
407 * Employ the latch technique; see @raw_write_seqcount_latch.
408 *
409 * So if a NMI hits the update of base[0] then it will use base[1]
410 * which is still consistent. In the worst case this can result is a
411 * slightly wrong timestamp (a few nanoseconds). See
412 * @ktime_get_mono_fast_ns.
413 */
414 static void update_fast_timekeeper(const struct tk_read_base *tkr,
415 struct tk_fast *tkf)
416 {
417 struct tk_read_base *base = tkf->base;
418
419 /* Force readers off to base[1] */
420 raw_write_seqcount_latch(&tkf->seq);
421
422 /* Update base[0] */
423 memcpy(base, tkr, sizeof(*base));
424
425 /* Force readers back to base[0] */
426 raw_write_seqcount_latch(&tkf->seq);
427
428 /* Update base[1] */
429 memcpy(base + 1, base, sizeof(*base));
430 }
431
432 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
433 {
434 struct tk_read_base *tkr;
435 unsigned int seq;
436 u64 now;
437
438 do {
439 seq = raw_read_seqcount_latch(&tkf->seq);
440 tkr = tkf->base + (seq & 0x01);
441 now = ktime_to_ns(tkr->base);
442
443 now += timekeeping_delta_to_ns(tkr,
444 clocksource_delta(
445 tk_clock_read(tkr),
446 tkr->cycle_last,
447 tkr->mask));
448 } while (read_seqcount_latch_retry(&tkf->seq, seq));
449
450 return now;
451 }
452
453 /**
454 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
455 *
456 * This timestamp is not guaranteed to be monotonic across an update.
457 * The timestamp is calculated by:
458 *
459 * now = base_mono + clock_delta * slope
460 *
461 * So if the update lowers the slope, readers who are forced to the
462 * not yet updated second array are still using the old steeper slope.
463 *
464 * tmono
465 * ^
466 * | o n
467 * | o n
468 * | u
469 * | o
470 * |o
471 * |12345678---> reader order
472 *
473 * o = old slope
474 * u = update
475 * n = new slope
476 *
477 * So reader 6 will observe time going backwards versus reader 5.
478 *
479 * While other CPUs are likely to be able to observe that, the only way
480 * for a CPU local observation is when an NMI hits in the middle of
481 * the update. Timestamps taken from that NMI context might be ahead
482 * of the following timestamps. Callers need to be aware of that and
483 * deal with it.
484 */
485 u64 ktime_get_mono_fast_ns(void)
486 {
487 return __ktime_get_fast_ns(&tk_fast_mono);
488 }
489 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
490
491 /**
492 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
493 *
494 * Contrary to ktime_get_mono_fast_ns() this is always correct because the
495 * conversion factor is not affected by NTP/PTP correction.
496 */
497 u64 ktime_get_raw_fast_ns(void)
498 {
499 return __ktime_get_fast_ns(&tk_fast_raw);
500 }
501 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
502
503 /**
504 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
505 *
506 * To keep it NMI safe since we're accessing from tracing, we're not using a
507 * separate timekeeper with updates to monotonic clock and boot offset
508 * protected with seqcounts. This has the following minor side effects:
509 *
510 * (1) Its possible that a timestamp be taken after the boot offset is updated
511 * but before the timekeeper is updated. If this happens, the new boot offset
512 * is added to the old timekeeping making the clock appear to update slightly
513 * earlier:
514 * CPU 0 CPU 1
515 * timekeeping_inject_sleeptime64()
516 * __timekeeping_inject_sleeptime(tk, delta);
517 * timestamp();
518 * timekeeping_update(tk, TK_CLEAR_NTP...);
519 *
520 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
521 * partially updated. Since the tk->offs_boot update is a rare event, this
522 * should be a rare occurrence which postprocessing should be able to handle.
523 *
524 * The caveats vs. timestamp ordering as documented for ktime_get_fast_ns()
525 * apply as well.
526 */
527 u64 notrace ktime_get_boot_fast_ns(void)
528 {
529 struct timekeeper *tk = &tk_core.timekeeper;
530
531 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
532 }
533 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
534
535 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
536 {
537 struct tk_read_base *tkr;
538 u64 basem, baser, delta;
539 unsigned int seq;
540
541 do {
542 seq = raw_read_seqcount_latch(&tkf->seq);
543 tkr = tkf->base + (seq & 0x01);
544 basem = ktime_to_ns(tkr->base);
545 baser = ktime_to_ns(tkr->base_real);
546
547 delta = timekeeping_delta_to_ns(tkr,
548 clocksource_delta(tk_clock_read(tkr),
549 tkr->cycle_last, tkr->mask));
550 } while (read_seqcount_latch_retry(&tkf->seq, seq));
551
552 if (mono)
553 *mono = basem + delta;
554 return baser + delta;
555 }
556
557 /**
558 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
559 *
560 * See ktime_get_fast_ns() for documentation of the time stamp ordering.
561 */
562 u64 ktime_get_real_fast_ns(void)
563 {
564 return __ktime_get_real_fast(&tk_fast_mono, NULL);
565 }
566 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
567
568 /**
569 * ktime_get_fast_timestamps: - NMI safe timestamps
570 * @snapshot: Pointer to timestamp storage
571 *
572 * Stores clock monotonic, boottime and realtime timestamps.
573 *
574 * Boot time is a racy access on 32bit systems if the sleep time injection
575 * happens late during resume and not in timekeeping_resume(). That could
576 * be avoided by expanding struct tk_read_base with boot offset for 32bit
577 * and adding more overhead to the update. As this is a hard to observe
578 * once per resume event which can be filtered with reasonable effort using
579 * the accurate mono/real timestamps, it's probably not worth the trouble.
580 *
581 * Aside of that it might be possible on 32 and 64 bit to observe the
582 * following when the sleep time injection happens late:
583 *
584 * CPU 0 CPU 1
585 * timekeeping_resume()
586 * ktime_get_fast_timestamps()
587 * mono, real = __ktime_get_real_fast()
588 * inject_sleep_time()
589 * update boot offset
590 * boot = mono + bootoffset;
591 *
592 * That means that boot time already has the sleep time adjustment, but
593 * real time does not. On the next readout both are in sync again.
594 *
595 * Preventing this for 64bit is not really feasible without destroying the
596 * careful cache layout of the timekeeper because the sequence count and
597 * struct tk_read_base would then need two cache lines instead of one.
598 *
599 * Access to the time keeper clock source is disabled accross the innermost
600 * steps of suspend/resume. The accessors still work, but the timestamps
601 * are frozen until time keeping is resumed which happens very early.
602 *
603 * For regular suspend/resume there is no observable difference vs. sched
604 * clock, but it might affect some of the nasty low level debug printks.
605 *
606 * OTOH, access to sched clock is not guaranteed accross suspend/resume on
607 * all systems either so it depends on the hardware in use.
608 *
609 * If that turns out to be a real problem then this could be mitigated by
610 * using sched clock in a similar way as during early boot. But it's not as
611 * trivial as on early boot because it needs some careful protection
612 * against the clock monotonic timestamp jumping backwards on resume.
613 */
614 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
615 {
616 struct timekeeper *tk = &tk_core.timekeeper;
617
618 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
619 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
620 }
621
622 /**
623 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
624 * @tk: Timekeeper to snapshot.
625 *
626 * It generally is unsafe to access the clocksource after timekeeping has been
627 * suspended, so take a snapshot of the readout base of @tk and use it as the
628 * fast timekeeper's readout base while suspended. It will return the same
629 * number of cycles every time until timekeeping is resumed at which time the
630 * proper readout base for the fast timekeeper will be restored automatically.
