]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/timer.c
Merge tag 'linux-kselftest-4.13-rc6-fixes' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-artful-kernel.git] / kernel / time / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched/signal.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/sched/nohz.h>
44 #include <linux/sched/debug.h>
45 #include <linux/slab.h>
46 #include <linux/compat.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/div64.h>
51 #include <asm/timex.h>
52 #include <asm/io.h>
53
54 #include "tick-internal.h"
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/timer.h>
58
59 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
60
61 EXPORT_SYMBOL(jiffies_64);
62
63 /*
64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
66 * level has a different granularity.
67 *
68 * The level granularity is: LVL_CLK_DIV ^ lvl
69 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
70 *
71 * The array level of a newly armed timer depends on the relative expiry
72 * time. The farther the expiry time is away the higher the array level and
73 * therefor the granularity becomes.
74 *
75 * Contrary to the original timer wheel implementation, which aims for 'exact'
76 * expiry of the timers, this implementation removes the need for recascading
77 * the timers into the lower array levels. The previous 'classic' timer wheel
78 * implementation of the kernel already violated the 'exact' expiry by adding
79 * slack to the expiry time to provide batched expiration. The granularity
80 * levels provide implicit batching.
81 *
82 * This is an optimization of the original timer wheel implementation for the
83 * majority of the timer wheel use cases: timeouts. The vast majority of
84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
85 * the timeout expires it indicates that normal operation is disturbed, so it
86 * does not matter much whether the timeout comes with a slight delay.
87 *
88 * The only exception to this are networking timers with a small expiry
89 * time. They rely on the granularity. Those fit into the first wheel level,
90 * which has HZ granularity.
91 *
92 * We don't have cascading anymore. timers with a expiry time above the
93 * capacity of the last wheel level are force expired at the maximum timeout
94 * value of the last wheel level. From data sampling we know that the maximum
95 * value observed is 5 days (network connection tracking), so this should not
96 * be an issue.
97 *
98 * The currently chosen array constants values are a good compromise between
99 * array size and granularity.
100 *
101 * This results in the following granularity and range levels:
102 *
103 * HZ 1000 steps
104 * Level Offset Granularity Range
105 * 0 0 1 ms 0 ms - 63 ms
106 * 1 64 8 ms 64 ms - 511 ms
107 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
108 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
109 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
110 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
111 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
112 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
113 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
114 *
115 * HZ 300
116 * Level Offset Granularity Range
117 * 0 0 3 ms 0 ms - 210 ms
118 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
119 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
120 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
121 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
122 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
123 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
124 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
125 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
126 *
127 * HZ 250
128 * Level Offset Granularity Range
129 * 0 0 4 ms 0 ms - 255 ms
130 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
131 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
132 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
133 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
134 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
135 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
136 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
137 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
138 *
139 * HZ 100
140 * Level Offset Granularity Range
141 * 0 0 10 ms 0 ms - 630 ms
142 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
143 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
144 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
145 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
146 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
147 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
148 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
149 */
150
151 /* Clock divisor for the next level */
152 #define LVL_CLK_SHIFT 3
153 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
154 #define LVL_CLK_MASK (LVL_CLK_DIV - 1)
155 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
156 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
157
158 /*
159 * The time start value for each level to select the bucket at enqueue
160 * time.
161 */
162 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
163
164 /* Size of each clock level */
165 #define LVL_BITS 6
166 #define LVL_SIZE (1UL << LVL_BITS)
167 #define LVL_MASK (LVL_SIZE - 1)
168 #define LVL_OFFS(n) ((n) * LVL_SIZE)
169
170 /* Level depth */
171 #if HZ > 100
172 # define LVL_DEPTH 9
173 # else
174 # define LVL_DEPTH 8
175 #endif
176
177 /* The cutoff (max. capacity of the wheel) */
178 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
179 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
180
181 /*
182 * The resulting wheel size. If NOHZ is configured we allocate two
183 * wheels so we have a separate storage for the deferrable timers.
