]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/time/timekeeping.c
Merge branch 'exec-update-lock-for-v5.11' of git://git.kernel.org/pub/scm/linux/kerne...
[mirror_ubuntu-hirsute-kernel.git] / kernel / time / timekeeping.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
5 */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
24 #include <linux/audit.h>
25
26 #include "tick-internal.h"
27 #include "ntp_internal.h"
28 #include "timekeeping_internal.h"
29
30 #define TK_CLEAR_NTP (1 << 0)
31 #define TK_MIRROR (1 << 1)
32 #define TK_CLOCK_WAS_SET (1 << 2)
33
34 enum timekeeping_adv_mode {
35 /* Update timekeeper when a tick has passed */
36 TK_ADV_TICK,
37
38 /* Update timekeeper on a direct frequency change */
39 TK_ADV_FREQ
40 };
41
42 DEFINE_RAW_SPINLOCK(timekeeper_lock);
43
44 /*
45 * The most important data for readout fits into a single 64 byte
46 * cache line.
47 */
48 static struct {
49 seqcount_raw_spinlock_t seq;
50 struct timekeeper timekeeper;
51 } tk_core ____cacheline_aligned = {
52 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
53 };
54
55 static struct timekeeper shadow_timekeeper;
56
57 /* flag for if timekeeping is suspended */
58 int __read_mostly timekeeping_suspended;
59
60 /**
61 * struct tk_fast - NMI safe timekeeper
62 * @seq: Sequence counter for protecting updates. The lowest bit
63 * is the index for the tk_read_base array
64 * @base: tk_read_base array. Access is indexed by the lowest bit of
65 * @seq.
66 *
67 * See @update_fast_timekeeper() below.
68 */
69 struct tk_fast {
70 seqcount_latch_t seq;
71 struct tk_read_base base[2];
72 };
73
74 /* Suspend-time cycles value for halted fast timekeeper. */
75 static u64 cycles_at_suspend;
76
77 static u64 dummy_clock_read(struct clocksource *cs)
78 {
79 if (timekeeping_suspended)
80 return cycles_at_suspend;
81 return local_clock();
82 }
83
84 static struct clocksource dummy_clock = {
85 .read = dummy_clock_read,
86 };
87
88 /*
89 * Boot time initialization which allows local_clock() to be utilized
90 * during early boot when clocksources are not available. local_clock()
91 * returns nanoseconds already so no conversion is required, hence mult=1
92 * and shift=0. When the first proper clocksource is installed then
93 * the fast time keepers are updated with the correct values.
94 */
95 #define FAST_TK_INIT \
96 { \
97 .clock = &dummy_clock, \
98 .mask = CLOCKSOURCE_MASK(64), \
99 .mult = 1, \
100 .shift = 0, \
101 }
102
103 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
104 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
105 .base[0] = FAST_TK_INIT,
106 .base[1] = FAST_TK_INIT,
107 };
108
109 static struct tk_fast tk_fast_raw ____cacheline_aligned = {
110 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
111 .base[0] = FAST_TK_INIT,
112 .base[1] = FAST_TK_INIT,
113 };
114
115 static inline void tk_normalize_xtime(struct timekeeper *tk)
116 {
117 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
118 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
119 tk->xtime_sec++;
120 }
121 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
122 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
123 tk->raw_sec++;
124 }
125 }
126
127 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
128 {
129 struct timespec64 ts;
130
131 ts.tv_sec = tk->xtime_sec;
132 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
133 return ts;
134 }
135
136 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
137 {
138 tk->xtime_sec = ts->tv_sec;
139 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
140 }
141
142 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
143 {
144 tk->xtime_sec += ts->tv_sec;
145 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
146 tk_normalize_xtime(tk);
147 }
148
149 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
150 {
151 struct timespec64 tmp;
152
153 /*
154 * Verify consistency of: offset_real = -wall_to_monotonic
155 * before modifying anything
156 */
157 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
158 -tk->wall_to_monotonic.tv_nsec);
159 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
160 tk->wall_to_monotonic = wtm;
161 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
162 tk->offs_real = timespec64_to_ktime(tmp);
163 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
164 }
165
166 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
167 {
168 tk->offs_boot = ktime_add(tk->offs_boot, delta);
169 /*
170 * Timespec representation for VDSO update to avoid 64bit division
171 * on every update.
172 */
173 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
174 }
175
176 /*
177 * tk_clock_read - atomic clocksource read() helper
178 *
179 * This helper is necessary to use in the read paths because, while the
180 * seqcount ensures we don't return a bad value while structures are updated,
181 * it doesn't protect from potential crashes. There is the possibility that
182 * the tkr's clocksource may change between the read reference, and the
183 * clock reference passed to the read function. This can cause crashes if
184 * the wrong clocksource is passed to the wrong read function.
185 * This isn't necessary to use when holding the timekeeper_lock or doing
186 * a read of the fast-timekeeper tkrs (which is protected by its own locking
187 * and update logic).
188 */
189 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
190 {
191 struct clocksource *clock = READ_ONCE(tkr->clock);
192
193 return clock->read(clock);
194 }
195
196 #ifdef CONFIG_DEBUG_TIMEKEEPING
197 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
198
199 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
200 {
201
202 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
203 const char *name = tk->tkr_mono.clock->name;
204
205 if (offset > max_cycles) {
206 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
207 offset, name, max_cycles);
208 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
209 } else {
210 if (offset > (max_cycles >> 1)) {
211 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
212 offset, name, max_cycles >> 1);
213 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
214 }
215 }
216
217 if (tk->underflow_seen) {
218 if (jiffies - tk->last_warning > WARNING_FREQ) {
219 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
220 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
221 printk_deferred(" Your kernel is probably still fine.\n");
222 tk->last_warning = jiffies;
223 }
224 tk->underflow_seen = 0;
225 }
226
227 if (tk->overflow_seen) {
228 if (jiffies - tk->last_warning > WARNING_FREQ) {
229 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
230 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
231 printk_deferred(" Your kernel is probably still fine.\n");
232 tk->last_warning = jiffies;
233 }
234 tk->overflow_seen = 0;
235 }
236 }
237
238 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
239 {
240 struct timekeeper *tk = &tk_core.timekeeper;
241 u64 now, last, mask, max, delta;
242 unsigned int seq;
243
244 /*
245 * Since we're called holding a seqcount, the data may shift
246 * under us while we're doing the calculation. This can cause
247 * false positives, since we'd note a problem but throw the
248 * results away. So nest another seqcount here to atomically
249 * grab the points we are checking with.
250 */
251 do {
252 seq = read_seqcount_begin(&tk_core.seq);
253 now = tk_clock_read(tkr);
254 last = tkr->cycle_last;
255 mask = tkr->mask;
256 max = tkr->clock->max_cycles;
257 } while (read_seqcount_retry(&tk_core.seq, seq));
258
259 delta = clocksource_delta(now, last, mask);
260
261 /*
262 * Try to catch underflows by checking if we are seeing small
263 * mask-relative negative values.
264 */
265 if (unlikely((~delta & mask) < (mask >> 3))) {
266 tk->underflow_seen = 1;
267 delta = 0;
268 }
269
270 /* Cap delta value to the max_cycles values to avoid mult overflows */
271 if (unlikely(delta > max)) {
272 tk->overflow_seen = 1;
273 delta = tkr->clock->max_cycles;
274 }
275
276 return delta;
277 }
278 #else
279 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
280 {
281 }
282 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
283 {
284 u64 cycle_now, delta;
285
286 /* read clocksource */
287 cycle_now = tk_clock_read(tkr);
288
289 /* calculate the delta since the last update_wall_time */
290 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
291
292 return delta;
293 }
294 #endif
295
296 /**
297 * tk_setup_internals - Set up internals to use clocksource clock.
298 *
299 * @tk: The target timekeeper to setup.
300 * @clock: Pointer to clocksource.
301 *
302 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
303 * pair and interval request.
304 *
305 * Unless you're the timekeeping code, you should not be using this!
306 */
307 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
308 {
309 u64 interval;
310 u64 tmp, ntpinterval;
311 struct clocksource *old_clock;
312
313 ++tk->cs_was_changed_seq;
314 old_clock = tk->tkr_mono.clock;
315 tk->tkr_mono.clock = clock;
316 tk->tkr_mono.mask = clock->mask;
317 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
318
319 tk->tkr_raw.clock = clock;
320 tk->tkr_raw.mask = clock->mask;
321 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
322
323 /* Do the ns -> cycle conversion first, using original mult */
324 tmp = NTP_INTERVAL_LENGTH;
325 tmp <<= clock->shift;
326 ntpinterval = tmp;
327 tmp += clock->mult/2;
328 do_div(tmp, clock->mult);
329 if (tmp == 0)
330 tmp = 1;
331
332 interval = (u64) tmp;
333 tk->cycle_interval = interval;
334
335 /* Go back from cycles -> shifted ns */
336 tk->xtime_interval = interval * clock->mult;
337 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
338 tk->raw_interval = interval * clock->mult;
339
340 /* if changing clocks, convert xtime_nsec shift units */
341 if (old_clock) {
342 int shift_change = clock->shift - old_clock->shift;
343 if (shift_change < 0) {
344 tk->tkr_mono.xtime_nsec >>= -shift_change;
345 tk->tkr_raw.xtime_nsec >>= -shift_change;
346 } else {
347 tk->tkr_mono.xtime_nsec <<= shift_change;
348 tk->tkr_raw.xtime_nsec <<= shift_change;
349 }
350 }
351
352 tk->tkr_mono.shift = clock->shift;
353 tk->tkr_raw.shift = clock->shift;
354
355 tk->ntp_error = 0;
356 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
357 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
358
359 /*
360 * The timekeeper keeps its own mult values for the currently
361 * active clocksource. These value will be adjusted via NTP
362 * to counteract clock drifting.