631 */
632 static void halt_fast_timekeeper(const struct timekeeper *tk)
633 {
634 static struct tk_read_base tkr_dummy;
635 const struct tk_read_base *tkr = &tk->tkr_mono;
636
637 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
638 cycles_at_suspend = tk_clock_read(tkr);
639 tkr_dummy.clock = &dummy_clock;
640 tkr_dummy.base_real = tkr->base + tk->offs_real;
641 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
642
643 tkr = &tk->tkr_raw;
644 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
645 tkr_dummy.clock = &dummy_clock;
646 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
647 }
648
649 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
650
651 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
652 {
653 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
654 }
655
656 /**
657 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
658 * @nb: Pointer to the notifier block to register
659 */
660 int pvclock_gtod_register_notifier(struct notifier_block *nb)
661 {
662 struct timekeeper *tk = &tk_core.timekeeper;
663 unsigned long flags;
664 int ret;
665
666 raw_spin_lock_irqsave(&timekeeper_lock, flags);
667 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
668 update_pvclock_gtod(tk, true);
669 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
670
671 return ret;
672 }
673 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
674
675 /**
676 * pvclock_gtod_unregister_notifier - unregister a pvclock
677 * timedata update listener
678 * @nb: Pointer to the notifier block to unregister
679 */
680 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
681 {
682 unsigned long flags;
683 int ret;
684
685 raw_spin_lock_irqsave(&timekeeper_lock, flags);
686 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
687 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
688
689 return ret;
690 }
691 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
692
693 /*
694 * tk_update_leap_state - helper to update the next_leap_ktime
695 */
696 static inline void tk_update_leap_state(struct timekeeper *tk)
697 {
698 tk->next_leap_ktime = ntp_get_next_leap();
699 if (tk->next_leap_ktime != KTIME_MAX)
700 /* Convert to monotonic time */
701 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
702 }
703
704 /*
705 * Update the ktime_t based scalar nsec members of the timekeeper
706 */
707 static inline void tk_update_ktime_data(struct timekeeper *tk)
708 {
709 u64 seconds;
710 u32 nsec;
711
712 /*
713 * The xtime based monotonic readout is:
714 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
715 * The ktime based monotonic readout is:
716 * nsec = base_mono + now();
717 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
718 */
719 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
720 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
721 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
722
723 /*
724 * The sum of the nanoseconds portions of xtime and
725 * wall_to_monotonic can be greater/equal one second. Take
726 * this into account before updating tk->ktime_sec.
727 */
728 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
729 if (nsec >= NSEC_PER_SEC)
730 seconds++;
731 tk->ktime_sec = seconds;
732
733 /* Update the monotonic raw base */
734 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
735 }
736
737 /* must hold timekeeper_lock */
738 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
739 {
740 if (action & TK_CLEAR_NTP) {
741 tk->ntp_error = 0;
742 ntp_clear();
743 }
744
745 tk_update_leap_state(tk);
746 tk_update_ktime_data(tk);
747
748 update_vsyscall(tk);
749 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
750
751 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
752 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
753 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
754
755 if (action & TK_CLOCK_WAS_SET)
756 tk->clock_was_set_seq++;
757 /*
758 * The mirroring of the data to the shadow-timekeeper needs
759 * to happen last here to ensure we don't over-write the
760 * timekeeper structure on the next update with stale data
761 */
762 if (action & TK_MIRROR)
763 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
764 sizeof(tk_core.timekeeper));
765 }
766
767 /**
768 * timekeeping_forward_now - update clock to the current time
769 * @tk: Pointer to the timekeeper to update
770 *
771 * Forward the current clock to update its state since the last call to
772 * update_wall_time(). This is useful before significant clock changes,
773 * as it avoids having to deal with this time offset explicitly.
774 */
775 static void timekeeping_forward_now(struct timekeeper *tk)
776 {
777 u64 cycle_now, delta;
778
779 cycle_now = tk_clock_read(&tk->tkr_mono);
780 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
781 tk->tkr_mono.cycle_last = cycle_now;
782 tk->tkr_raw.cycle_last = cycle_now;
783
784 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
785 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
786
787 tk_normalize_xtime(tk);
788 }
789
790 /**
791 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
792 * @ts: pointer to the timespec to be set
793 *
794 * Returns the time of day in a timespec64 (WARN if suspended).
795 */
796 void ktime_get_real_ts64(struct timespec64 *ts)
797 {
798 struct timekeeper *tk = &tk_core.timekeeper;
799 unsigned int seq;
800 u64 nsecs;
801
802 WARN_ON(timekeeping_suspended);
803
804 do {
805 seq = read_seqcount_begin(&tk_core.seq);
806
807 ts->tv_sec = tk->xtime_sec;
808 nsecs = timekeeping_get_ns(&tk->tkr_mono);
809
810 } while (read_seqcount_retry(&tk_core.seq, seq));
811
812 ts->tv_nsec = 0;
813 timespec64_add_ns(ts, nsecs);
814 }
815 EXPORT_SYMBOL(ktime_get_real_ts64);
816
817 ktime_t ktime_get(void)
818 {
819 struct timekeeper *tk = &tk_core.timekeeper;
820 unsigned int seq;
821 ktime_t base;
822 u64 nsecs;
823
824 WARN_ON(timekeeping_suspended);
825
826 do {
827 seq = read_seqcount_begin(&tk_core.seq);
828 base = tk->tkr_mono.base;
829 nsecs = timekeeping_get_ns(&tk->tkr_mono);
830
831 } while (read_seqcount_retry(&tk_core.seq, seq));
832
833 return ktime_add_ns(base, nsecs);
834 }
835 EXPORT_SYMBOL_GPL(ktime_get);
836
837 u32 ktime_get_resolution_ns(void)
838 {
839 struct timekeeper *tk = &tk_core.timekeeper;
840 unsigned int seq;
841 u32 nsecs;
842
843 WARN_ON(timekeeping_suspended);
844
845 do {
846 seq = read_seqcount_begin(&tk_core.seq);
847 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
848 } while (read_seqcount_retry(&tk_core.seq, seq));
849
850 return nsecs;
851 }
852 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
853
854 static ktime_t *offsets[TK_OFFS_MAX] = {
855 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
856 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
857 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
858 };
859
860 ktime_t ktime_get_with_offset(enum tk_offsets offs)
861 {
862 struct timekeeper *tk = &tk_core.timekeeper;
863 unsigned int seq;
864 ktime_t base, *offset = offsets[offs];
865 u64 nsecs;
866
867 WARN_ON(timekeeping_suspended);
868
869 do {
870 seq = read_seqcount_begin(&tk_core.seq);
871 base = ktime_add(tk->tkr_mono.base, *offset);
872 nsecs = timekeeping_get_ns(&tk->tkr_mono);
873
874 } while (read_seqcount_retry(&tk_core.seq, seq));
875
876 return ktime_add_ns(base, nsecs);
877
878 }
879 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
880
881 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
882 {
883 struct timekeeper *tk = &tk_core.timekeeper;
884 unsigned int seq;
885 ktime_t base, *offset = offsets[offs];
886 u64 nsecs;
887
888 WARN_ON(timekeeping_suspended);
889
890 do {
891 seq = read_seqcount_begin(&tk_core.seq);
892 base = ktime_add(tk->tkr_mono.base, *offset);
893 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
894
895 } while (read_seqcount_retry(&tk_core.seq, seq));
896
897 return ktime_add_ns(base, nsecs);
898 }
899 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
900
901 /**
902 * ktime_mono_to_any() - convert mononotic time to any other time
903 * @tmono: time to convert.
904 * @offs: which offset to use
905 */
906 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
907 {
908 ktime_t *offset = offsets[offs];
909 unsigned int seq;
910 ktime_t tconv;
911
912 do {
913 seq = read_seqcount_begin(&tk_core.seq);
914 tconv = ktime_add(tmono, *offset);
915 } while (read_seqcount_retry(&tk_core.seq, seq));
916
917 return tconv;
918 }
919 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
920
921 /**
922 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
923 */
924 ktime_t ktime_get_raw(void)
925 {
926 struct timekeeper *tk = &tk_core.timekeeper;
927 unsigned int seq;
928 ktime_t base;
929 u64 nsecs;
930
931 do {
932 seq = read_seqcount_begin(&tk_core.seq);
933 base = tk->tkr_raw.base;
934 nsecs = timekeeping_get_ns(&tk->tkr_raw);
935
936 } while (read_seqcount_retry(&tk_core.seq, seq));
937
938 return ktime_add_ns(base, nsecs);
939 }
940 EXPORT_SYMBOL_GPL(ktime_get_raw);
941
942 /**
943 * ktime_get_ts64 - get the monotonic clock in timespec64 format
944 * @ts: pointer to timespec variable
945 *
946 * The function calculates the monotonic clock from the realtime
947 * clock and the wall_to_monotonic offset and stores the result
948 * in normalized timespec64 format in the variable pointed to by @ts.