184 */
185 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
186
187 #ifdef CONFIG_NO_HZ_COMMON
188 # define NR_BASES 2
189 # define BASE_STD 0
190 # define BASE_DEF 1
191 #else
192 # define NR_BASES 1
193 # define BASE_STD 0
194 # define BASE_DEF 0
195 #endif
196
197 struct timer_base {
198 raw_spinlock_t lock;
199 struct timer_list *running_timer;
200 unsigned long clk;
201 unsigned long next_expiry;
202 unsigned int cpu;
203 bool migration_enabled;
204 bool nohz_active;
205 bool is_idle;
206 DECLARE_BITMAP(pending_map, WHEEL_SIZE);
207 struct hlist_head vectors[WHEEL_SIZE];
208 } ____cacheline_aligned;
209
210 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
211
212 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
213 unsigned int sysctl_timer_migration = 1;
214
215 void timers_update_migration(bool update_nohz)
216 {
217 bool on = sysctl_timer_migration && tick_nohz_active;
218 unsigned int cpu;
219
220 /* Avoid the loop, if nothing to update */
221 if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
222 return;
223
224 for_each_possible_cpu(cpu) {
225 per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
226 per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
227 per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
228 if (!update_nohz)
229 continue;
230 per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
231 per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
232 per_cpu(hrtimer_bases.nohz_active, cpu) = true;
233 }
234 }
235
236 int timer_migration_handler(struct ctl_table *table, int write,
237 void __user *buffer, size_t *lenp,
238 loff_t *ppos)
239 {
240 static DEFINE_MUTEX(mutex);
241 int ret;
242
243 mutex_lock(&mutex);
244 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
245 if (!ret && write)
246 timers_update_migration(false);
247 mutex_unlock(&mutex);
248 return ret;
249 }
250 #endif
251
252 static unsigned long round_jiffies_common(unsigned long j, int cpu,
253 bool force_up)
254 {
255 int rem;
256 unsigned long original = j;
257
258 /*
259 * We don't want all cpus firing their timers at once hitting the
260 * same lock or cachelines, so we skew each extra cpu with an extra
261 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
262 * already did this.
263 * The skew is done by adding 3*cpunr, then round, then subtract this
264 * extra offset again.
265 */
266 j += cpu * 3;
267
268 rem = j % HZ;
269
270 /*
271 * If the target jiffie is just after a whole second (which can happen
272 * due to delays of the timer irq, long irq off times etc etc) then
273 * we should round down to the whole second, not up. Use 1/4th second
274 * as cutoff for this rounding as an extreme upper bound for this.
275 * But never round down if @force_up is set.
276 */
277 if (rem < HZ/4 && !force_up) /* round down */
278 j = j - rem;
279 else /* round up */
280 j = j - rem + HZ;
281
282 /* now that we have rounded, subtract the extra skew again */
283 j -= cpu * 3;
284
285 /*
286 * Make sure j is still in the future. Otherwise return the
287 * unmodified value.
288 */
289 return time_is_after_jiffies(j) ? j : original;
290 }
291
292 /**
293 * __round_jiffies - function to round jiffies to a full second
294 * @j: the time in (absolute) jiffies that should be rounded
295 * @cpu: the processor number on which the timeout will happen
296 *
297 * __round_jiffies() rounds an absolute time in the future (in jiffies)
298 * up or down to (approximately) full seconds. This is useful for timers
299 * for which the exact time they fire does not matter too much, as long as
300 * they fire approximately every X seconds.
301 *
302 * By rounding these timers to whole seconds, all such timers will fire
303 * at the same time, rather than at various times spread out. The goal
304 * of this is to have the CPU wake up less, which saves power.
305 *
306 * The exact rounding is skewed for each processor to avoid all
307 * processors firing at the exact same time, which could lead
308 * to lock contention or spurious cache line bouncing.
309 *
310 * The return value is the rounded version of the @j parameter.
311 */
312 unsigned long __round_jiffies(unsigned long j, int cpu)
313 {
314 return round_jiffies_common(j, cpu, false);
315 }
316 EXPORT_SYMBOL_GPL(__round_jiffies);
317
318 /**
319 * __round_jiffies_relative - function to round jiffies to a full second
320 * @j: the time in (relative) jiffies that should be rounded
321 * @cpu: the processor number on which the timeout will happen
322 *
323 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
324 * up or down to (approximately) full seconds. This is useful for timers
325 * for which the exact time they fire does not matter too much, as long as
326 * they fire approximately every X seconds.