363 */
364 tk->tkr_mono.mult = clock->mult;
365 tk->tkr_raw.mult = clock->mult;
366 tk->ntp_err_mult = 0;
367 tk->skip_second_overflow = 0;
368 }
369
370 /* Timekeeper helper functions. */
371
372 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
373 static u32 default_arch_gettimeoffset(void) { return 0; }
374 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
375 #else
376 static inline u32 arch_gettimeoffset(void) { return 0; }
377 #endif
378
379 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
380 {
381 u64 nsec;
382
383 nsec = delta * tkr->mult + tkr->xtime_nsec;
384 nsec >>= tkr->shift;
385
386 /* If arch requires, add in get_arch_timeoffset() */
387 return nsec + arch_gettimeoffset();
388 }
389
390 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
391 {
392 u64 delta;
393
394 delta = timekeeping_get_delta(tkr);
395 return timekeeping_delta_to_ns(tkr, delta);
396 }
397
398 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
399 {
400 u64 delta;
401
402 /* calculate the delta since the last update_wall_time */
403 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
404 return timekeeping_delta_to_ns(tkr, delta);
405 }
406
407 /**
408 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
409 * @tkr: Timekeeping readout base from which we take the update
410 * @tkf: Pointer to NMI safe timekeeper
411 *
412 * We want to use this from any context including NMI and tracing /
413 * instrumenting the timekeeping code itself.
414 *
415 * Employ the latch technique; see @raw_write_seqcount_latch.
416 *
417 * So if a NMI hits the update of base[0] then it will use base[1]
418 * which is still consistent. In the worst case this can result is a
419 * slightly wrong timestamp (a few nanoseconds). See
420 * @ktime_get_mono_fast_ns.
421 */
422 static void update_fast_timekeeper(const struct tk_read_base *tkr,
423 struct tk_fast *tkf)
424 {
425 struct tk_read_base *base = tkf->base;
426
427 /* Force readers off to base[1] */
428 raw_write_seqcount_latch(&tkf->seq);
429
430 /* Update base[0] */
431 memcpy(base, tkr, sizeof(*base));
432
433 /* Force readers back to base[0] */
434 raw_write_seqcount_latch(&tkf->seq);
435
436 /* Update base[1] */
437 memcpy(base + 1, base, sizeof(*base));
438 }
439
440 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
441 {
442 struct tk_read_base *tkr;
443 unsigned int seq;
444 u64 now;
445
446 do {
447 seq = raw_read_seqcount_latch(&tkf->seq);
448 tkr = tkf->base + (seq & 0x01);
449 now = ktime_to_ns(tkr->base);
450
451 now += timekeeping_delta_to_ns(tkr,
452 clocksource_delta(
453 tk_clock_read(tkr),
454 tkr->cycle_last,
455 tkr->mask));
456 } while (read_seqcount_latch_retry(&tkf->seq, seq));
457
458 return now;
459 }
460
461 /**
462 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
463 *
464 * This timestamp is not guaranteed to be monotonic across an update.
465 * The timestamp is calculated by:
466 *
467 * now = base_mono + clock_delta * slope
468 *
469 * So if the update lowers the slope, readers who are forced to the
470 * not yet updated second array are still using the old steeper slope.
471 *
472 * tmono
473 * ^
474 * | o n
475 * | o n
476 * | u
477 * | o
478 * |o
479 * |12345678---> reader order
480 *
481 * o = old slope
482 * u = update
483 * n = new slope
484 *
485 * So reader 6 will observe time going backwards versus reader 5.
486 *
487 * While other CPUs are likely to be able to observe that, the only way
488 * for a CPU local observation is when an NMI hits in the middle of
489 * the update. Timestamps taken from that NMI context might be ahead
490 * of the following timestamps. Callers need to be aware of that and
491 * deal with it.
492 */
493 u64 ktime_get_mono_fast_ns(void)
494 {
495 return __ktime_get_fast_ns(&tk_fast_mono);
496 }
497 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
498
499 /**
500 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
501 *
502 * Contrary to ktime_get_mono_fast_ns() this is always correct because the
503 * conversion factor is not affected by NTP/PTP correction.
504 */
505 u64 ktime_get_raw_fast_ns(void)
506 {
507 return __ktime_get_fast_ns(&tk_fast_raw);
508 }
509 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
510
511 /**
512 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
513 *
514 * To keep it NMI safe since we're accessing from tracing, we're not using a
515 * separate timekeeper with updates to monotonic clock and boot offset
516 * protected with seqcounts. This has the following minor side effects:
517 *
518 * (1) Its possible that a timestamp be taken after the boot offset is updated
519 * but before the timekeeper is updated. If this happens, the new boot offset
520 * is added to the old timekeeping making the clock appear to update slightly
521 * earlier:
522 * CPU 0 CPU 1
523 * timekeeping_inject_sleeptime64()
524 * __timekeeping_inject_sleeptime(tk, delta);
525 * timestamp();
526 * timekeeping_update(tk, TK_CLEAR_NTP...);
527 *
528 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
529 * partially updated. Since the tk->offs_boot update is a rare event, this
530 * should be a rare occurrence which postprocessing should be able to handle.
531 *
532 * The caveats vs. timestamp ordering as documented for ktime_get_fast_ns()
533 * apply as well.
534 */
535 u64 notrace ktime_get_boot_fast_ns(void)
536 {
537 struct timekeeper *tk = &tk_core.timekeeper;
538
539 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
540 }
541 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
542
543 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
544 {
545 struct tk_read_base *tkr;
546 u64 basem, baser, delta;
547 unsigned int seq;
548
549 do {
550 seq = raw_read_seqcount_latch(&tkf->seq);
551 tkr = tkf->base + (seq & 0x01);
552 basem = ktime_to_ns(tkr->base);
553 baser = ktime_to_ns(tkr->base_real);
554
555 delta = timekeeping_delta_to_ns(tkr,
556 clocksource_delta(tk_clock_read(tkr),
557 tkr->cycle_last, tkr->mask));
558 } while (read_seqcount_latch_retry(&tkf->seq, seq));
559
560 if (mono)
561 *mono = basem + delta;
562 return baser + delta;
563 }
564
565 /**
566 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
567 *
568 * See ktime_get_fast_ns() for documentation of the time stamp ordering.
569 */
570 u64 ktime_get_real_fast_ns(void)
571 {
572 return __ktime_get_real_fast(&tk_fast_mono, NULL);
573 }
574 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
575
576 /**
577 * ktime_get_fast_timestamps: - NMI safe timestamps
578 * @snapshot: Pointer to timestamp storage
579 *
580 * Stores clock monotonic, boottime and realtime timestamps.
581 *
582 * Boot time is a racy access on 32bit systems if the sleep time injection
583 * happens late during resume and not in timekeeping_resume(). That could
584 * be avoided by expanding struct tk_read_base with boot offset for 32bit
585 * and adding more overhead to the update. As this is a hard to observe
586 * once per resume event which can be filtered with reasonable effort using
587 * the accurate mono/real timestamps, it's probably not worth the trouble.
588 *
589 * Aside of that it might be possible on 32 and 64 bit to observe the
590 * following when the sleep time injection happens late:
591 *
592 * CPU 0 CPU 1
593 * timekeeping_resume()
594 * ktime_get_fast_timestamps()
595 * mono, real = __ktime_get_real_fast()
596 * inject_sleep_time()
597 * update boot offset
598 * boot = mono + bootoffset;
599 *
600 * That means that boot time already has the sleep time adjustment, but
601 * real time does not. On the next readout both are in sync again.
602 *
603 * Preventing this for 64bit is not really feasible without destroying the
604 * careful cache layout of the timekeeper because the sequence count and
605 * struct tk_read_base would then need two cache lines instead of one.
606 *
607 * Access to the time keeper clock source is disabled accross the innermost
608 * steps of suspend/resume. The accessors still work, but the timestamps
609 * are frozen until time keeping is resumed which happens very early.
610 *
611 * For regular suspend/resume there is no observable difference vs. sched
612 * clock, but it might affect some of the nasty low level debug printks.
613 *
614 * OTOH, access to sched clock is not guaranteed accross suspend/resume on
615 * all systems either so it depends on the hardware in use.
616 *
617 * If that turns out to be a real problem then this could be mitigated by
618 * using sched clock in a similar way as during early boot. But it's not as
619 * trivial as on early boot because it needs some careful protection
620 * against the clock monotonic timestamp jumping backwards on resume.
621 */
622 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
623 {
624 struct timekeeper *tk = &tk_core.timekeeper;
625
626 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
627 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
628 }
629
630 /**
631 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
632 * @tk: Timekeeper to snapshot.
633 *
634 * It generally is unsafe to access the clocksource after timekeeping has been
635 * suspended, so take a snapshot of the readout base of @tk and use it as the
636 * fast timekeeper's readout base while suspended. It will return the same
637 * number of cycles every time until timekeeping is resumed at which time the
638 * proper readout base for the fast timekeeper will be restored automatically.