949 */
950 void ktime_get_ts64(struct timespec64 *ts)
951 {
952 struct timekeeper *tk = &tk_core.timekeeper;
953 struct timespec64 tomono;
954 unsigned int seq;
955 u64 nsec;
956
957 WARN_ON(timekeeping_suspended);
958
959 do {
960 seq = read_seqcount_begin(&tk_core.seq);
961 ts->tv_sec = tk->xtime_sec;
962 nsec = timekeeping_get_ns(&tk->tkr_mono);
963 tomono = tk->wall_to_monotonic;
964
965 } while (read_seqcount_retry(&tk_core.seq, seq));
966
967 ts->tv_sec += tomono.tv_sec;
968 ts->tv_nsec = 0;
969 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
970 }
971 EXPORT_SYMBOL_GPL(ktime_get_ts64);
972
973 /**
974 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
975 *
976 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
977 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
978 * works on both 32 and 64 bit systems. On 32 bit systems the readout
979 * covers ~136 years of uptime which should be enough to prevent
980 * premature wrap arounds.
981 */
982 time64_t ktime_get_seconds(void)
983 {
984 struct timekeeper *tk = &tk_core.timekeeper;
985
986 WARN_ON(timekeeping_suspended);
987 return tk->ktime_sec;
988 }
989 EXPORT_SYMBOL_GPL(ktime_get_seconds);
990
991 /**
992 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
993 *
994 * Returns the wall clock seconds since 1970. This replaces the
995 * get_seconds() interface which is not y2038 safe on 32bit systems.
996 *
997 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
998 * 32bit systems the access must be protected with the sequence
999 * counter to provide "atomic" access to the 64bit tk->xtime_sec
1000 * value.
1001 */
1002 time64_t ktime_get_real_seconds(void)
1003 {
1004 struct timekeeper *tk = &tk_core.timekeeper;
1005 time64_t seconds;
1006 unsigned int seq;
1007
1008 if (IS_ENABLED(CONFIG_64BIT))
1009 return tk->xtime_sec;
1010
1011 do {
1012 seq = read_seqcount_begin(&tk_core.seq);
1013 seconds = tk->xtime_sec;
1014
1015 } while (read_seqcount_retry(&tk_core.seq, seq));
1016
1017 return seconds;
1018 }
1019 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1020
1021 /**
1022 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1023 * but without the sequence counter protect. This internal function
1024 * is called just when timekeeping lock is already held.
1025 */
1026 noinstr time64_t __ktime_get_real_seconds(void)
1027 {
1028 struct timekeeper *tk = &tk_core.timekeeper;
1029
1030 return tk->xtime_sec;
1031 }
1032
1033 /**
1034 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1035 * @systime_snapshot: pointer to struct receiving the system time snapshot
1036 */
1037 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1038 {
1039 struct timekeeper *tk = &tk_core.timekeeper;
1040 unsigned int seq;
1041 ktime_t base_raw;
1042 ktime_t base_real;
1043 u64 nsec_raw;
1044 u64 nsec_real;
1045 u64 now;
1046
1047 WARN_ON_ONCE(timekeeping_suspended);
1048
1049 do {
1050 seq = read_seqcount_begin(&tk_core.seq);
1051 now = tk_clock_read(&tk->tkr_mono);
1052 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1053 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1054 base_real = ktime_add(tk->tkr_mono.base,
1055 tk_core.timekeeper.offs_real);
1056 base_raw = tk->tkr_raw.base;
1057 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1058 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1059 } while (read_seqcount_retry(&tk_core.seq, seq));
1060
1061 systime_snapshot->cycles = now;
1062 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1063 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1064 }
1065 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1066
1067 /* Scale base by mult/div checking for overflow */
1068 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1069 {
1070 u64 tmp, rem;
1071
1072 tmp = div64_u64_rem(*base, div, &rem);
1073
1074 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1075 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1076 return -EOVERFLOW;
1077 tmp *= mult;
1078
1079 rem = div64_u64(rem * mult, div);
1080 *base = tmp + rem;
1081 return 0;
1082 }
1083
1084 /**
1085 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1086 * @history: Snapshot representing start of history
1087 * @partial_history_cycles: Cycle offset into history (fractional part)
1088 * @total_history_cycles: Total history length in cycles
1089 * @discontinuity: True indicates clock was set on history period
1090 * @ts: Cross timestamp that should be adjusted using
1091 * partial/total ratio
1092 *
1093 * Helper function used by get_device_system_crosststamp() to correct the
1094 * crosstimestamp corresponding to the start of the current interval to the
1095 * system counter value (timestamp point) provided by the driver. The
1096 * total_history_* quantities are the total history starting at the provided
1097 * reference point and ending at the start of the current interval. The cycle
1098 * count between the driver timestamp point and the start of the current
1099 * interval is partial_history_cycles.
1100 */
1101 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1102 u64 partial_history_cycles,
1103 u64 total_history_cycles,
1104 bool discontinuity,
1105 struct system_device_crosststamp *ts)
1106 {
1107 struct timekeeper *tk = &tk_core.timekeeper;
1108 u64 corr_raw, corr_real;
1109 bool interp_forward;
1110 int ret;
1111
1112 if (total_history_cycles == 0 || partial_history_cycles == 0)
1113 return 0;
1114
1115 /* Interpolate shortest distance from beginning or end of history */
1116 interp_forward = partial_history_cycles > total_history_cycles / 2;
1117 partial_history_cycles = interp_forward ?
1118 total_history_cycles - partial_history_cycles :
1119 partial_history_cycles;
1120
1121 /*
1122 * Scale the monotonic raw time delta by:
1123 * partial_history_cycles / total_history_cycles
1124 */
1125 corr_raw = (u64)ktime_to_ns(
1126 ktime_sub(ts->sys_monoraw, history->raw));
1127 ret = scale64_check_overflow(partial_history_cycles,
1128 total_history_cycles, &corr_raw);
1129 if (ret)
1130 return ret;
1131
1132 /*
1133 * If there is a discontinuity in the history, scale monotonic raw
1134 * correction by:
1135 * mult(real)/mult(raw) yielding the realtime correction
1136 * Otherwise, calculate the realtime correction similar to monotonic
1137 * raw calculation
1138 */
1139 if (discontinuity) {
1140 corr_real = mul_u64_u32_div
1141 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1142 } else {
1143 corr_real = (u64)ktime_to_ns(
1144 ktime_sub(ts->sys_realtime, history->real));
1145 ret = scale64_check_overflow(partial_history_cycles,
1146 total_history_cycles, &corr_real);
1147 if (ret)
1148 return ret;
1149 }
1150
1151 /* Fixup monotonic raw and real time time values */
1152 if (interp_forward) {
1153 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1154 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1155 } else {
1156 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1157 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1158 }
1159
1160 return 0;
1161 }
1162
1163 /*
1164 * cycle_between - true if test occurs chronologically between before and after
1165 */
1166 static bool cycle_between(u64 before, u64 test, u64 after)
1167 {
1168 if (test > before && test < after)
1169 return true;
1170 if (test < before && before > after)
1171 return true;
1172 return false;
1173 }
1174
1175 /**
1176 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1177 * @get_time_fn: Callback to get simultaneous device time and
1178 * system counter from the device driver
1179 * @ctx: Context passed to get_time_fn()
1180 * @history_begin: Historical reference point used to interpolate system
1181 * time when counter provided by the driver is before the current interval
1182 * @xtstamp: Receives simultaneously captured system and device time
1183 *
1184 * Reads a timestamp from a device and correlates it to system time
1185 */
1186 int get_device_system_crosststamp(int (*get_time_fn)
1187 (ktime_t *device_time,
1188 struct system_counterval_t *sys_counterval,
1189 void *ctx),
1190 void *ctx,
1191 struct system_time_snapshot *history_begin,
1192 struct system_device_crosststamp *xtstamp)
1193 {
1194 struct system_counterval_t system_counterval;
1195 struct timekeeper *tk = &tk_core.timekeeper;
1196 u64 cycles, now, interval_start;
1197 unsigned int clock_was_set_seq = 0;
1198 ktime_t base_real, base_raw;
1199 u64 nsec_real, nsec_raw;
1200 u8 cs_was_changed_seq;
1201 unsigned int seq;
1202 bool do_interp;
1203 int ret;
1204
1205 do {
1206 seq = read_seqcount_begin(&tk_core.seq);
1207 /*
1208 * Try to synchronously capture device time and a system
1209 * counter value calling back into the device driver
1210 */
1211 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1212 if (ret)
1213 return ret;
1214
1215 /*
1216 * Verify that the clocksource associated with the captured
1217 * system counter value is the same as the currently installed
1218 * timekeeper clocksource
1219 */
1220 if (tk->tkr_mono.clock != system_counterval.cs)
1221 return -ENODEV;
1222 cycles = system_counterval.cycles;
1223
1224 /*
1225 * Check whether the system counter value provided by the
1226 * device driver is on the current timekeeping interval.