327 *
328 * By rounding these timers to whole seconds, all such timers will fire
329 * at the same time, rather than at various times spread out. The goal
330 * of this is to have the CPU wake up less, which saves power.
331 *
332 * The exact rounding is skewed for each processor to avoid all
333 * processors firing at the exact same time, which could lead
334 * to lock contention or spurious cache line bouncing.
335 *
336 * The return value is the rounded version of the @j parameter.
337 */
338 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
339 {
340 unsigned long j0 = jiffies;
341
342 /* Use j0 because jiffies might change while we run */
343 return round_jiffies_common(j + j0, cpu, false) - j0;
344 }
345 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
346
347 /**
348 * round_jiffies - function to round jiffies to a full second
349 * @j: the time in (absolute) jiffies that should be rounded
350 *
351 * round_jiffies() rounds an absolute time in the future (in jiffies)
352 * up or down to (approximately) full seconds. This is useful for timers
353 * for which the exact time they fire does not matter too much, as long as
354 * they fire approximately every X seconds.
355 *
356 * By rounding these timers to whole seconds, all such timers will fire
357 * at the same time, rather than at various times spread out. The goal
358 * of this is to have the CPU wake up less, which saves power.
359 *
360 * The return value is the rounded version of the @j parameter.
361 */
362 unsigned long round_jiffies(unsigned long j)
363 {
364 return round_jiffies_common(j, raw_smp_processor_id(), false);
365 }
366 EXPORT_SYMBOL_GPL(round_jiffies);
367
368 /**
369 * round_jiffies_relative - function to round jiffies to a full second
370 * @j: the time in (relative) jiffies that should be rounded
371 *
372 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
373 * up or down to (approximately) full seconds. This is useful for timers
374 * for which the exact time they fire does not matter too much, as long as
375 * they fire approximately every X seconds.
376 *
377 * By rounding these timers to whole seconds, all such timers will fire
378 * at the same time, rather than at various times spread out. The goal
379 * of this is to have the CPU wake up less, which saves power.
380 *
381 * The return value is the rounded version of the @j parameter.
382 */
383 unsigned long round_jiffies_relative(unsigned long j)
384 {
385 return __round_jiffies_relative(j, raw_smp_processor_id());
386 }
387 EXPORT_SYMBOL_GPL(round_jiffies_relative);
388
389 /**
390 * __round_jiffies_up - function to round jiffies up to a full second
391 * @j: the time in (absolute) jiffies that should be rounded
392 * @cpu: the processor number on which the timeout will happen
393 *
394 * This is the same as __round_jiffies() except that it will never
395 * round down. This is useful for timeouts for which the exact time
396 * of firing does not matter too much, as long as they don't fire too
397 * early.
398 */
399 unsigned long __round_jiffies_up(unsigned long j, int cpu)
400 {
401 return round_jiffies_common(j, cpu, true);
402 }
403 EXPORT_SYMBOL_GPL(__round_jiffies_up);
404
405 /**
406 * __round_jiffies_up_relative - function to round jiffies up to a full second
407 * @j: the time in (relative) jiffies that should be rounded
408 * @cpu: the processor number on which the timeout will happen
409 *
410 * This is the same as __round_jiffies_relative() except that it will never
411 * round down. This is useful for timeouts for which the exact time
412 * of firing does not matter too much, as long as they don't fire too
413 * early.
414 */
415 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
416 {
417 unsigned long j0 = jiffies;
418
419 /* Use j0 because jiffies might change while we run */
420 return round_jiffies_common(j + j0, cpu, true) - j0;
421 }
422 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
423
424 /**
425 * round_jiffies_up - function to round jiffies up to a full second
426 * @j: the time in (absolute) jiffies that should be rounded
427 *
428 * This is the same as round_jiffies() except that it will never
429 * round down. This is useful for timeouts for which the exact time
430 * of firing does not matter too much, as long as they don't fire too
431 * early.
432 */
433 unsigned long round_jiffies_up(unsigned long j)
434 {
435 return round_jiffies_common(j, raw_smp_processor_id(), true);
436 }
437 EXPORT_SYMBOL_GPL(round_jiffies_up);
438
439 /**
440 * round_jiffies_up_relative - function to round jiffies up to a full second
441 * @j: the time in (relative) jiffies that should be rounded
442 *
443 * This is the same as round_jiffies_relative() except that it will never
444 * round down. This is useful for timeouts for which the exact time
445 * of firing does not matter too much, as long as they don't fire too
446 * early.