639 */
640 static void halt_fast_timekeeper(const struct timekeeper *tk)
641 {
642 static struct tk_read_base tkr_dummy;
643 const struct tk_read_base *tkr = &tk->tkr_mono;
644
645 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
646 cycles_at_suspend = tk_clock_read(tkr);
647 tkr_dummy.clock = &dummy_clock;
648 tkr_dummy.base_real = tkr->base + tk->offs_real;
649 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
650
651 tkr = &tk->tkr_raw;
652 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
653 tkr_dummy.clock = &dummy_clock;
654 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
655 }
656
657 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
658
659 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
660 {
661 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
662 }
663
664 /**
665 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
666 * @nb: Pointer to the notifier block to register
667 */
668 int pvclock_gtod_register_notifier(struct notifier_block *nb)
669 {
670 struct timekeeper *tk = &tk_core.timekeeper;
671 unsigned long flags;
672 int ret;
673
674 raw_spin_lock_irqsave(&timekeeper_lock, flags);
675 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
676 update_pvclock_gtod(tk, true);
677 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
678
679 return ret;
680 }
681 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
682
683 /**
684 * pvclock_gtod_unregister_notifier - unregister a pvclock
685 * timedata update listener
686 * @nb: Pointer to the notifier block to unregister
687 */
688 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
689 {
690 unsigned long flags;
691 int ret;
692
693 raw_spin_lock_irqsave(&timekeeper_lock, flags);
694 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
695 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
696
697 return ret;
698 }
699 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
700
701 /*
702 * tk_update_leap_state - helper to update the next_leap_ktime
703 */
704 static inline void tk_update_leap_state(struct timekeeper *tk)
705 {
706 tk->next_leap_ktime = ntp_get_next_leap();
707 if (tk->next_leap_ktime != KTIME_MAX)
708 /* Convert to monotonic time */
709 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
710 }
711
712 /*
713 * Update the ktime_t based scalar nsec members of the timekeeper
714 */
715 static inline void tk_update_ktime_data(struct timekeeper *tk)
716 {
717 u64 seconds;
718 u32 nsec;
719
720 /*
721 * The xtime based monotonic readout is:
722 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
723 * The ktime based monotonic readout is:
724 * nsec = base_mono + now();
725 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
726 */
727 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
728 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
729 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
730
731 /*
732 * The sum of the nanoseconds portions of xtime and
733 * wall_to_monotonic can be greater/equal one second. Take
734 * this into account before updating tk->ktime_sec.
735 */
736 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
737 if (nsec >= NSEC_PER_SEC)
738 seconds++;
739 tk->ktime_sec = seconds;
740
741 /* Update the monotonic raw base */
742 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
743 }
744
745 /* must hold timekeeper_lock */
746 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
747 {
748 if (action & TK_CLEAR_NTP) {
749 tk->ntp_error = 0;
750 ntp_clear();
751 }
752
753 tk_update_leap_state(tk);
754 tk_update_ktime_data(tk);
755
756 update_vsyscall(tk);
757 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
758
759 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
760 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
761 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
762
763 if (action & TK_CLOCK_WAS_SET)
764 tk->clock_was_set_seq++;
765 /*
766 * The mirroring of the data to the shadow-timekeeper needs
767 * to happen last here to ensure we don't over-write the
768 * timekeeper structure on the next update with stale data
769 */
770 if (action & TK_MIRROR)
771 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
772 sizeof(tk_core.timekeeper));
773 }
774
775 /**
776 * timekeeping_forward_now - update clock to the current time
777 * @tk: Pointer to the timekeeper to update
778 *
779 * Forward the current clock to update its state since the last call to
780 * update_wall_time(). This is useful before significant clock changes,
781 * as it avoids having to deal with this time offset explicitly.
782 */
783 static void timekeeping_forward_now(struct timekeeper *tk)
784 {
785 u64 cycle_now, delta;
786
787 cycle_now = tk_clock_read(&tk->tkr_mono);
788 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
789 tk->tkr_mono.cycle_last = cycle_now;
790 tk->tkr_raw.cycle_last = cycle_now;
791
792 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
793
794 /* If arch requires, add in get_arch_timeoffset() */
795 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
796
797
798 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
799
800 /* If arch requires, add in get_arch_timeoffset() */
801 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
802
803 tk_normalize_xtime(tk);
804 }
805
806 /**
807 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
808 * @ts: pointer to the timespec to be set
809 *
810 * Returns the time of day in a timespec64 (WARN if suspended).
811 */
812 void ktime_get_real_ts64(struct timespec64 *ts)
813 {
814 struct timekeeper *tk = &tk_core.timekeeper;
815 unsigned int seq;
816 u64 nsecs;
817
818 WARN_ON(timekeeping_suspended);
819
820 do {
821 seq = read_seqcount_begin(&tk_core.seq);
822
823 ts->tv_sec = tk->xtime_sec;
824 nsecs = timekeeping_get_ns(&tk->tkr_mono);
825
826 } while (read_seqcount_retry(&tk_core.seq, seq));
827
828 ts->tv_nsec = 0;
829 timespec64_add_ns(ts, nsecs);
830 }
831 EXPORT_SYMBOL(ktime_get_real_ts64);
832
833 ktime_t ktime_get(void)
834 {
835 struct timekeeper *tk = &tk_core.timekeeper;
836 unsigned int seq;
837 ktime_t base;
838 u64 nsecs;
839
840 WARN_ON(timekeeping_suspended);
841
842 do {
843 seq = read_seqcount_begin(&tk_core.seq);
844 base = tk->tkr_mono.base;
845 nsecs = timekeeping_get_ns(&tk->tkr_mono);
846
847 } while (read_seqcount_retry(&tk_core.seq, seq));
848
849 return ktime_add_ns(base, nsecs);
850 }
851 EXPORT_SYMBOL_GPL(ktime_get);
852
853 u32 ktime_get_resolution_ns(void)
854 {
855 struct timekeeper *tk = &tk_core.timekeeper;
856 unsigned int seq;
857 u32 nsecs;
858
859 WARN_ON(timekeeping_suspended);
860
861 do {
862 seq = read_seqcount_begin(&tk_core.seq);
863 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
864 } while (read_seqcount_retry(&tk_core.seq, seq));
865
866 return nsecs;
867 }
868 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
869
870 static ktime_t *offsets[TK_OFFS_MAX] = {
871 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
872 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
873 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
874 };
875
876 ktime_t ktime_get_with_offset(enum tk_offsets offs)
877 {
878 struct timekeeper *tk = &tk_core.timekeeper;
879 unsigned int seq;
880 ktime_t base, *offset = offsets[offs];
881 u64 nsecs;
882
883 WARN_ON(timekeeping_suspended);
884
885 do {
886 seq = read_seqcount_begin(&tk_core.seq);
887 base = ktime_add(tk->tkr_mono.base, *offset);
888 nsecs = timekeeping_get_ns(&tk->tkr_mono);
889
890 } while (read_seqcount_retry(&tk_core.seq, seq));
891
892 return ktime_add_ns(base, nsecs);
893
894 }
895 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
896
897 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
898 {
899 struct timekeeper *tk = &tk_core.timekeeper;
900 unsigned int seq;
901 ktime_t base, *offset = offsets[offs];
902 u64 nsecs;
903
904 WARN_ON(timekeeping_suspended);
905
906 do {
907 seq = read_seqcount_begin(&tk_core.seq);
908 base = ktime_add(tk->tkr_mono.base, *offset);
909 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
910
911 } while (read_seqcount_retry(&tk_core.seq, seq));
912
913 return ktime_add_ns(base, nsecs);
914 }
915 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
916
917 /**
918 * ktime_mono_to_any() - convert mononotic time to any other time
919 * @tmono: time to convert.
920 * @offs: which offset to use
921 */
922 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
923 {
924 ktime_t *offset = offsets[offs];
925 unsigned int seq;
926 ktime_t tconv;
927
928 do {
929 seq = read_seqcount_begin(&tk_core.seq);
930 tconv = ktime_add(tmono, *offset);
931 } while (read_seqcount_retry(&tk_core.seq, seq));
932
933 return tconv;
934 }
935 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
936
937 /**
938 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
939 */
940 ktime_t ktime_get_raw(void)
941 {
942 struct timekeeper *tk = &tk_core.timekeeper;
943 unsigned int seq;
944 ktime_t base;
945 u64 nsecs;
946
947 do {
948 seq = read_seqcount_begin(&tk_core.seq);
949 base = tk->tkr_raw.base;
950 nsecs = timekeeping_get_ns(&tk->tkr_raw);
951
952 } while (read_seqcount_retry(&tk_core.seq, seq));
953
954 return ktime_add_ns(base, nsecs);
955 }
956 EXPORT_SYMBOL_GPL(ktime_get_raw);
957
958 /**
959 * ktime_get_ts64 - get the monotonic clock in timespec64 format
960 * @ts: pointer to timespec variable
961 *
962 * The function calculates the monotonic clock from the realtime
963 * clock and the wall_to_monotonic offset and stores the result
964 * in normalized timespec64 format in the variable pointed to by @ts.
965 */
966 void ktime_get_ts64(struct timespec64 *ts)
967 {
968 struct timekeeper *tk = &tk_core.timekeeper;
969 struct timespec64 tomono;
970 unsigned int seq;
971 u64 nsec;
972
973 WARN_ON(timekeeping_suspended);
974
975 do {
976 seq = read_seqcount_begin(&tk_core.seq);
977 ts->tv_sec = tk->xtime_sec;
978 nsec = timekeeping_get_ns(&tk->tkr_mono);
979 tomono = tk->wall_to_monotonic;
980
981 } while (read_seqcount_retry(&tk_core.seq, seq));
982
983 ts->tv_sec += tomono.tv_sec;
984 ts->tv_nsec = 0;
985 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
986 }
987 EXPORT_SYMBOL_GPL(ktime_get_ts64);
988
989 /**
990 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
991 *
992 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
993 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
994 * works on both 32 and 64 bit systems. On 32 bit systems the readout
995 * covers ~136 years of uptime which should be enough to prevent
996 * premature wrap arounds.