1227 */
1228 now = tk_clock_read(&tk->tkr_mono);
1229 interval_start = tk->tkr_mono.cycle_last;
1230 if (!cycle_between(interval_start, cycles, now)) {
1231 clock_was_set_seq = tk->clock_was_set_seq;
1232 cs_was_changed_seq = tk->cs_was_changed_seq;
1233 cycles = interval_start;
1234 do_interp = true;
1235 } else {
1236 do_interp = false;
1237 }
1238
1239 base_real = ktime_add(tk->tkr_mono.base,
1240 tk_core.timekeeper.offs_real);
1241 base_raw = tk->tkr_raw.base;
1242
1243 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1244 system_counterval.cycles);
1245 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1246 system_counterval.cycles);
1247 } while (read_seqcount_retry(&tk_core.seq, seq));
1248
1249 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1250 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1251
1252 /*
1253 * Interpolate if necessary, adjusting back from the start of the
1254 * current interval
1255 */
1256 if (do_interp) {
1257 u64 partial_history_cycles, total_history_cycles;
1258 bool discontinuity;
1259
1260 /*
1261 * Check that the counter value occurs after the provided
1262 * history reference and that the history doesn't cross a
1263 * clocksource change
1264 */
1265 if (!history_begin ||
1266 !cycle_between(history_begin->cycles,
1267 system_counterval.cycles, cycles) ||
1268 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1269 return -EINVAL;
1270 partial_history_cycles = cycles - system_counterval.cycles;
1271 total_history_cycles = cycles - history_begin->cycles;
1272 discontinuity =
1273 history_begin->clock_was_set_seq != clock_was_set_seq;
1274
1275 ret = adjust_historical_crosststamp(history_begin,
1276 partial_history_cycles,
1277 total_history_cycles,
1278 discontinuity, xtstamp);
1279 if (ret)
1280 return ret;
1281 }
1282
1283 return 0;
1284 }
1285 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1286
1287 /**
1288 * do_settimeofday64 - Sets the time of day.
1289 * @ts: pointer to the timespec64 variable containing the new time
1290 *
1291 * Sets the time of day to the new time and update NTP and notify hrtimers
1292 */
1293 int do_settimeofday64(const struct timespec64 *ts)
1294 {
1295 struct timekeeper *tk = &tk_core.timekeeper;
1296 struct timespec64 ts_delta, xt;
1297 unsigned long flags;
1298 int ret = 0;
1299
1300 if (!timespec64_valid_settod(ts))
1301 return -EINVAL;
1302
1303 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1304 write_seqcount_begin(&tk_core.seq);
1305
1306 timekeeping_forward_now(tk);
1307
1308 xt = tk_xtime(tk);
1309 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1310 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1311
1312 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1313 ret = -EINVAL;
1314 goto out;
1315 }
1316
1317 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1318
1319 tk_set_xtime(tk, ts);
1320 out:
1321 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1322
1323 write_seqcount_end(&tk_core.seq);
1324 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1325
1326 /* signal hrtimers about time change */
1327 clock_was_set();
1328
1329 if (!ret)
1330 audit_tk_injoffset(ts_delta);
1331
1332 return ret;
1333 }
1334 EXPORT_SYMBOL(do_settimeofday64);
1335
1336 /**
1337 * timekeeping_inject_offset - Adds or subtracts from the current time.
1338 * @ts: Pointer to the timespec variable containing the offset
1339 *
1340 * Adds or subtracts an offset value from the current time.
1341 */
1342 static int timekeeping_inject_offset(const struct timespec64 *ts)
1343 {
1344 struct timekeeper *tk = &tk_core.timekeeper;
1345 unsigned long flags;
1346 struct timespec64 tmp;
1347 int ret = 0;
1348
1349 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1350 return -EINVAL;
1351
1352 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1353 write_seqcount_begin(&tk_core.seq);
1354
1355 timekeeping_forward_now(tk);
1356
1357 /* Make sure the proposed value is valid */
1358 tmp = timespec64_add(tk_xtime(tk), *ts);
1359 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1360 !timespec64_valid_settod(&tmp)) {
1361 ret = -EINVAL;
1362 goto error;
1363 }
1364
1365 tk_xtime_add(tk, ts);
1366 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1367
1368 error: /* even if we error out, we forwarded the time, so call update */
1369 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1370
1371 write_seqcount_end(&tk_core.seq);
1372 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1373
1374 /* signal hrtimers about time change */
1375 clock_was_set();
1376
1377 return ret;
1378 }
1379
1380 /*
1381 * Indicates if there is an offset between the system clock and the hardware
1382 * clock/persistent clock/rtc.
1383 */
1384 int persistent_clock_is_local;
1385
1386 /*
1387 * Adjust the time obtained from the CMOS to be UTC time instead of
1388 * local time.
1389 *
1390 * This is ugly, but preferable to the alternatives. Otherwise we
1391 * would either need to write a program to do it in /etc/rc (and risk
1392 * confusion if the program gets run more than once; it would also be
1393 * hard to make the program warp the clock precisely n hours) or
1394 * compile in the timezone information into the kernel. Bad, bad....
1395 *
1396 * - TYT, 1992-01-01
1397 *
1398 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1399 * as real UNIX machines always do it. This avoids all headaches about
1400 * daylight saving times and warping kernel clocks.
1401 */
1402 void timekeeping_warp_clock(void)
1403 {
1404 if (sys_tz.tz_minuteswest != 0) {
1405 struct timespec64 adjust;
1406
1407 persistent_clock_is_local = 1;
1408 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1409 adjust.tv_nsec = 0;
1410 timekeeping_inject_offset(&adjust);
1411 }
1412 }
1413
1414 /*
1415 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1416 */
1417 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1418 {
1419 tk->tai_offset = tai_offset;
1420 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1421 }
1422
1423 /*
1424 * change_clocksource - Swaps clocksources if a new one is available
1425 *
1426 * Accumulates current time interval and initializes new clocksource
1427 */
1428 static int change_clocksource(void *data)
1429 {
1430 struct timekeeper *tk = &tk_core.timekeeper;
1431 struct clocksource *new, *old;
1432 unsigned long flags;
1433
1434 new = (struct clocksource *) data;
1435
1436 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1437 write_seqcount_begin(&tk_core.seq);
1438
1439 timekeeping_forward_now(tk);
1440 /*
1441 * If the cs is in module, get a module reference. Succeeds
1442 * for built-in code (owner == NULL) as well.
1443 */
1444 if (try_module_get(new->owner)) {
1445 if (!new->enable || new->enable(new) == 0) {
1446 old = tk->tkr_mono.clock;
1447 tk_setup_internals(tk, new);
1448 if (old->disable)
1449 old->disable(old);
1450 module_put(old->owner);
1451 } else {
1452 module_put(new->owner);
1453 }
1454 }
1455 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1456
1457 write_seqcount_end(&tk_core.seq);
1458 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1459
1460 return 0;
1461 }
1462
1463 /**
1464 * timekeeping_notify - Install a new clock source
1465 * @clock: pointer to the clock source
1466 *
1467 * This function is called from clocksource.c after a new, better clock
1468 * source has been registered. The caller holds the clocksource_mutex.