447 */
448 unsigned long round_jiffies_up_relative(unsigned long j)
449 {
450 return __round_jiffies_up_relative(j, raw_smp_processor_id());
451 }
452 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
453
454
455 static inline unsigned int timer_get_idx(struct timer_list *timer)
456 {
457 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
458 }
459
460 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
461 {
462 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
463 idx << TIMER_ARRAYSHIFT;
464 }
465
466 /*
467 * Helper function to calculate the array index for a given expiry
468 * time.
469 */
470 static inline unsigned calc_index(unsigned expires, unsigned lvl)
471 {
472 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
473 return LVL_OFFS(lvl) + (expires & LVL_MASK);
474 }
475
476 static int calc_wheel_index(unsigned long expires, unsigned long clk)
477 {
478 unsigned long delta = expires - clk;
479 unsigned int idx;
480
481 if (delta < LVL_START(1)) {
482 idx = calc_index(expires, 0);
483 } else if (delta < LVL_START(2)) {
484 idx = calc_index(expires, 1);
485 } else if (delta < LVL_START(3)) {
486 idx = calc_index(expires, 2);
487 } else if (delta < LVL_START(4)) {
488 idx = calc_index(expires, 3);
489 } else if (delta < LVL_START(5)) {
490 idx = calc_index(expires, 4);
491 } else if (delta < LVL_START(6)) {
492 idx = calc_index(expires, 5);
493 } else if (delta < LVL_START(7)) {
494 idx = calc_index(expires, 6);
495 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
496 idx = calc_index(expires, 7);
497 } else if ((long) delta < 0) {
498 idx = clk & LVL_MASK;
499 } else {
500 /*
501 * Force expire obscene large timeouts to expire at the
502 * capacity limit of the wheel.
503 */
504 if (expires >= WHEEL_TIMEOUT_CUTOFF)
505 expires = WHEEL_TIMEOUT_MAX;
506
507 idx = calc_index(expires, LVL_DEPTH - 1);
508 }
509 return idx;
510 }
511
512 /*
513 * Enqueue the timer into the hash bucket, mark it pending in
514 * the bitmap and store the index in the timer flags.
515 */
516 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
517 unsigned int idx)
518 {
519 hlist_add_head(&timer->entry, base->vectors + idx);
520 __set_bit(idx, base->pending_map);
521 timer_set_idx(timer, idx);
522 }
523
524 static void
525 __internal_add_timer(struct timer_base *base, struct timer_list *timer)
526 {
527 unsigned int idx;
528
529 idx = calc_wheel_index(timer->expires, base->clk);
530 enqueue_timer(base, timer, idx);
531 }
532
533 static void
534 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
535 {
536 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
537 return;
538
539 /*
540 * TODO: This wants some optimizing similar to the code below, but we
541 * will do that when we switch from push to pull for deferrable timers.
542 */
543 if (timer->flags & TIMER_DEFERRABLE) {
544 if (tick_nohz_full_cpu(base->cpu))
545 wake_up_nohz_cpu(base->cpu);
546 return;
547 }
548
549 /*
550 * We might have to IPI the remote CPU if the base is idle and the
551 * timer is not deferrable. If the other CPU is on the way to idle
552 * then it can't set base->is_idle as we hold the base lock:
553 */
554 if (!base->is_idle)
555 return;
556
557 /* Check whether this is the new first expiring timer: */
558 if (time_after_eq(timer->expires, base->next_expiry))
559 return;
560
561 /*
562 * Set the next expiry time and kick the CPU so it can reevaluate the
563 * wheel:
564 */
565 base->next_expiry = timer->expires;
566 wake_up_nohz_cpu(base->cpu);
567 }
568
569 static void
570 internal_add_timer(struct timer_base *base, struct timer_list *timer)
571 {
572 __internal_add_timer(base, timer);
573 trigger_dyntick_cpu(base, timer);
574 }
575
576 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
577
578 static struct debug_obj_descr timer_debug_descr;
579
580 static void *timer_debug_hint(void *addr)
581 {
582 return ((struct timer_list *) addr)->function;
583 }
584
585 static bool timer_is_static_object(void *addr)
586 {
587 struct timer_list *timer = addr;
588
589 return (timer->entry.pprev == NULL &&
590 timer->entry.next == TIMER_ENTRY_STATIC);
591 }
592
593 /*
594 * fixup_init is called when:
595 * - an active object is initialized
596 */
597 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
598 {
599 struct timer_list *timer = addr;
600
601 switch (state) {
602 case ODEBUG_STATE_ACTIVE:
603 del_timer_sync(timer);
604 debug_object_init(timer, &timer_debug_descr);
605 return true;
606 default:
607 return false;
608 }
609 }
610