997 */
998 time64_t ktime_get_seconds(void)
999 {
1000 struct timekeeper *tk = &tk_core.timekeeper;
1001
1002 WARN_ON(timekeeping_suspended);
1003 return tk->ktime_sec;
1004 }
1005 EXPORT_SYMBOL_GPL(ktime_get_seconds);
1006
1007 /**
1008 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
1009 *
1010 * Returns the wall clock seconds since 1970. This replaces the
1011 * get_seconds() interface which is not y2038 safe on 32bit systems.
1012 *
1013 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1014 * 32bit systems the access must be protected with the sequence
1015 * counter to provide "atomic" access to the 64bit tk->xtime_sec
1016 * value.
1017 */
1018 time64_t ktime_get_real_seconds(void)
1019 {
1020 struct timekeeper *tk = &tk_core.timekeeper;
1021 time64_t seconds;
1022 unsigned int seq;
1023
1024 if (IS_ENABLED(CONFIG_64BIT))
1025 return tk->xtime_sec;
1026
1027 do {
1028 seq = read_seqcount_begin(&tk_core.seq);
1029 seconds = tk->xtime_sec;
1030
1031 } while (read_seqcount_retry(&tk_core.seq, seq));
1032
1033 return seconds;
1034 }
1035 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1036
1037 /**
1038 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1039 * but without the sequence counter protect. This internal function
1040 * is called just when timekeeping lock is already held.
1041 */
1042 noinstr time64_t __ktime_get_real_seconds(void)
1043 {
1044 struct timekeeper *tk = &tk_core.timekeeper;
1045
1046 return tk->xtime_sec;
1047 }
1048
1049 /**
1050 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1051 * @systime_snapshot: pointer to struct receiving the system time snapshot
1052 */
1053 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1054 {
1055 struct timekeeper *tk = &tk_core.timekeeper;
1056 unsigned int seq;
1057 ktime_t base_raw;
1058 ktime_t base_real;
1059 u64 nsec_raw;
1060 u64 nsec_real;
1061 u64 now;
1062
1063 WARN_ON_ONCE(timekeeping_suspended);
1064
1065 do {
1066 seq = read_seqcount_begin(&tk_core.seq);
1067 now = tk_clock_read(&tk->tkr_mono);
1068 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1069 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1070 base_real = ktime_add(tk->tkr_mono.base,
1071 tk_core.timekeeper.offs_real);
1072 base_raw = tk->tkr_raw.base;
1073 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1074 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1075 } while (read_seqcount_retry(&tk_core.seq, seq));
1076
1077 systime_snapshot->cycles = now;
1078 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1079 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1080 }
1081 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1082
1083 /* Scale base by mult/div checking for overflow */
1084 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1085 {
1086 u64 tmp, rem;
1087
1088 tmp = div64_u64_rem(*base, div, &rem);
1089
1090 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1091 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1092 return -EOVERFLOW;
1093 tmp *= mult;
1094
1095 rem = div64_u64(rem * mult, div);
1096 *base = tmp + rem;
1097 return 0;
1098 }
1099
1100 /**
1101 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1102 * @history: Snapshot representing start of history
1103 * @partial_history_cycles: Cycle offset into history (fractional part)
1104 * @total_history_cycles: Total history length in cycles
1105 * @discontinuity: True indicates clock was set on history period
1106 * @ts: Cross timestamp that should be adjusted using
1107 * partial/total ratio
1108 *
1109 * Helper function used by get_device_system_crosststamp() to correct the
1110 * crosstimestamp corresponding to the start of the current interval to the
1111 * system counter value (timestamp point) provided by the driver. The
1112 * total_history_* quantities are the total history starting at the provided
1113 * reference point and ending at the start of the current interval. The cycle
1114 * count between the driver timestamp point and the start of the current
1115 * interval is partial_history_cycles.
1116 */
1117 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1118 u64 partial_history_cycles,
1119 u64 total_history_cycles,
1120 bool discontinuity,
1121 struct system_device_crosststamp *ts)
1122 {
1123 struct timekeeper *tk = &tk_core.timekeeper;
1124 u64 corr_raw, corr_real;
1125 bool interp_forward;
1126 int ret;
1127
1128 if (total_history_cycles == 0 || partial_history_cycles == 0)
1129 return 0;
1130
1131 /* Interpolate shortest distance from beginning or end of history */
1132 interp_forward = partial_history_cycles > total_history_cycles / 2;
1133 partial_history_cycles = interp_forward ?
1134 total_history_cycles - partial_history_cycles :
1135 partial_history_cycles;
1136
1137 /*
1138 * Scale the monotonic raw time delta by:
1139 * partial_history_cycles / total_history_cycles
1140 */
1141 corr_raw = (u64)ktime_to_ns(
1142 ktime_sub(ts->sys_monoraw, history->raw));
1143 ret = scale64_check_overflow(partial_history_cycles,
1144 total_history_cycles, &corr_raw);
1145 if (ret)
1146 return ret;
1147
1148 /*
1149 * If there is a discontinuity in the history, scale monotonic raw
1150 * correction by:
1151 * mult(real)/mult(raw) yielding the realtime correction
1152 * Otherwise, calculate the realtime correction similar to monotonic
1153 * raw calculation
1154 */
1155 if (discontinuity) {
1156 corr_real = mul_u64_u32_div
1157 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1158 } else {
1159 corr_real = (u64)ktime_to_ns(
1160 ktime_sub(ts->sys_realtime, history->real));
1161 ret = scale64_check_overflow(partial_history_cycles,
1162 total_history_cycles, &corr_real);
1163 if (ret)
1164 return ret;
1165 }
1166
1167 /* Fixup monotonic raw and real time time values */
1168 if (interp_forward) {
1169 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1170 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1171 } else {
1172 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1173 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1174 }
1175
1176 return 0;
1177 }
1178
1179 /*
1180 * cycle_between - true if test occurs chronologically between before and after
1181 */
1182 static bool cycle_between(u64 before, u64 test, u64 after)
1183 {
1184 if (test > before && test < after)
1185 return true;
1186 if (test < before && before > after)
1187 return true;
1188 return false;
1189 }
1190
1191 /**
1192 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1193 * @get_time_fn: Callback to get simultaneous device time and
1194 * system counter from the device driver
1195 * @ctx: Context passed to get_time_fn()
1196 * @history_begin: Historical reference point used to interpolate system
1197 * time when counter provided by the driver is before the current interval
1198 * @xtstamp: Receives simultaneously captured system and device time
1199 *
1200 * Reads a timestamp from a device and correlates it to system time
1201 */
1202 int get_device_system_crosststamp(int (*get_time_fn)
1203 (ktime_t *device_time,
1204 struct system_counterval_t *sys_counterval,
1205 void *ctx),
1206 void *ctx,
1207 struct system_time_snapshot *history_begin,
1208 struct system_device_crosststamp *xtstamp)
1209 {
1210 struct system_counterval_t system_counterval;
1211 struct timekeeper *tk = &tk_core.timekeeper;
1212 u64 cycles, now, interval_start;
1213 unsigned int clock_was_set_seq = 0;
1214 ktime_t base_real, base_raw;
1215 u64 nsec_real, nsec_raw;
1216 u8 cs_was_changed_seq;
1217 unsigned int seq;
1218 bool do_interp;
1219 int ret;
1220
1221 do {
1222 seq = read_seqcount_begin(&tk_core.seq);
1223 /*
1224 * Try to synchronously capture device time and a system
1225 * counter value calling back into the device driver
1226 */
1227 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1228 if (ret)
1229 return ret;
1230
1231 /*
1232 * Verify that the clocksource associated with the captured
1233 * system counter value is the same as the currently installed
1234 * timekeeper clocksource
1235 */
1236 if (tk->tkr_mono.clock != system_counterval.cs)
1237 return -ENODEV;
1238 cycles = system_counterval.cycles;
1239
1240 /*
1241 * Check whether the system counter value provided by the
1242 * device driver is on the current timekeeping interval.
1243 */
1244 now = tk_clock_read(&tk->tkr_mono);
1245 interval_start = tk->tkr_mono.cycle_last;
1246 if (!cycle_between(interval_start, cycles, now)) {
1247 clock_was_set_seq = tk->clock_was_set_seq;
1248 cs_was_changed_seq = tk->cs_was_changed_seq;
1249 cycles = interval_start;
1250 do_interp = true;
1251 } else {
1252 do_interp = false;
1253 }
1254
1255 base_real = ktime_add(tk->tkr_mono.base,
1256 tk_core.timekeeper.offs_real);
1257 base_raw = tk->tkr_raw.base;
1258
1259 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1260 system_counterval.cycles);
1261 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1262 system_counterval.cycles);
1263 } while (read_seqcount_retry(&tk_core.seq, seq));
1264
1265 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1266 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1267
1268 /*
1269 * Interpolate if necessary, adjusting back from the start of the
1270 * current interval
1271 */
1272 if (do_interp) {
1273 u64 partial_history_cycles, total_history_cycles;
1274 bool discontinuity;
1275
1276 /*
1277 * Check that the counter value occurs after the provided
1278 * history reference and that the history doesn't cross a
1279 * clocksource change
1280 */
1281 if (!history_begin ||
1282 !cycle_between(history_begin->cycles,
1283 system_counterval.cycles, cycles) ||
1284 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1285 return -EINVAL;
1286 partial_history_cycles = cycles - system_counterval.cycles;
1287 total_history_cycles = cycles - history_begin->cycles;
1288 discontinuity =
1289 history_begin->clock_was_set_seq != clock_was_set_seq;
1290
1291 ret = adjust_historical_crosststamp(history_begin,
1292 partial_history_cycles,
1293 total_history_cycles,
1294 discontinuity, xtstamp);
1295 if (ret)
1296 return ret;
1297 }
1298
1299 return 0;
1300 }
1301 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1302
1303 /**
1304 * do_settimeofday64 - Sets the time of day.