1469 */
1470 int timekeeping_notify(struct clocksource *clock)
1471 {
1472 struct timekeeper *tk = &tk_core.timekeeper;
1473
1474 if (tk->tkr_mono.clock == clock)
1475 return 0;
1476 stop_machine(change_clocksource, clock, NULL);
1477 tick_clock_notify();
1478 return tk->tkr_mono.clock == clock ? 0 : -1;
1479 }
1480
1481 /**
1482 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1483 * @ts: pointer to the timespec64 to be set
1484 *
1485 * Returns the raw monotonic time (completely un-modified by ntp)
1486 */
1487 void ktime_get_raw_ts64(struct timespec64 *ts)
1488 {
1489 struct timekeeper *tk = &tk_core.timekeeper;
1490 unsigned int seq;
1491 u64 nsecs;
1492
1493 do {
1494 seq = read_seqcount_begin(&tk_core.seq);
1495 ts->tv_sec = tk->raw_sec;
1496 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1497
1498 } while (read_seqcount_retry(&tk_core.seq, seq));
1499
1500 ts->tv_nsec = 0;
1501 timespec64_add_ns(ts, nsecs);
1502 }
1503 EXPORT_SYMBOL(ktime_get_raw_ts64);
1504
1505
1506 /**
1507 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1508 */
1509 int timekeeping_valid_for_hres(void)
1510 {
1511 struct timekeeper *tk = &tk_core.timekeeper;
1512 unsigned int seq;
1513 int ret;
1514
1515 do {
1516 seq = read_seqcount_begin(&tk_core.seq);
1517
1518 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1519
1520 } while (read_seqcount_retry(&tk_core.seq, seq));
1521
1522 return ret;
1523 }
1524
1525 /**
1526 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1527 */
1528 u64 timekeeping_max_deferment(void)
1529 {
1530 struct timekeeper *tk = &tk_core.timekeeper;
1531 unsigned int seq;
1532 u64 ret;
1533
1534 do {
1535 seq = read_seqcount_begin(&tk_core.seq);
1536
1537 ret = tk->tkr_mono.clock->max_idle_ns;
1538
1539 } while (read_seqcount_retry(&tk_core.seq, seq));
1540
1541 return ret;
1542 }
1543
1544 /**
1545 * read_persistent_clock64 - Return time from the persistent clock.
1546 * @ts: Pointer to the storage for the readout value
1547 *
1548 * Weak dummy function for arches that do not yet support it.
1549 * Reads the time from the battery backed persistent clock.
1550 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1551 *
1552 * XXX - Do be sure to remove it once all arches implement it.
1553 */
1554 void __weak read_persistent_clock64(struct timespec64 *ts)
1555 {
1556 ts->tv_sec = 0;
1557 ts->tv_nsec = 0;
1558 }
1559
1560 /**
1561 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1562 * from the boot.
1563 *
1564 * Weak dummy function for arches that do not yet support it.
1565 * @wall_time: - current time as returned by persistent clock
1566 * @boot_offset: - offset that is defined as wall_time - boot_time
1567 *
1568 * The default function calculates offset based on the current value of
1569 * local_clock(). This way architectures that support sched_clock() but don't
1570 * support dedicated boot time clock will provide the best estimate of the
1571 * boot time.
1572 */
1573 void __weak __init
1574 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1575 struct timespec64 *boot_offset)
1576 {
1577 read_persistent_clock64(wall_time);
1578 *boot_offset = ns_to_timespec64(local_clock());
1579 }
1580
1581 /*
1582 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1583 *
1584 * The flag starts of false and is only set when a suspend reaches
1585 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1586 * timekeeper clocksource is not stopping across suspend and has been
1587 * used to update sleep time. If the timekeeper clocksource has stopped
1588 * then the flag stays true and is used by the RTC resume code to decide
1589 * whether sleeptime must be injected and if so the flag gets false then.
1590 *
1591 * If a suspend fails before reaching timekeeping_resume() then the flag
1592 * stays false and prevents erroneous sleeptime injection.
1593 */
1594 static bool suspend_timing_needed;
1595
1596 /* Flag for if there is a persistent clock on this platform */
1597 static bool persistent_clock_exists;
1598
1599 /*
1600 * timekeeping_init - Initializes the clocksource and common timekeeping values
1601 */
1602 void __init timekeeping_init(void)
1603 {
1604 struct timespec64 wall_time, boot_offset, wall_to_mono;
1605 struct timekeeper *tk = &tk_core.timekeeper;
1606 struct clocksource *clock;
1607 unsigned long flags;
1608
1609 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1610 if (timespec64_valid_settod(&wall_time) &&
1611 timespec64_to_ns(&wall_time) > 0) {
1612 persistent_clock_exists = true;
1613 } else if (timespec64_to_ns(&wall_time) != 0) {
1614 pr_warn("Persistent clock returned invalid value");
1615 wall_time = (struct timespec64){0};
1616 }
1617
1618 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1619 boot_offset = (struct timespec64){0};
1620
1621 /*
1622 * We want set wall_to_mono, so the following is true:
1623 * wall time + wall_to_mono = boot time
1624 */
1625 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1626
1627 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1628 write_seqcount_begin(&tk_core.seq);
1629 ntp_init();
1630
1631 clock = clocksource_default_clock();
1632 if (clock->enable)
1633 clock->enable(clock);
1634 tk_setup_internals(tk, clock);
1635
1636 tk_set_xtime(tk, &wall_time);
1637 tk->raw_sec = 0;
1638
1639 tk_set_wall_to_mono(tk, wall_to_mono);
1640
1641 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1642
1643 write_seqcount_end(&tk_core.seq);
1644 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1645 }
1646
1647 /* time in seconds when suspend began for persistent clock */
1648 static struct timespec64 timekeeping_suspend_time;
1649
1650 /**
1651 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1652 * @tk: Pointer to the timekeeper to be updated
1653 * @delta: Pointer to the delta value in timespec64 format
1654 *
1655 * Takes a timespec offset measuring a suspend interval and properly
1656 * adds the sleep offset to the timekeeping variables.
1657 */
1658 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1659 const struct timespec64 *delta)
1660 {
1661 if (!timespec64_valid_strict(delta)) {
1662 printk_deferred(KERN_WARNING
1663 "__timekeeping_inject_sleeptime: Invalid "
1664 "sleep delta value!\n");
1665 return;
1666 }
1667 tk_xtime_add(tk, delta);
1668 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1669 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1670 tk_debug_account_sleep_time(delta);
1671 }
1672
1673 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1674 /**
1675 * We have three kinds of time sources to use for sleep time
1676 * injection, the preference order is:
1677 * 1) non-stop clocksource
1678 * 2) persistent clock (ie: RTC accessible when irqs are off)
1679 * 3) RTC
1680 *
1681 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1682 * If system has neither 1) nor 2), 3) will be used finally.
1683 *
1684 *
1685 * If timekeeping has injected sleeptime via either 1) or 2),
1686 * 3) becomes needless, so in this case we don't need to call
1687 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1688 * means.
1689 */
1690 bool timekeeping_rtc_skipresume(void)
1691 {
1692 return !suspend_timing_needed;
1693 }
1694
1695 /**
1696 * 1) can be determined whether to use or not only when doing
1697 * timekeeping_resume() which is invoked after rtc_suspend(),
1698 * so we can't skip rtc_suspend() surely if system has 1).
1699 *
1700 * But if system has 2), 2) will definitely be used, so in this
1701 * case we don't need to call rtc_suspend(), and this is what
1702 * timekeeping_rtc_skipsuspend() means.
1703 */
1704 bool timekeeping_rtc_skipsuspend(void)
1705 {
1706 return persistent_clock_exists;
1707 }
1708
1709 /**
1710 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1711 * @delta: pointer to a timespec64 delta value
1712 *
1713 * This hook is for architectures that cannot support read_persistent_clock64
1714 * because their RTC/persistent clock is only accessible when irqs are enabled.