611 /* Stub timer callback for improperly used timers. */
612 static void stub_timer(unsigned long data)
613 {
614 WARN_ON(1);
615 }
616
617 /*
618 * fixup_activate is called when:
619 * - an active object is activated
620 * - an unknown non-static object is activated
621 */
622 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
623 {
624 struct timer_list *timer = addr;
625
626 switch (state) {
627 case ODEBUG_STATE_NOTAVAILABLE:
628 setup_timer(timer, stub_timer, 0);
629 return true;
630
631 case ODEBUG_STATE_ACTIVE:
632 WARN_ON(1);
633
634 default:
635 return false;
636 }
637 }
638
639 /*
640 * fixup_free is called when:
641 * - an active object is freed
642 */
643 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
644 {
645 struct timer_list *timer = addr;
646
647 switch (state) {
648 case ODEBUG_STATE_ACTIVE:
649 del_timer_sync(timer);
650 debug_object_free(timer, &timer_debug_descr);
651 return true;
652 default:
653 return false;
654 }
655 }
656
657 /*
658 * fixup_assert_init is called when:
659 * - an untracked/uninit-ed object is found
660 */
661 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
662 {
663 struct timer_list *timer = addr;
664
665 switch (state) {
666 case ODEBUG_STATE_NOTAVAILABLE:
667 setup_timer(timer, stub_timer, 0);
668 return true;
669 default:
670 return false;
671 }
672 }
673
674 static struct debug_obj_descr timer_debug_descr = {
675 .name = "timer_list",
676 .debug_hint = timer_debug_hint,
677 .is_static_object = timer_is_static_object,
678 .fixup_init = timer_fixup_init,
679 .fixup_activate = timer_fixup_activate,
680 .fixup_free = timer_fixup_free,
681 .fixup_assert_init = timer_fixup_assert_init,
682 };
683
684 static inline void debug_timer_init(struct timer_list *timer)
685 {
686 debug_object_init(timer, &timer_debug_descr);
687 }
688
689 static inline void debug_timer_activate(struct timer_list *timer)
690 {
691 debug_object_activate(timer, &timer_debug_descr);
692 }
693
694 static inline void debug_timer_deactivate(struct timer_list *timer)
695 {
696 debug_object_deactivate(timer, &timer_debug_descr);
697 }
698
699 static inline void debug_timer_free(struct timer_list *timer)
700 {
701 debug_object_free(timer, &timer_debug_descr);
702 }
703
704 static inline void debug_timer_assert_init(struct timer_list *timer)
705 {
706 debug_object_assert_init(timer, &timer_debug_descr);
707 }
708
709 static void do_init_timer(struct timer_list *timer, unsigned int flags,
710 const char *name, struct lock_class_key *key);
711
712 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
713 const char *name, struct lock_class_key *key)
714 {
715 debug_object_init_on_stack(timer, &timer_debug_descr);
716 do_init_timer(timer, flags, name, key);
717 }
718 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
719
720 void destroy_timer_on_stack(struct timer_list *timer)
721 {
722 debug_object_free(timer, &timer_debug_descr);
723 }
724 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
725
726 #else
727 static inline void debug_timer_init(struct timer_list *timer) { }
728 static inline void debug_timer_activate(struct timer_list *timer) { }
729 static inline void debug_timer_deactivate(struct timer_list *timer) { }
730 static inline void debug_timer_assert_init(struct timer_list *timer) { }
731 #endif
732
733 static inline void debug_init(struct timer_list *timer)
734 {
735 debug_timer_init(timer);
736 trace_timer_init(timer);
737 }
738
739 static inline void
740 debug_activate(struct timer_list *timer, unsigned long expires)
741 {
742 debug_timer_activate(timer);
743 trace_timer_start(timer, expires, timer->flags);
744 }
745
746 static inline void debug_deactivate(struct timer_list *timer)
747 {
748 debug_timer_deactivate(timer);
749 trace_timer_cancel(timer);
750 }
751
752 static inline void debug_assert_init(struct timer_list *timer)
753 {
754 debug_timer_assert_init(timer);
755 }
756
757 static void do_init_timer(struct timer_list *timer, unsigned int flags,
758 const char *name, struct lock_class_key *key)
759 {
760 timer->entry.pprev = NULL;
761 timer->flags = flags | raw_smp_processor_id();
762 lockdep_init_map(&timer->lockdep_map, name, key, 0);
763 }
764
765 /**
766 * init_timer_key - initialize a timer
767 * @timer: the timer to be initialized
768 * @flags: timer flags
769 * @name: name of the timer
770 * @key: lockdep class key of the fake lock used for tracking timer
771 * sync lock dependencies
772 *
773 * init_timer_key() must be done to a timer prior calling *any* of the
774 * other timer functions.