1305 * @ts: pointer to the timespec64 variable containing the new time
1306 *
1307 * Sets the time of day to the new time and update NTP and notify hrtimers
1308 */
1309 int do_settimeofday64(const struct timespec64 *ts)
1310 {
1311 struct timekeeper *tk = &tk_core.timekeeper;
1312 struct timespec64 ts_delta, xt;
1313 unsigned long flags;
1314 int ret = 0;
1315
1316 if (!timespec64_valid_settod(ts))
1317 return -EINVAL;
1318
1319 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1320 write_seqcount_begin(&tk_core.seq);
1321
1322 timekeeping_forward_now(tk);
1323
1324 xt = tk_xtime(tk);
1325 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1326 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1327
1328 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1329 ret = -EINVAL;
1330 goto out;
1331 }
1332
1333 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1334
1335 tk_set_xtime(tk, ts);
1336 out:
1337 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1338
1339 write_seqcount_end(&tk_core.seq);
1340 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1341
1342 /* signal hrtimers about time change */
1343 clock_was_set();
1344
1345 if (!ret)
1346 audit_tk_injoffset(ts_delta);
1347
1348 return ret;
1349 }
1350 EXPORT_SYMBOL(do_settimeofday64);
1351
1352 /**
1353 * timekeeping_inject_offset - Adds or subtracts from the current time.
1354 * @ts: Pointer to the timespec variable containing the offset
1355 *
1356 * Adds or subtracts an offset value from the current time.
1357 */
1358 static int timekeeping_inject_offset(const struct timespec64 *ts)
1359 {
1360 struct timekeeper *tk = &tk_core.timekeeper;
1361 unsigned long flags;
1362 struct timespec64 tmp;
1363 int ret = 0;
1364
1365 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1366 return -EINVAL;
1367
1368 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1369 write_seqcount_begin(&tk_core.seq);
1370
1371 timekeeping_forward_now(tk);
1372
1373 /* Make sure the proposed value is valid */
1374 tmp = timespec64_add(tk_xtime(tk), *ts);
1375 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1376 !timespec64_valid_settod(&tmp)) {
1377 ret = -EINVAL;
1378 goto error;
1379 }
1380
1381 tk_xtime_add(tk, ts);
1382 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1383
1384 error: /* even if we error out, we forwarded the time, so call update */
1385 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1386
1387 write_seqcount_end(&tk_core.seq);
1388 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1389
1390 /* signal hrtimers about time change */
1391 clock_was_set();
1392
1393 return ret;
1394 }
1395
1396 /*
1397 * Indicates if there is an offset between the system clock and the hardware
1398 * clock/persistent clock/rtc.
1399 */
1400 int persistent_clock_is_local;
1401
1402 /*
1403 * Adjust the time obtained from the CMOS to be UTC time instead of
1404 * local time.
1405 *
1406 * This is ugly, but preferable to the alternatives. Otherwise we
1407 * would either need to write a program to do it in /etc/rc (and risk
1408 * confusion if the program gets run more than once; it would also be
1409 * hard to make the program warp the clock precisely n hours) or
1410 * compile in the timezone information into the kernel. Bad, bad....
1411 *
1412 * - TYT, 1992-01-01
1413 *
1414 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1415 * as real UNIX machines always do it. This avoids all headaches about
1416 * daylight saving times and warping kernel clocks.
1417 */
1418 void timekeeping_warp_clock(void)
1419 {
1420 if (sys_tz.tz_minuteswest != 0) {
1421 struct timespec64 adjust;
1422
1423 persistent_clock_is_local = 1;
1424 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1425 adjust.tv_nsec = 0;
1426 timekeeping_inject_offset(&adjust);
1427 }
1428 }
1429
1430 /*
1431 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1432 */
1433 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1434 {
1435 tk->tai_offset = tai_offset;
1436 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1437 }
1438
1439 /*
1440 * change_clocksource - Swaps clocksources if a new one is available
1441 *
1442 * Accumulates current time interval and initializes new clocksource
1443 */
1444 static int change_clocksource(void *data)
1445 {
1446 struct timekeeper *tk = &tk_core.timekeeper;
1447 struct clocksource *new, *old;
1448 unsigned long flags;
1449
1450 new = (struct clocksource *) data;
1451
1452 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1453 write_seqcount_begin(&tk_core.seq);
1454
1455 timekeeping_forward_now(tk);
1456 /*
1457 * If the cs is in module, get a module reference. Succeeds
1458 * for built-in code (owner == NULL) as well.
1459 */
1460 if (try_module_get(new->owner)) {
1461 if (!new->enable || new->enable(new) == 0) {
1462 old = tk->tkr_mono.clock;
1463 tk_setup_internals(tk, new);
1464 if (old->disable)
1465 old->disable(old);
1466 module_put(old->owner);
1467 } else {
1468 module_put(new->owner);
1469 }
1470 }
1471 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1472
1473 write_seqcount_end(&tk_core.seq);
1474 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1475
1476 return 0;
1477 }
1478
1479 /**
1480 * timekeeping_notify - Install a new clock source
1481 * @clock: pointer to the clock source
1482 *
1483 * This function is called from clocksource.c after a new, better clock
1484 * source has been registered. The caller holds the clocksource_mutex.
1485 */
1486 int timekeeping_notify(struct clocksource *clock)
1487 {
1488 struct timekeeper *tk = &tk_core.timekeeper;
1489
1490 if (tk->tkr_mono.clock == clock)
1491 return 0;
1492 stop_machine(change_clocksource, clock, NULL);
1493 tick_clock_notify();
1494 return tk->tkr_mono.clock == clock ? 0 : -1;
1495 }
1496
1497 /**
1498 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1499 * @ts: pointer to the timespec64 to be set
1500 *
1501 * Returns the raw monotonic time (completely un-modified by ntp)
1502 */
1503 void ktime_get_raw_ts64(struct timespec64 *ts)
1504 {
1505 struct timekeeper *tk = &tk_core.timekeeper;
1506 unsigned int seq;
1507 u64 nsecs;
1508
1509 do {
1510 seq = read_seqcount_begin(&tk_core.seq);
1511 ts->tv_sec = tk->raw_sec;
1512 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1513
1514 } while (read_seqcount_retry(&tk_core.seq, seq));
1515
1516 ts->tv_nsec = 0;
1517 timespec64_add_ns(ts, nsecs);
1518 }
1519 EXPORT_SYMBOL(ktime_get_raw_ts64);
1520
1521
1522 /**
1523 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1524 */
1525 int timekeeping_valid_for_hres(void)
1526 {
1527 struct timekeeper *tk = &tk_core.timekeeper;
1528 unsigned int seq;
1529 int ret;
1530
1531 do {
1532 seq = read_seqcount_begin(&tk_core.seq);
1533
1534 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1535
1536 } while (read_seqcount_retry(&tk_core.seq, seq));
1537
1538 return ret;
1539 }
1540
1541 /**
1542 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1543 */
1544 u64 timekeeping_max_deferment(void)
1545 {
1546 struct timekeeper *tk = &tk_core.timekeeper;
1547 unsigned int seq;
1548 u64 ret;
1549
1550 do {
1551 seq = read_seqcount_begin(&tk_core.seq);
1552
1553 ret = tk->tkr_mono.clock->max_idle_ns;
1554
1555 } while (read_seqcount_retry(&tk_core.seq, seq));
1556
1557 return ret;
1558 }
1559
1560 /**
1561 * read_persistent_clock64 - Return time from the persistent clock.
1562 * @ts: Pointer to the storage for the readout value
1563 *
1564 * Weak dummy function for arches that do not yet support it.
1565 * Reads the time from the battery backed persistent clock.
1566 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1567 *
1568 * XXX - Do be sure to remove it once all arches implement it.
1569 */
1570 void __weak read_persistent_clock64(struct timespec64 *ts)
1571 {
1572 ts->tv_sec = 0;
1573 ts->tv_nsec = 0;
1574 }
1575
1576 /**
1577 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1578 * from the boot.
1579 *
1580 * Weak dummy function for arches that do not yet support it.
1581 * @wall_time: - current time as returned by persistent clock
1582 * @boot_offset: - offset that is defined as wall_time - boot_time
1583 *
1584 * The default function calculates offset based on the current value of
1585 * local_clock(). This way architectures that support sched_clock() but don't
1586 * support dedicated boot time clock will provide the best estimate of the
1587 * boot time.
1588 */
1589 void __weak __init
1590 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1591 struct timespec64 *boot_offset)
1592 {
1593 read_persistent_clock64(wall_time);
1594 *boot_offset = ns_to_timespec64(local_clock());
1595 }
1596
1597 /*
1598 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1599 *
1600 * The flag starts of false and is only set when a suspend reaches
1601 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1602 * timekeeper clocksource is not stopping across suspend and has been
1603 * used to update sleep time. If the timekeeper clocksource has stopped
1604 * then the flag stays true and is used by the RTC resume code to decide
1605 * whether sleeptime must be injected and if so the flag gets false then.
1606 *
1607 * If a suspend fails before reaching timekeeping_resume() then the flag
1608 * stays false and prevents erroneous sleeptime injection.