1715 * and also don't have an effective nonstop clocksource.
1716 *
1717 * This function should only be called by rtc_resume(), and allows
1718 * a suspend offset to be injected into the timekeeping values.
1719 */
1720 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1721 {
1722 struct timekeeper *tk = &tk_core.timekeeper;
1723 unsigned long flags;
1724
1725 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1726 write_seqcount_begin(&tk_core.seq);
1727
1728 suspend_timing_needed = false;
1729
1730 timekeeping_forward_now(tk);
1731
1732 __timekeeping_inject_sleeptime(tk, delta);
1733
1734 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1735
1736 write_seqcount_end(&tk_core.seq);
1737 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1738
1739 /* signal hrtimers about time change */
1740 clock_was_set();
1741 }
1742 #endif
1743
1744 /**
1745 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1746 */
1747 void timekeeping_resume(void)
1748 {
1749 struct timekeeper *tk = &tk_core.timekeeper;
1750 struct clocksource *clock = tk->tkr_mono.clock;
1751 unsigned long flags;
1752 struct timespec64 ts_new, ts_delta;
1753 u64 cycle_now, nsec;
1754 bool inject_sleeptime = false;
1755
1756 read_persistent_clock64(&ts_new);
1757
1758 clockevents_resume();
1759 clocksource_resume();
1760
1761 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1762 write_seqcount_begin(&tk_core.seq);
1763
1764 /*
1765 * After system resumes, we need to calculate the suspended time and
1766 * compensate it for the OS time. There are 3 sources that could be
1767 * used: Nonstop clocksource during suspend, persistent clock and rtc
1768 * device.
1769 *
1770 * One specific platform may have 1 or 2 or all of them, and the
1771 * preference will be:
1772 * suspend-nonstop clocksource -> persistent clock -> rtc
1773 * The less preferred source will only be tried if there is no better
1774 * usable source. The rtc part is handled separately in rtc core code.
1775 */
1776 cycle_now = tk_clock_read(&tk->tkr_mono);
1777 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1778 if (nsec > 0) {
1779 ts_delta = ns_to_timespec64(nsec);
1780 inject_sleeptime = true;
1781 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1782 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1783 inject_sleeptime = true;
1784 }
1785
1786 if (inject_sleeptime) {
1787 suspend_timing_needed = false;
1788 __timekeeping_inject_sleeptime(tk, &ts_delta);
1789 }
1790
1791 /* Re-base the last cycle value */
1792 tk->tkr_mono.cycle_last = cycle_now;
1793 tk->tkr_raw.cycle_last = cycle_now;
1794
1795 tk->ntp_error = 0;
1796 timekeeping_suspended = 0;
1797 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1798 write_seqcount_end(&tk_core.seq);
1799 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1800
1801 touch_softlockup_watchdog();
1802
1803 tick_resume();
1804 hrtimers_resume();
1805 }
1806
1807 int timekeeping_suspend(void)
1808 {
1809 struct timekeeper *tk = &tk_core.timekeeper;
1810 unsigned long flags;
1811 struct timespec64 delta, delta_delta;
1812 static struct timespec64 old_delta;
1813 struct clocksource *curr_clock;
1814 u64 cycle_now;
1815
1816 read_persistent_clock64(&timekeeping_suspend_time);
1817
1818 /*
1819 * On some systems the persistent_clock can not be detected at
1820 * timekeeping_init by its return value, so if we see a valid
1821 * value returned, update the persistent_clock_exists flag.
1822 */
1823 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1824 persistent_clock_exists = true;
1825
1826 suspend_timing_needed = true;
1827
1828 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1829 write_seqcount_begin(&tk_core.seq);
1830 timekeeping_forward_now(tk);
1831 timekeeping_suspended = 1;
1832
1833 /*
1834 * Since we've called forward_now, cycle_last stores the value
1835 * just read from the current clocksource. Save this to potentially
1836 * use in suspend timing.
1837 */
1838 curr_clock = tk->tkr_mono.clock;
1839 cycle_now = tk->tkr_mono.cycle_last;
1840 clocksource_start_suspend_timing(curr_clock, cycle_now);
1841
1842 if (persistent_clock_exists) {
1843 /*
1844 * To avoid drift caused by repeated suspend/resumes,
1845 * which each can add ~1 second drift error,
1846 * try to compensate so the difference in system time
1847 * and persistent_clock time stays close to constant.
1848 */
1849 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1850 delta_delta = timespec64_sub(delta, old_delta);
1851 if (abs(delta_delta.tv_sec) >= 2) {
1852 /*
1853 * if delta_delta is too large, assume time correction
1854 * has occurred and set old_delta to the current delta.
1855 */
1856 old_delta = delta;
1857 } else {
1858 /* Otherwise try to adjust old_system to compensate */
1859 timekeeping_suspend_time =
1860 timespec64_add(timekeeping_suspend_time, delta_delta);
1861 }
1862 }
1863
1864 timekeeping_update(tk, TK_MIRROR);
1865 halt_fast_timekeeper(tk);
1866 write_seqcount_end(&tk_core.seq);
1867 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1868
1869 tick_suspend();
1870 clocksource_suspend();
1871 clockevents_suspend();
1872
1873 return 0;
1874 }
1875
1876 /* sysfs resume/suspend bits for timekeeping */
1877 static struct syscore_ops timekeeping_syscore_ops = {
1878 .resume = timekeeping_resume,
1879 .suspend = timekeeping_suspend,
1880 };
1881
1882 static int __init timekeeping_init_ops(void)
1883 {
1884 register_syscore_ops(&timekeeping_syscore_ops);
1885 return 0;
1886 }
1887 device_initcall(timekeeping_init_ops);
1888
1889 /*
1890 * Apply a multiplier adjustment to the timekeeper
1891 */
1892 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1893 s64 offset,
1894 s32 mult_adj)
1895 {
1896 s64 interval = tk->cycle_interval;
1897
1898 if (mult_adj == 0) {
1899 return;
1900 } else if (mult_adj == -1) {
1901 interval = -interval;
1902 offset = -offset;
1903 } else if (mult_adj != 1) {
1904 interval *= mult_adj;
1905 offset *= mult_adj;
1906 }
1907
1908 /*
1909 * So the following can be confusing.
1910 *
1911 * To keep things simple, lets assume mult_adj == 1 for now.
1912 *
1913 * When mult_adj != 1, remember that the interval and offset values
1914 * have been appropriately scaled so the math is the same.
1915 *
1916 * The basic idea here is that we're increasing the multiplier
1917 * by one, this causes the xtime_interval to be incremented by
1918 * one cycle_interval. This is because:
1919 * xtime_interval = cycle_interval * mult
1920 * So if mult is being incremented by one:
1921 * xtime_interval = cycle_interval * (mult + 1)
1922 * Its the same as:
1923 * xtime_interval = (cycle_interval * mult) + cycle_interval
1924 * Which can be shortened to:
1925 * xtime_interval += cycle_interval
1926 *
1927 * So offset stores the non-accumulated cycles. Thus the current
1928 * time (in shifted nanoseconds) is:
1929 * now = (offset * adj) + xtime_nsec
1930 * Now, even though we're adjusting the clock frequency, we have
1931 * to keep time consistent. In other words, we can't jump back
1932 * in time, and we also want to avoid jumping forward in time.
1933 *
1934 * So given the same offset value, we need the time to be the same
1935 * both before and after the freq adjustment.