775 */
776 void init_timer_key(struct timer_list *timer, unsigned int flags,
777 const char *name, struct lock_class_key *key)
778 {
779 debug_init(timer);
780 do_init_timer(timer, flags, name, key);
781 }
782 EXPORT_SYMBOL(init_timer_key);
783
784 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
785 {
786 struct hlist_node *entry = &timer->entry;
787
788 debug_deactivate(timer);
789
790 __hlist_del(entry);
791 if (clear_pending)
792 entry->pprev = NULL;
793 entry->next = LIST_POISON2;
794 }
795
796 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
797 bool clear_pending)
798 {
799 unsigned idx = timer_get_idx(timer);
800
801 if (!timer_pending(timer))
802 return 0;
803
804 if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
805 __clear_bit(idx, base->pending_map);
806
807 detach_timer(timer, clear_pending);
808 return 1;
809 }
810
811 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
812 {
813 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
814
815 /*
816 * If the timer is deferrable and nohz is active then we need to use
817 * the deferrable base.
818 */
819 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
820 (tflags & TIMER_DEFERRABLE))
821 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
822 return base;
823 }
824
825 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
826 {
827 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
828
829 /*
830 * If the timer is deferrable and nohz is active then we need to use
831 * the deferrable base.
832 */
833 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
834 (tflags & TIMER_DEFERRABLE))
835 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
836 return base;
837 }
838
839 static inline struct timer_base *get_timer_base(u32 tflags)
840 {
841 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
842 }
843
844 #ifdef CONFIG_NO_HZ_COMMON
845 static inline struct timer_base *
846 get_target_base(struct timer_base *base, unsigned tflags)
847 {
848 #ifdef CONFIG_SMP
849 if ((tflags & TIMER_PINNED) || !base->migration_enabled)
850 return get_timer_this_cpu_base(tflags);
851 return get_timer_cpu_base(tflags, get_nohz_timer_target());
852 #else
853 return get_timer_this_cpu_base(tflags);
854 #endif
855 }
856
857 static inline void forward_timer_base(struct timer_base *base)
858 {
859 unsigned long jnow = READ_ONCE(jiffies);
860
861 /*
862 * We only forward the base when it's idle and we have a delta between
863 * base clock and jiffies.
864 */
865 if (!base->is_idle || (long) (jnow - base->clk) < 2)
866 return;
867
868 /*
869 * If the next expiry value is > jiffies, then we fast forward to
870 * jiffies otherwise we forward to the next expiry value.
871 */
872 if (time_after(base->next_expiry, jnow))
873 base->clk = jnow;
874 else
875 base->clk = base->next_expiry;
876 }
877 #else
878 static inline struct timer_base *
879 get_target_base(struct timer_base *base, unsigned tflags)
880 {
881 return get_timer_this_cpu_base(tflags);
882 }
883
884 static inline void forward_timer_base(struct timer_base *base) { }
885 #endif
886
887
888 /*
889 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
890 * that all timers which are tied to this base are locked, and the base itself
891 * is locked too.
892 *
893 * So __run_timers/migrate_timers can safely modify all timers which could
894 * be found in the base->vectors array.
895 *
896 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
897 * to wait until the migration is done.