1609 */
1610 static bool suspend_timing_needed;
1611
1612 /* Flag for if there is a persistent clock on this platform */
1613 static bool persistent_clock_exists;
1614
1615 /*
1616 * timekeeping_init - Initializes the clocksource and common timekeeping values
1617 */
1618 void __init timekeeping_init(void)
1619 {
1620 struct timespec64 wall_time, boot_offset, wall_to_mono;
1621 struct timekeeper *tk = &tk_core.timekeeper;
1622 struct clocksource *clock;
1623 unsigned long flags;
1624
1625 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1626 if (timespec64_valid_settod(&wall_time) &&
1627 timespec64_to_ns(&wall_time) > 0) {
1628 persistent_clock_exists = true;
1629 } else if (timespec64_to_ns(&wall_time) != 0) {
1630 pr_warn("Persistent clock returned invalid value");
1631 wall_time = (struct timespec64){0};
1632 }
1633
1634 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1635 boot_offset = (struct timespec64){0};
1636
1637 /*
1638 * We want set wall_to_mono, so the following is true:
1639 * wall time + wall_to_mono = boot time
1640 */
1641 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1642
1643 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1644 write_seqcount_begin(&tk_core.seq);
1645 ntp_init();
1646
1647 clock = clocksource_default_clock();
1648 if (clock->enable)
1649 clock->enable(clock);
1650 tk_setup_internals(tk, clock);
1651
1652 tk_set_xtime(tk, &wall_time);
1653 tk->raw_sec = 0;
1654
1655 tk_set_wall_to_mono(tk, wall_to_mono);
1656
1657 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1658
1659 write_seqcount_end(&tk_core.seq);
1660 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1661 }
1662
1663 /* time in seconds when suspend began for persistent clock */
1664 static struct timespec64 timekeeping_suspend_time;
1665
1666 /**
1667 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1668 * @tk: Pointer to the timekeeper to be updated
1669 * @delta: Pointer to the delta value in timespec64 format
1670 *
1671 * Takes a timespec offset measuring a suspend interval and properly
1672 * adds the sleep offset to the timekeeping variables.
1673 */
1674 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1675 const struct timespec64 *delta)
1676 {
1677 if (!timespec64_valid_strict(delta)) {
1678 printk_deferred(KERN_WARNING
1679 "__timekeeping_inject_sleeptime: Invalid "
1680 "sleep delta value!\n");
1681 return;
1682 }
1683 tk_xtime_add(tk, delta);
1684 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1685 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1686 tk_debug_account_sleep_time(delta);
1687 }
1688
1689 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1690 /**
1691 * We have three kinds of time sources to use for sleep time
1692 * injection, the preference order is:
1693 * 1) non-stop clocksource
1694 * 2) persistent clock (ie: RTC accessible when irqs are off)
1695 * 3) RTC
1696 *
1697 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1698 * If system has neither 1) nor 2), 3) will be used finally.
1699 *
1700 *
1701 * If timekeeping has injected sleeptime via either 1) or 2),
1702 * 3) becomes needless, so in this case we don't need to call
1703 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1704 * means.
1705 */
1706 bool timekeeping_rtc_skipresume(void)
1707 {
1708 return !suspend_timing_needed;
1709 }
1710
1711 /**
1712 * 1) can be determined whether to use or not only when doing
1713 * timekeeping_resume() which is invoked after rtc_suspend(),
1714 * so we can't skip rtc_suspend() surely if system has 1).
1715 *
1716 * But if system has 2), 2) will definitely be used, so in this
1717 * case we don't need to call rtc_suspend(), and this is what
1718 * timekeeping_rtc_skipsuspend() means.
1719 */
1720 bool timekeeping_rtc_skipsuspend(void)
1721 {
1722 return persistent_clock_exists;
1723 }
1724
1725 /**
1726 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1727 * @delta: pointer to a timespec64 delta value
1728 *
1729 * This hook is for architectures that cannot support read_persistent_clock64
1730 * because their RTC/persistent clock is only accessible when irqs are enabled.
1731 * and also don't have an effective nonstop clocksource.
1732 *
1733 * This function should only be called by rtc_resume(), and allows
1734 * a suspend offset to be injected into the timekeeping values.
1735 */
1736 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1737 {
1738 struct timekeeper *tk = &tk_core.timekeeper;
1739 unsigned long flags;
1740
1741 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1742 write_seqcount_begin(&tk_core.seq);
1743
1744 suspend_timing_needed = false;
1745
1746 timekeeping_forward_now(tk);
1747
1748 __timekeeping_inject_sleeptime(tk, delta);
1749
1750 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1751
1752 write_seqcount_end(&tk_core.seq);
1753 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1754
1755 /* signal hrtimers about time change */
1756 clock_was_set();
1757 }
1758 #endif
1759
1760 /**
1761 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1762 */
1763 void timekeeping_resume(void)
1764 {
1765 struct timekeeper *tk = &tk_core.timekeeper;
1766 struct clocksource *clock = tk->tkr_mono.clock;
1767 unsigned long flags;
1768 struct timespec64 ts_new, ts_delta;
1769 u64 cycle_now, nsec;
1770 bool inject_sleeptime = false;
1771
1772 read_persistent_clock64(&ts_new);
1773
1774 clockevents_resume();
1775 clocksource_resume();
1776
1777 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1778 write_seqcount_begin(&tk_core.seq);
1779
1780 /*
1781 * After system resumes, we need to calculate the suspended time and
1782 * compensate it for the OS time. There are 3 sources that could be
1783 * used: Nonstop clocksource during suspend, persistent clock and rtc
1784 * device.
1785 *
1786 * One specific platform may have 1 or 2 or all of them, and the
1787 * preference will be:
1788 * suspend-nonstop clocksource -> persistent clock -> rtc
1789 * The less preferred source will only be tried if there is no better
1790 * usable source. The rtc part is handled separately in rtc core code.
1791 */
1792 cycle_now = tk_clock_read(&tk->tkr_mono);
1793 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1794 if (nsec > 0) {
1795 ts_delta = ns_to_timespec64(nsec);
1796 inject_sleeptime = true;
1797 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1798 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1799 inject_sleeptime = true;
1800 }
1801
1802 if (inject_sleeptime) {
1803 suspend_timing_needed = false;
1804 __timekeeping_inject_sleeptime(tk, &ts_delta);
1805 }
1806
1807 /* Re-base the last cycle value */
1808 tk->tkr_mono.cycle_last = cycle_now;
1809 tk->tkr_raw.cycle_last = cycle_now;
1810
1811 tk->ntp_error = 0;
1812 timekeeping_suspended = 0;
1813 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1814 write_seqcount_end(&tk_core.seq);
1815 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1816
1817 touch_softlockup_watchdog();
1818
1819 tick_resume();
1820 hrtimers_resume();
1821 }
1822
1823 int timekeeping_suspend(void)
1824 {
1825 struct timekeeper *tk = &tk_core.timekeeper;
1826 unsigned long flags;
1827 struct timespec64 delta, delta_delta;
1828 static struct timespec64 old_delta;
1829 struct clocksource *curr_clock;
1830 u64 cycle_now;
1831
1832 read_persistent_clock64(&timekeeping_suspend_time);
1833
1834 /*
1835 * On some systems the persistent_clock can not be detected at
1836 * timekeeping_init by its return value, so if we see a valid
1837 * value returned, update the persistent_clock_exists flag.
1838 */
1839 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1840 persistent_clock_exists = true;
1841
1842 suspend_timing_needed = true;
1843
1844 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1845 write_seqcount_begin(&tk_core.seq);
1846 timekeeping_forward_now(tk);
1847 timekeeping_suspended = 1;
1848
1849 /*
1850 * Since we've called forward_now, cycle_last stores the value
1851 * just read from the current clocksource. Save this to potentially
1852 * use in suspend timing.
1853 */
1854 curr_clock = tk->tkr_mono.clock;
1855 cycle_now = tk->tkr_mono.cycle_last;
1856 clocksource_start_suspend_timing(curr_clock, cycle_now);
1857
1858 if (persistent_clock_exists) {
1859 /*
1860 * To avoid drift caused by repeated suspend/resumes,
1861 * which each can add ~1 second drift error,
1862 * try to compensate so the difference in system time
1863 * and persistent_clock time stays close to constant.
1864 */
1865 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1866 delta_delta = timespec64_sub(delta, old_delta);
1867 if (abs(delta_delta.tv_sec) >= 2) {
1868 /*
1869 * if delta_delta is too large, assume time correction
1870 * has occurred and set old_delta to the current delta.
1871 */
1872 old_delta = delta;
1873 } else {
1874 /* Otherwise try to adjust old_system to compensate */
1875 timekeeping_suspend_time =
1876 timespec64_add(timekeeping_suspend_time, delta_delta);
1877 }
1878 }
1879
1880 timekeeping_update(tk, TK_MIRROR);
1881 halt_fast_timekeeper(tk);
1882 write_seqcount_end(&tk_core.seq);
1883 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1884
1885 tick_suspend();
1886 clocksource_suspend();
1887 clockevents_suspend();
1888
1889 return 0;
1890 }
1891
1892 /* sysfs resume/suspend bits for timekeeping */
1893 static struct syscore_ops timekeeping_syscore_ops = {
1894 .resume = timekeeping_resume,
1895 .suspend = timekeeping_suspend,
1896 };
1897
1898 static int __init timekeeping_init_ops(void)
1899 {
1900 register_syscore_ops(&timekeeping_syscore_ops);
1901 return 0;
1902 }
1903 device_initcall(timekeeping_init_ops);
1904
1905 /*
1906 * Apply a multiplier adjustment to the timekeeper
1907 */
1908 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1909 s64 offset,
1910 s32 mult_adj)
1911 {
1912 s64 interval = tk->cycle_interval;
1913
1914 if (mult_adj == 0) {
1915 return;
1916 } else if (mult_adj == -1) {
1917 interval = -interval;
1918 offset = -offset;
1919 } else if (mult_adj != 1) {
1920 interval *= mult_adj;
1921 offset *= mult_adj;
1922 }
1923
1924 /*
1925 * So the following can be confusing.