1936 * now = (offset * adj_1) + xtime_nsec_1
1937 * now = (offset * adj_2) + xtime_nsec_2
1938 * So:
1939 * (offset * adj_1) + xtime_nsec_1 =
1940 * (offset * adj_2) + xtime_nsec_2
1941 * And we know:
1942 * adj_2 = adj_1 + 1
1943 * So:
1944 * (offset * adj_1) + xtime_nsec_1 =
1945 * (offset * (adj_1+1)) + xtime_nsec_2
1946 * (offset * adj_1) + xtime_nsec_1 =
1947 * (offset * adj_1) + offset + xtime_nsec_2
1948 * Canceling the sides:
1949 * xtime_nsec_1 = offset + xtime_nsec_2
1950 * Which gives us:
1951 * xtime_nsec_2 = xtime_nsec_1 - offset
1952 * Which simplfies to:
1953 * xtime_nsec -= offset
1954 */
1955 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1956 /* NTP adjustment caused clocksource mult overflow */
1957 WARN_ON_ONCE(1);
1958 return;
1959 }
1960
1961 tk->tkr_mono.mult += mult_adj;
1962 tk->xtime_interval += interval;
1963 tk->tkr_mono.xtime_nsec -= offset;
1964 }
1965
1966 /*
1967 * Adjust the timekeeper's multiplier to the correct frequency
1968 * and also to reduce the accumulated error value.
1969 */
1970 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1971 {
1972 u32 mult;
1973
1974 /*
1975 * Determine the multiplier from the current NTP tick length.
1976 * Avoid expensive division when the tick length doesn't change.
1977 */
1978 if (likely(tk->ntp_tick == ntp_tick_length())) {
1979 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1980 } else {
1981 tk->ntp_tick = ntp_tick_length();
1982 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1983 tk->xtime_remainder, tk->cycle_interval);
1984 }
1985
1986 /*
1987 * If the clock is behind the NTP time, increase the multiplier by 1
1988 * to catch up with it. If it's ahead and there was a remainder in the
1989 * tick division, the clock will slow down. Otherwise it will stay
1990 * ahead until the tick length changes to a non-divisible value.
1991 */
1992 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1993 mult += tk->ntp_err_mult;
1994
1995 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1996
1997 if (unlikely(tk->tkr_mono.clock->maxadj &&
1998 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1999 > tk->tkr_mono.clock->maxadj))) {
2000 printk_once(KERN_WARNING
2001 "Adjusting %s more than 11%% (%ld vs %ld)\n",
2002 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2003 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2004 }
2005
2006 /*
2007 * It may be possible that when we entered this function, xtime_nsec
2008 * was very small. Further, if we're slightly speeding the clocksource
2009 * in the code above, its possible the required corrective factor to
2010 * xtime_nsec could cause it to underflow.
2011 *
2012 * Now, since we have already accumulated the second and the NTP
2013 * subsystem has been notified via second_overflow(), we need to skip
2014 * the next update.
2015 */
2016 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2017 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2018 tk->tkr_mono.shift;
2019 tk->xtime_sec--;
2020 tk->skip_second_overflow = 1;
2021 }
2022 }
2023
2024 /*
2025 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2026 *
2027 * Helper function that accumulates the nsecs greater than a second
2028 * from the xtime_nsec field to the xtime_secs field.
2029 * It also calls into the NTP code to handle leapsecond processing.
2030 */
2031 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2032 {
2033 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2034 unsigned int clock_set = 0;
2035
2036 while (tk->tkr_mono.xtime_nsec >= nsecps) {
2037 int leap;
2038
2039 tk->tkr_mono.xtime_nsec -= nsecps;
2040 tk->xtime_sec++;
2041
2042 /*
2043 * Skip NTP update if this second was accumulated before,
2044 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2045 */
2046 if (unlikely(tk->skip_second_overflow)) {
2047 tk->skip_second_overflow = 0;
2048 continue;
2049 }
2050
2051 /* Figure out if its a leap sec and apply if needed */
2052 leap = second_overflow(tk->xtime_sec);
2053 if (unlikely(leap)) {
2054 struct timespec64 ts;
2055
2056 tk->xtime_sec += leap;
2057
2058 ts.tv_sec = leap;
2059 ts.tv_nsec = 0;
2060 tk_set_wall_to_mono(tk,
2061 timespec64_sub(tk->wall_to_monotonic, ts));
2062
2063 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2064
2065 clock_set = TK_CLOCK_WAS_SET;
2066 }
2067 }
2068 return clock_set;
2069 }
2070
2071 /*
2072 * logarithmic_accumulation - shifted accumulation of cycles
2073 *
2074 * This functions accumulates a shifted interval of cycles into
2075 * a shifted interval nanoseconds. Allows for O(log) accumulation
2076 * loop.
2077 *
2078 * Returns the unconsumed cycles.
2079 */
2080 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2081 u32 shift, unsigned int *clock_set)
2082 {
2083 u64 interval = tk->cycle_interval << shift;
2084 u64 snsec_per_sec;
2085
2086 /* If the offset is smaller than a shifted interval, do nothing */
2087 if (offset < interval)
2088 return offset;
2089
2090 /* Accumulate one shifted interval */
2091 offset -= interval;
2092 tk->tkr_mono.cycle_last += interval;
2093 tk->tkr_raw.cycle_last += interval;
2094
2095 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2096 *clock_set |= accumulate_nsecs_to_secs(tk);
2097
2098 /* Accumulate raw time */
2099 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2100 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2101 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2102 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2103 tk->raw_sec++;
2104 }
2105
2106 /* Accumulate error between NTP and clock interval */
2107 tk->ntp_error += tk->ntp_tick << shift;
2108 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2109 (tk->ntp_error_shift + shift);
2110
2111 return offset;
2112 }
2113
2114 /*
2115 * timekeeping_advance - Updates the timekeeper to the current time and
2116 * current NTP tick length
2117 */
2118 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2119 {
2120 struct timekeeper *real_tk = &tk_core.timekeeper;
2121 struct timekeeper *tk = &shadow_timekeeper;
2122 u64 offset;
2123 int shift = 0, maxshift;
2124 unsigned int clock_set = 0;
2125 unsigned long flags;
2126
2127 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2128
2129 /* Make sure we're fully resumed: */
2130 if (unlikely(timekeeping_suspended))
2131 goto out;
2132
2133 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2134 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2135
2136 /* Check if there's really nothing to do */
2137 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2138 goto out;
2139
2140 /* Do some additional sanity checking */
2141 timekeeping_check_update(tk, offset);
2142
2143 /*
2144 * With NO_HZ we may have to accumulate many cycle_intervals
2145 * (think "ticks") worth of time at once. To do this efficiently,
2146 * we calculate the largest doubling multiple of cycle_intervals
2147 * that is smaller than the offset. We then accumulate that
2148 * chunk in one go, and then try to consume the next smaller
2149 * doubled multiple.
2150 */
2151 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2152 shift = max(0, shift);
2153 /* Bound shift to one less than what overflows tick_length */
2154 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2155 shift = min(shift, maxshift);
2156 while (offset >= tk->cycle_interval) {
2157 offset = logarithmic_accumulation(tk, offset, shift,
2158 &clock_set);
2159 if (offset < tk->cycle_interval<<shift)
2160 shift--;
2161 }
2162
2163 /* Adjust the multiplier to correct NTP error */
2164 timekeeping_adjust(tk, offset);
2165
2166 /*
2167 * Finally, make sure that after the rounding
2168 * xtime_nsec isn't larger than NSEC_PER_SEC
2169 */
2170 clock_set |= accumulate_nsecs_to_secs(tk);
2171
2172 write_seqcount_begin(&tk_core.seq);
2173 /*
2174 * Update the real timekeeper.
2175 *
2176 * We could avoid this memcpy by switching pointers, but that
2177 * requires changes to all other timekeeper usage sites as
2178 * well, i.e. move the timekeeper pointer getter into the
2179 * spinlocked/seqcount protected sections. And we trade this
2180 * memcpy under the tk_core.seq against one before we start
2181 * updating.
2182 */
2183 timekeeping_update(tk, clock_set);
2184 memcpy(real_tk, tk, sizeof(*tk));
2185 /* The memcpy must come last. Do not put anything here! */
2186 write_seqcount_end(&tk_core.seq);
2187 out:
2188 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2189 if (clock_set)
2190 /* Have to call _delayed version, since in irq context*/
2191 clock_was_set_delayed();
2192 }
2193
2194 /**
2195 * update_wall_time - Uses the current clocksource to increment the wall time
2196 *
2197 */
2198 void update_wall_time(void)
2199 {
2200 timekeeping_advance(TK_ADV_TICK);
2201 }
2202
2203 /**
2204 * getboottime64 - Return the real time of system boot.