898 */
899 static struct timer_base *lock_timer_base(struct timer_list *timer,
900 unsigned long *flags)
901 __acquires(timer->base->lock)
902 {
903 for (;;) {
904 struct timer_base *base;
905 u32 tf;
906
907 /*
908 * We need to use READ_ONCE() here, otherwise the compiler
909 * might re-read @tf between the check for TIMER_MIGRATING
910 * and spin_lock().
911 */
912 tf = READ_ONCE(timer->flags);
913
914 if (!(tf & TIMER_MIGRATING)) {
915 base = get_timer_base(tf);
916 raw_spin_lock_irqsave(&base->lock, *flags);
917 if (timer->flags == tf)
918 return base;
919 raw_spin_unlock_irqrestore(&base->lock, *flags);
920 }
921 cpu_relax();
922 }
923 }
924
925 static inline int
926 __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
927 {
928 struct timer_base *base, *new_base;
929 unsigned int idx = UINT_MAX;
930 unsigned long clk = 0, flags;
931 int ret = 0;
932
933 BUG_ON(!timer->function);
934
935 /*
936 * This is a common optimization triggered by the networking code - if
937 * the timer is re-modified to have the same timeout or ends up in the
938 * same array bucket then just return:
939 */
940 if (timer_pending(timer)) {
941 if (timer->expires == expires)
942 return 1;
943
944 /*
945 * We lock timer base and calculate the bucket index right
946 * here. If the timer ends up in the same bucket, then we
947 * just update the expiry time and avoid the whole
948 * dequeue/enqueue dance.
949 */
950 base = lock_timer_base(timer, &flags);
951
952 clk = base->clk;
953 idx = calc_wheel_index(expires, clk);
954
955 /*
956 * Retrieve and compare the array index of the pending
957 * timer. If it matches set the expiry to the new value so a
958 * subsequent call will exit in the expires check above.
959 */
960 if (idx == timer_get_idx(timer)) {
961 timer->expires = expires;
962 ret = 1;
963 goto out_unlock;
964 }
965 } else {
966 base = lock_timer_base(timer, &flags);
967 }
968
969 ret = detach_if_pending(timer, base, false);
970 if (!ret && pending_only)
971 goto out_unlock;
972
973 debug_activate(timer, expires);
974
975 new_base = get_target_base(base, timer->flags);
976
977 if (base != new_base) {
978 /*
979 * We are trying to schedule the timer on the new base.
980 * However we can't change timer's base while it is running,
981 * otherwise del_timer_sync() can't detect that the timer's
982 * handler yet has not finished. This also guarantees that the
983 * timer is serialized wrt itself.
984 */
985 if (likely(base->running_timer != timer)) {
986 /* See the comment in lock_timer_base() */
987 timer->flags |= TIMER_MIGRATING;
988
989 raw_spin_unlock(&base->lock);
990 base = new_base;
991 raw_spin_lock(&base->lock);
992 WRITE_ONCE(timer->flags,
993 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
994 }
995 }
996
997 /* Try to forward a stale timer base clock */
998 forward_timer_base(base);
999
1000 timer->expires = expires;
1001 /*
1002 * If 'idx' was calculated above and the base time did not advance
1003 * between calculating 'idx' and possibly switching the base, only
1004 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1005 * we need to (re)calculate the wheel index via
1006 * internal_add_timer().
1007 */
1008 if (idx != UINT_MAX && clk == base->clk) {
1009 enqueue_timer(base, timer, idx);
1010 trigger_dyntick_cpu(base, timer);
1011 } else {
1012 internal_add_timer(base, timer);
1013 }
1014
1015 out_unlock:
1016 raw_spin_unlock_irqrestore(&base->lock, flags);
1017
1018 return ret;
1019 }
1020
1021 /**
1022 * mod_timer_pending - modify a pending timer's timeout
1023 * @timer: the pending timer to be modified
1024 * @expires: new timeout in jiffies
1025 *
1026 * mod_timer_pending() is the same for pending timers as mod_timer(),
1027 * but will not re-activate and modify already deleted timers.
1028 *
1029 * It is useful for unserialized use of timers.