1926 *
1927 * To keep things simple, lets assume mult_adj == 1 for now.
1928 *
1929 * When mult_adj != 1, remember that the interval and offset values
1930 * have been appropriately scaled so the math is the same.
1931 *
1932 * The basic idea here is that we're increasing the multiplier
1933 * by one, this causes the xtime_interval to be incremented by
1934 * one cycle_interval. This is because:
1935 * xtime_interval = cycle_interval * mult
1936 * So if mult is being incremented by one:
1937 * xtime_interval = cycle_interval * (mult + 1)
1938 * Its the same as:
1939 * xtime_interval = (cycle_interval * mult) + cycle_interval
1940 * Which can be shortened to:
1941 * xtime_interval += cycle_interval
1942 *
1943 * So offset stores the non-accumulated cycles. Thus the current
1944 * time (in shifted nanoseconds) is:
1945 * now = (offset * adj) + xtime_nsec
1946 * Now, even though we're adjusting the clock frequency, we have
1947 * to keep time consistent. In other words, we can't jump back
1948 * in time, and we also want to avoid jumping forward in time.
1949 *
1950 * So given the same offset value, we need the time to be the same
1951 * both before and after the freq adjustment.
1952 * now = (offset * adj_1) + xtime_nsec_1
1953 * now = (offset * adj_2) + xtime_nsec_2
1954 * So:
1955 * (offset * adj_1) + xtime_nsec_1 =
1956 * (offset * adj_2) + xtime_nsec_2
1957 * And we know:
1958 * adj_2 = adj_1 + 1
1959 * So:
1960 * (offset * adj_1) + xtime_nsec_1 =
1961 * (offset * (adj_1+1)) + xtime_nsec_2
1962 * (offset * adj_1) + xtime_nsec_1 =
1963 * (offset * adj_1) + offset + xtime_nsec_2
1964 * Canceling the sides:
1965 * xtime_nsec_1 = offset + xtime_nsec_2
1966 * Which gives us:
1967 * xtime_nsec_2 = xtime_nsec_1 - offset
1968 * Which simplfies to:
1969 * xtime_nsec -= offset
1970 */
1971 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1972 /* NTP adjustment caused clocksource mult overflow */
1973 WARN_ON_ONCE(1);
1974 return;
1975 }
1976
1977 tk->tkr_mono.mult += mult_adj;
1978 tk->xtime_interval += interval;
1979 tk->tkr_mono.xtime_nsec -= offset;
1980 }
1981
1982 /*
1983 * Adjust the timekeeper's multiplier to the correct frequency
1984 * and also to reduce the accumulated error value.
1985 */
1986 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1987 {
1988 u32 mult;
1989
1990 /*
1991 * Determine the multiplier from the current NTP tick length.
1992 * Avoid expensive division when the tick length doesn't change.
1993 */
1994 if (likely(tk->ntp_tick == ntp_tick_length())) {
1995 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1996 } else {
1997 tk->ntp_tick = ntp_tick_length();
1998 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1999 tk->xtime_remainder, tk->cycle_interval);
2000 }
2001
2002 /*
2003 * If the clock is behind the NTP time, increase the multiplier by 1
2004 * to catch up with it. If it's ahead and there was a remainder in the
2005 * tick division, the clock will slow down. Otherwise it will stay
2006 * ahead until the tick length changes to a non-divisible value.
2007 */
2008 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2009 mult += tk->ntp_err_mult;
2010
2011 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2012
2013 if (unlikely(tk->tkr_mono.clock->maxadj &&
2014 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2015 > tk->tkr_mono.clock->maxadj))) {
2016 printk_once(KERN_WARNING
2017 "Adjusting %s more than 11%% (%ld vs %ld)\n",
2018 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2019 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2020 }
2021
2022 /*
2023 * It may be possible that when we entered this function, xtime_nsec
2024 * was very small. Further, if we're slightly speeding the clocksource
2025 * in the code above, its possible the required corrective factor to
2026 * xtime_nsec could cause it to underflow.
2027 *
2028 * Now, since we have already accumulated the second and the NTP
2029 * subsystem has been notified via second_overflow(), we need to skip
2030 * the next update.
2031 */
2032 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2033 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2034 tk->tkr_mono.shift;
2035 tk->xtime_sec--;
2036 tk->skip_second_overflow = 1;
2037 }
2038 }
2039
2040 /*
2041 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2042 *
2043 * Helper function that accumulates the nsecs greater than a second
2044 * from the xtime_nsec field to the xtime_secs field.
2045 * It also calls into the NTP code to handle leapsecond processing.
2046 */
2047 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2048 {
2049 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2050 unsigned int clock_set = 0;
2051
2052 while (tk->tkr_mono.xtime_nsec >= nsecps) {
2053 int leap;
2054
2055 tk->tkr_mono.xtime_nsec -= nsecps;
2056 tk->xtime_sec++;
2057
2058 /*
2059 * Skip NTP update if this second was accumulated before,
2060 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2061 */
2062 if (unlikely(tk->skip_second_overflow)) {
2063 tk->skip_second_overflow = 0;
2064 continue;
2065 }
2066
2067 /* Figure out if its a leap sec and apply if needed */
2068 leap = second_overflow(tk->xtime_sec);
2069 if (unlikely(leap)) {
2070 struct timespec64 ts;
2071
2072 tk->xtime_sec += leap;
2073
2074 ts.tv_sec = leap;
2075 ts.tv_nsec = 0;
2076 tk_set_wall_to_mono(tk,
2077 timespec64_sub(tk->wall_to_monotonic, ts));
2078
2079 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2080
2081 clock_set = TK_CLOCK_WAS_SET;
2082 }
2083 }
2084 return clock_set;
2085 }
2086
2087 /*
2088 * logarithmic_accumulation - shifted accumulation of cycles
2089 *
2090 * This functions accumulates a shifted interval of cycles into
2091 * a shifted interval nanoseconds. Allows for O(log) accumulation
2092 * loop.
2093 *
2094 * Returns the unconsumed cycles.
2095 */
2096 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2097 u32 shift, unsigned int *clock_set)
2098 {
2099 u64 interval = tk->cycle_interval << shift;
2100 u64 snsec_per_sec;
2101
2102 /* If the offset is smaller than a shifted interval, do nothing */
2103 if (offset < interval)
2104 return offset;
2105
2106 /* Accumulate one shifted interval */
2107 offset -= interval;
2108 tk->tkr_mono.cycle_last += interval;
2109 tk->tkr_raw.cycle_last += interval;
2110
2111 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2112 *clock_set |= accumulate_nsecs_to_secs(tk);
2113
2114 /* Accumulate raw time */
2115 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2116 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2117 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2118 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2119 tk->raw_sec++;
2120 }
2121
2122 /* Accumulate error between NTP and clock interval */
2123 tk->ntp_error += tk->ntp_tick << shift;
2124 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2125 (tk->ntp_error_shift + shift);
2126
2127 return offset;
2128 }
2129
2130 /*
2131 * timekeeping_advance - Updates the timekeeper to the current time and
2132 * current NTP tick length
2133 */
2134 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2135 {
2136 struct timekeeper *real_tk = &tk_core.timekeeper;
2137 struct timekeeper *tk = &shadow_timekeeper;
2138 u64 offset;
2139 int shift = 0, maxshift;
2140 unsigned int clock_set = 0;
2141 unsigned long flags;
2142
2143 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2144
2145 /* Make sure we're fully resumed: */
2146 if (unlikely(timekeeping_suspended))
2147 goto out;
2148
2149 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2150 offset = real_tk->cycle_interval;
2151
2152 if (mode != TK_ADV_TICK)
2153 goto out;
2154 #else
2155 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2156 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2157
2158 /* Check if there's really nothing to do */
2159 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2160 goto out;
2161 #endif
2162
2163 /* Do some additional sanity checking */
2164 timekeeping_check_update(tk, offset);
2165
2166 /*
2167 * With NO_HZ we may have to accumulate many cycle_intervals
2168 * (think "ticks") worth of time at once. To do this efficiently,
2169 * we calculate the largest doubling multiple of cycle_intervals
2170 * that is smaller than the offset. We then accumulate that
2171 * chunk in one go, and then try to consume the next smaller
2172 * doubled multiple.
2173 */
2174 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2175 shift = max(0, shift);
2176 /* Bound shift to one less than what overflows tick_length */
2177 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2178 shift = min(shift, maxshift);
2179 while (offset >= tk->cycle_interval) {
2180 offset = logarithmic_accumulation(tk, offset, shift,
2181 &clock_set);
2182 if (offset < tk->cycle_interval<<shift)
2183 shift--;
2184 }
2185
2186 /* Adjust the multiplier to correct NTP error */
2187 timekeeping_adjust(tk, offset);
2188
2189 /*
2190 * Finally, make sure that after the rounding
2191 * xtime_nsec isn't larger than NSEC_PER_SEC
2192 */
2193 clock_set |= accumulate_nsecs_to_secs(tk);
2194
2195 write_seqcount_begin(&tk_core.seq);
2196 /*
2197 * Update the real timekeeper.