2205 * @ts: pointer to the timespec64 to be set
2206 *
2207 * Returns the wall-time of boot in a timespec64.
2208 *
2209 * This is based on the wall_to_monotonic offset and the total suspend
2210 * time. Calls to settimeofday will affect the value returned (which
2211 * basically means that however wrong your real time clock is at boot time,
2212 * you get the right time here).
2213 */
2214 void getboottime64(struct timespec64 *ts)
2215 {
2216 struct timekeeper *tk = &tk_core.timekeeper;
2217 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2218
2219 *ts = ktime_to_timespec64(t);
2220 }
2221 EXPORT_SYMBOL_GPL(getboottime64);
2222
2223 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2224 {
2225 struct timekeeper *tk = &tk_core.timekeeper;
2226 unsigned int seq;
2227
2228 do {
2229 seq = read_seqcount_begin(&tk_core.seq);
2230
2231 *ts = tk_xtime(tk);
2232 } while (read_seqcount_retry(&tk_core.seq, seq));
2233 }
2234 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2235
2236 void ktime_get_coarse_ts64(struct timespec64 *ts)
2237 {
2238 struct timekeeper *tk = &tk_core.timekeeper;
2239 struct timespec64 now, mono;
2240 unsigned int seq;
2241
2242 do {
2243 seq = read_seqcount_begin(&tk_core.seq);
2244
2245 now = tk_xtime(tk);
2246 mono = tk->wall_to_monotonic;
2247 } while (read_seqcount_retry(&tk_core.seq, seq));
2248
2249 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2250 now.tv_nsec + mono.tv_nsec);
2251 }
2252 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2253
2254 /*
2255 * Must hold jiffies_lock
2256 */
2257 void do_timer(unsigned long ticks)
2258 {
2259 jiffies_64 += ticks;
2260 calc_global_load();
2261 }
2262
2263 /**
2264 * ktime_get_update_offsets_now - hrtimer helper
2265 * @cwsseq: pointer to check and store the clock was set sequence number
2266 * @offs_real: pointer to storage for monotonic -> realtime offset
2267 * @offs_boot: pointer to storage for monotonic -> boottime offset
2268 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2269 *
2270 * Returns current monotonic time and updates the offsets if the
2271 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2272 * different.
2273 *
2274 * Called from hrtimer_interrupt() or retrigger_next_event()
2275 */
2276 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2277 ktime_t *offs_boot, ktime_t *offs_tai)
2278 {
2279 struct timekeeper *tk = &tk_core.timekeeper;
2280 unsigned int seq;
2281 ktime_t base;
2282 u64 nsecs;
2283
2284 do {
2285 seq = read_seqcount_begin(&tk_core.seq);
2286
2287 base = tk->tkr_mono.base;
2288 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2289 base = ktime_add_ns(base, nsecs);
2290
2291 if (*cwsseq != tk->clock_was_set_seq) {
2292 *cwsseq = tk->clock_was_set_seq;
2293 *offs_real = tk->offs_real;
2294 *offs_boot = tk->offs_boot;
2295 *offs_tai = tk->offs_tai;
2296 }
2297
2298 /* Handle leapsecond insertion adjustments */
2299 if (unlikely(base >= tk->next_leap_ktime))
2300 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2301
2302 } while (read_seqcount_retry(&tk_core.seq, seq));
2303
2304 return base;
2305 }
2306
2307 /*
2308 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2309 */
2310 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2311 {
2312 if (txc->modes & ADJ_ADJTIME) {
2313 /* singleshot must not be used with any other mode bits */
2314 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2315 return -EINVAL;
2316 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2317 !capable(CAP_SYS_TIME))
2318 return -EPERM;
2319 } else {
2320 /* In order to modify anything, you gotta be super-user! */
2321 if (txc->modes && !capable(CAP_SYS_TIME))
2322 return -EPERM;
2323 /*
2324 * if the quartz is off by more than 10% then
2325 * something is VERY wrong!
2326 */
2327 if (txc->modes & ADJ_TICK &&
2328 (txc->tick < 900000/USER_HZ ||
2329 txc->tick > 1100000/USER_HZ))
2330 return -EINVAL;
2331 }
2332
2333 if (txc->modes & ADJ_SETOFFSET) {
2334 /* In order to inject time, you gotta be super-user! */
2335 if (!capable(CAP_SYS_TIME))
2336 return -EPERM;
2337
2338 /*
2339 * Validate if a timespec/timeval used to inject a time
2340 * offset is valid. Offsets can be postive or negative, so
2341 * we don't check tv_sec. The value of the timeval/timespec
2342 * is the sum of its fields,but *NOTE*:
2343 * The field tv_usec/tv_nsec must always be non-negative and
2344 * we can't have more nanoseconds/microseconds than a second.
2345 */
2346 if (txc->time.tv_usec < 0)
2347 return -EINVAL;
2348
2349 if (txc->modes & ADJ_NANO) {
2350 if (txc->time.tv_usec >= NSEC_PER_SEC)
2351 return -EINVAL;
2352 } else {
2353 if (txc->time.tv_usec >= USEC_PER_SEC)
2354 return -EINVAL;
2355 }
2356 }
2357
2358 /*
2359 * Check for potential multiplication overflows that can
2360 * only happen on 64-bit systems:
2361 */
2362 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2363 if (LLONG_MIN / PPM_SCALE > txc->freq)
2364 return -EINVAL;
2365 if (LLONG_MAX / PPM_SCALE < txc->freq)
2366 return -EINVAL;
2367 }
2368
2369 return 0;
2370 }
2371
2372
2373 /**
2374 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2375 */
2376 int do_adjtimex(struct __kernel_timex *txc)
2377 {
2378 struct timekeeper *tk = &tk_core.timekeeper;
2379 struct audit_ntp_data ad;
2380 unsigned long flags;
2381 struct timespec64 ts;
2382 s32 orig_tai, tai;
2383 int ret;
2384
2385 /* Validate the data before disabling interrupts */
2386 ret = timekeeping_validate_timex(txc);
2387 if (ret)
2388 return ret;
2389
2390 if (txc->modes & ADJ_SETOFFSET) {
2391 struct timespec64 delta;
2392 delta.tv_sec = txc->time.tv_sec;
2393 delta.tv_nsec = txc->time.tv_usec;
2394 if (!(txc->modes & ADJ_NANO))
2395 delta.tv_nsec *= 1000;
2396 ret = timekeeping_inject_offset(&delta);
2397 if (ret)
2398 return ret;
2399
2400 audit_tk_injoffset(delta);
2401 }
2402
2403 audit_ntp_init(&ad);
2404
2405 ktime_get_real_ts64(&ts);
2406
2407 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2408 write_seqcount_begin(&tk_core.seq);
2409
2410 orig_tai = tai = tk->tai_offset;
2411 ret = __do_adjtimex(txc, &ts, &tai, &ad);
2412
2413 if (tai != orig_tai) {
2414 __timekeeping_set_tai_offset(tk, tai);
2415 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2416 }
2417 tk_update_leap_state(tk);
2418
2419 write_seqcount_end(&tk_core.seq);
2420 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2421
2422 audit_ntp_log(&ad);
2423
2424 /* Update the multiplier immediately if frequency was set directly */
2425 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2426 timekeeping_advance(TK_ADV_FREQ);
2427
2428 if (tai != orig_tai)
2429 clock_was_set();
2430
2431 ntp_notify_cmos_timer();
2432
2433 return ret;
2434 }
2435
2436 #ifdef CONFIG_NTP_PPS
2437 /**
2438 * hardpps() - Accessor function to NTP __hardpps function
2439 */
2440 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2441 {
2442 unsigned long flags;
2443
2444 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2445 write_seqcount_begin(&tk_core.seq);
2446
2447 __hardpps(phase_ts, raw_ts);
2448
2449 write_seqcount_end(&tk_core.seq);
2450 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2451 }
2452 EXPORT_SYMBOL(hardpps);
2453 #endif /* CONFIG_NTP_PPS */