2198 *
2199 * We could avoid this memcpy by switching pointers, but that
2200 * requires changes to all other timekeeper usage sites as
2201 * well, i.e. move the timekeeper pointer getter into the
2202 * spinlocked/seqcount protected sections. And we trade this
2203 * memcpy under the tk_core.seq against one before we start
2204 * updating.
2205 */
2206 timekeeping_update(tk, clock_set);
2207 memcpy(real_tk, tk, sizeof(*tk));
2208 /* The memcpy must come last. Do not put anything here! */
2209 write_seqcount_end(&tk_core.seq);
2210 out:
2211 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2212 if (clock_set)
2213 /* Have to call _delayed version, since in irq context*/
2214 clock_was_set_delayed();
2215 }
2216
2217 /**
2218 * update_wall_time - Uses the current clocksource to increment the wall time
2219 *
2220 */
2221 void update_wall_time(void)
2222 {
2223 timekeeping_advance(TK_ADV_TICK);
2224 }
2225
2226 /**
2227 * getboottime64 - Return the real time of system boot.
2228 * @ts: pointer to the timespec64 to be set
2229 *
2230 * Returns the wall-time of boot in a timespec64.
2231 *
2232 * This is based on the wall_to_monotonic offset and the total suspend
2233 * time. Calls to settimeofday will affect the value returned (which
2234 * basically means that however wrong your real time clock is at boot time,
2235 * you get the right time here).
2236 */
2237 void getboottime64(struct timespec64 *ts)
2238 {
2239 struct timekeeper *tk = &tk_core.timekeeper;
2240 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2241
2242 *ts = ktime_to_timespec64(t);
2243 }
2244 EXPORT_SYMBOL_GPL(getboottime64);
2245
2246 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2247 {
2248 struct timekeeper *tk = &tk_core.timekeeper;
2249 unsigned int seq;
2250
2251 do {
2252 seq = read_seqcount_begin(&tk_core.seq);
2253
2254 *ts = tk_xtime(tk);
2255 } while (read_seqcount_retry(&tk_core.seq, seq));
2256 }
2257 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2258
2259 void ktime_get_coarse_ts64(struct timespec64 *ts)
2260 {
2261 struct timekeeper *tk = &tk_core.timekeeper;
2262 struct timespec64 now, mono;
2263 unsigned int seq;
2264
2265 do {
2266 seq = read_seqcount_begin(&tk_core.seq);
2267
2268 now = tk_xtime(tk);
2269 mono = tk->wall_to_monotonic;
2270 } while (read_seqcount_retry(&tk_core.seq, seq));
2271
2272 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2273 now.tv_nsec + mono.tv_nsec);
2274 }
2275 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2276
2277 /*
2278 * Must hold jiffies_lock
2279 */
2280 void do_timer(unsigned long ticks)
2281 {
2282 jiffies_64 += ticks;
2283 calc_global_load();
2284 }
2285
2286 /**
2287 * ktime_get_update_offsets_now - hrtimer helper
2288 * @cwsseq: pointer to check and store the clock was set sequence number
2289 * @offs_real: pointer to storage for monotonic -> realtime offset
2290 * @offs_boot: pointer to storage for monotonic -> boottime offset
2291 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2292 *
2293 * Returns current monotonic time and updates the offsets if the
2294 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2295 * different.
2296 *
2297 * Called from hrtimer_interrupt() or retrigger_next_event()
2298 */
2299 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2300 ktime_t *offs_boot, ktime_t *offs_tai)
2301 {
2302 struct timekeeper *tk = &tk_core.timekeeper;
2303 unsigned int seq;
2304 ktime_t base;
2305 u64 nsecs;
2306
2307 do {
2308 seq = read_seqcount_begin(&tk_core.seq);
2309
2310 base = tk->tkr_mono.base;
2311 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2312 base = ktime_add_ns(base, nsecs);
2313
2314 if (*cwsseq != tk->clock_was_set_seq) {
2315 *cwsseq = tk->clock_was_set_seq;
2316 *offs_real = tk->offs_real;
2317 *offs_boot = tk->offs_boot;
2318 *offs_tai = tk->offs_tai;
2319 }
2320
2321 /* Handle leapsecond insertion adjustments */
2322 if (unlikely(base >= tk->next_leap_ktime))
2323 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2324
2325 } while (read_seqcount_retry(&tk_core.seq, seq));
2326
2327 return base;
2328 }
2329
2330 /*
2331 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2332 */
2333 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2334 {
2335 if (txc->modes & ADJ_ADJTIME) {
2336 /* singleshot must not be used with any other mode bits */
2337 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2338 return -EINVAL;
2339 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2340 !capable(CAP_SYS_TIME))
2341 return -EPERM;
2342 } else {
2343 /* In order to modify anything, you gotta be super-user! */
2344 if (txc->modes && !capable(CAP_SYS_TIME))
2345 return -EPERM;
2346 /*
2347 * if the quartz is off by more than 10% then
2348 * something is VERY wrong!
2349 */
2350 if (txc->modes & ADJ_TICK &&
2351 (txc->tick < 900000/USER_HZ ||
2352 txc->tick > 1100000/USER_HZ))
2353 return -EINVAL;
2354 }
2355
2356 if (txc->modes & ADJ_SETOFFSET) {
2357 /* In order to inject time, you gotta be super-user! */
2358 if (!capable(CAP_SYS_TIME))
2359 return -EPERM;
2360
2361 /*
2362 * Validate if a timespec/timeval used to inject a time
2363 * offset is valid. Offsets can be postive or negative, so
2364 * we don't check tv_sec. The value of the timeval/timespec
2365 * is the sum of its fields,but *NOTE*:
2366 * The field tv_usec/tv_nsec must always be non-negative and
2367 * we can't have more nanoseconds/microseconds than a second.
2368 */
2369 if (txc->time.tv_usec < 0)
2370 return -EINVAL;
2371
2372 if (txc->modes & ADJ_NANO) {
2373 if (txc->time.tv_usec >= NSEC_PER_SEC)
2374 return -EINVAL;
2375 } else {
2376 if (txc->time.tv_usec >= USEC_PER_SEC)
2377 return -EINVAL;
2378 }
2379 }
2380
2381 /*
2382 * Check for potential multiplication overflows that can
2383 * only happen on 64-bit systems:
2384 */
2385 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2386 if (LLONG_MIN / PPM_SCALE > txc->freq)
2387 return -EINVAL;
2388 if (LLONG_MAX / PPM_SCALE < txc->freq)
2389 return -EINVAL;
2390 }
2391
2392 return 0;
2393 }
2394
2395
2396 /**
2397 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2398 */
2399 int do_adjtimex(struct __kernel_timex *txc)
2400 {
2401 struct timekeeper *tk = &tk_core.timekeeper;
2402 struct audit_ntp_data ad;
2403 unsigned long flags;
2404 struct timespec64 ts;
2405 s32 orig_tai, tai;
2406 int ret;
2407
2408 /* Validate the data before disabling interrupts */
2409 ret = timekeeping_validate_timex(txc);
2410 if (ret)
2411 return ret;
2412
2413 if (txc->modes & ADJ_SETOFFSET) {
2414 struct timespec64 delta;
2415 delta.tv_sec = txc->time.tv_sec;
2416 delta.tv_nsec = txc->time.tv_usec;
2417 if (!(txc->modes & ADJ_NANO))
2418 delta.tv_nsec *= 1000;
2419 ret = timekeeping_inject_offset(&delta);
2420 if (ret)
2421 return ret;
2422
2423 audit_tk_injoffset(delta);
2424 }
2425
2426 audit_ntp_init(&ad);
2427
2428 ktime_get_real_ts64(&ts);
2429
2430 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2431 write_seqcount_begin(&tk_core.seq);
2432
2433 orig_tai = tai = tk->tai_offset;
2434 ret = __do_adjtimex(txc, &ts, &tai, &ad);
2435
2436 if (tai != orig_tai) {
2437 __timekeeping_set_tai_offset(tk, tai);
2438 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2439 }
2440 tk_update_leap_state(tk);
2441
2442 write_seqcount_end(&tk_core.seq);
2443 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2444
2445 audit_ntp_log(&ad);
2446
2447 /* Update the multiplier immediately if frequency was set directly */
2448 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2449 timekeeping_advance(TK_ADV_FREQ);
2450
2451 if (tai != orig_tai)
2452 clock_was_set();
2453
2454 ntp_notify_cmos_timer();
2455
2456 return ret;
2457 }
2458
2459 #ifdef CONFIG_NTP_PPS
2460 /**
2461 * hardpps() - Accessor function to NTP __hardpps function
2462 */
2463 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2464 {
2465 unsigned long flags;
2466
2467 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2468 write_seqcount_begin(&tk_core.seq);
2469
2470 __hardpps(phase_ts, raw_ts);
2471
2472 write_seqcount_end(&tk_core.seq);
2473 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2474 }
2475 EXPORT_SYMBOL(hardpps);
2476 #endif /* CONFIG_NTP_PPS */
2477
2478 /**
2479 * xtime_update() - advances the timekeeping infrastructure
2480 * @ticks: number of ticks, that have elapsed since the last call.
2481 *
2482 * Must be called with interrupts disabled.
2483 */
2484 void xtime_update(unsigned long ticks)
2485 {
2486 raw_spin_lock(&jiffies_lock);
2487 write_seqcount_begin(&jiffies_seq);
2488 do_timer(ticks);
2489 write_seqcount_end(&jiffies_seq);
2490 raw_spin_unlock(&jiffies_lock);
2491 update_wall_time();
2492 }