1030 */
1031 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1032 {
1033 return __mod_timer(timer, expires, true);
1034 }
1035 EXPORT_SYMBOL(mod_timer_pending);
1036
1037 /**
1038 * mod_timer - modify a timer's timeout
1039 * @timer: the timer to be modified
1040 * @expires: new timeout in jiffies
1041 *
1042 * mod_timer() is a more efficient way to update the expire field of an
1043 * active timer (if the timer is inactive it will be activated)
1044 *
1045 * mod_timer(timer, expires) is equivalent to:
1046 *
1047 * del_timer(timer); timer->expires = expires; add_timer(timer);
1048 *
1049 * Note that if there are multiple unserialized concurrent users of the
1050 * same timer, then mod_timer() is the only safe way to modify the timeout,
1051 * since add_timer() cannot modify an already running timer.
1052 *
1053 * The function returns whether it has modified a pending timer or not.
1054 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1055 * active timer returns 1.)
1056 */
1057 int mod_timer(struct timer_list *timer, unsigned long expires)
1058 {
1059 return __mod_timer(timer, expires, false);
1060 }
1061 EXPORT_SYMBOL(mod_timer);
1062
1063 /**
1064 * add_timer - start a timer
1065 * @timer: the timer to be added
1066 *
1067 * The kernel will do a ->function(->data) callback from the
1068 * timer interrupt at the ->expires point in the future. The
1069 * current time is 'jiffies'.
1070 *
1071 * The timer's ->expires, ->function (and if the handler uses it, ->data)
1072 * fields must be set prior calling this function.
1073 *
1074 * Timers with an ->expires field in the past will be executed in the next
1075 * timer tick.
1076 */
1077 void add_timer(struct timer_list *timer)
1078 {
1079 BUG_ON(timer_pending(timer));
1080 mod_timer(timer, timer->expires);
1081 }
1082 EXPORT_SYMBOL(add_timer);
1083
1084 /**
1085 * add_timer_on - start a timer on a particular CPU
1086 * @timer: the timer to be added
1087 * @cpu: the CPU to start it on
1088 *
1089 * This is not very scalable on SMP. Double adds are not possible.
1090 */
1091 void add_timer_on(struct timer_list *timer, int cpu)
1092 {
1093 struct timer_base *new_base, *base;
1094 unsigned long flags;
1095
1096 BUG_ON(timer_pending(timer) || !timer->function);
1097
1098 new_base = get_timer_cpu_base(timer->flags, cpu);
1099
1100 /*
1101 * If @timer was on a different CPU, it should be migrated with the
1102 * old base locked to prevent other operations proceeding with the
1103 * wrong base locked. See lock_timer_base().
1104 */
1105 base = lock_timer_base(timer, &flags);
1106 if (base != new_base) {
1107 timer->flags |= TIMER_MIGRATING;
1108
1109 raw_spin_unlock(&base->lock);
1110 base = new_base;
1111 raw_spin_lock(&base->lock);
1112 WRITE_ONCE(timer->flags,
1113 (timer->flags & ~TIMER_BASEMASK) | cpu);
1114 }
1115
1116 debug_activate(timer, timer->expires);
1117 internal_add_timer(base, timer);
1118 raw_spin_unlock_irqrestore(&base->lock, flags);
1119 }
1120 EXPORT_SYMBOL_GPL(add_timer_on);
1121
1122 /**
1123 * del_timer - deactivate a timer.
1124 * @timer: the timer to be deactivated
1125 *
1126 * del_timer() deactivates a timer - this works on both active and inactive
1127 * timers.
1128 *
1129 * The function returns whether it has deactivated a pending timer or not.
1130 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1131 * active timer returns 1.)
1132 */
1133 int del_timer(struct timer_list *timer)
1134 {
1135 struct timer_base *base;
1136 unsigned long flags;
1137 int ret = 0;
1138
1139 debug_assert_init(timer);
1140
1141 if (timer_pending(timer)) {
1142 base = lock_timer_base(timer, &flags);
1143 ret = detach_if_pending(timer, base, true);
1144 raw_spin_unlock_irqrestore(&base->lock, flags);
1145 }
1146
1147 return ret;
1148 }
1149 EXPORT_SYMBOL(del_timer);
1150
1151 /**
1152 * try_to_del_timer_sync - Try to deactivate a timer
1153 * @timer: timer to delete
1154 *
1155 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1156 * exit the timer is not queued and the handler is not running on any CPU.
1157 */
1158 int try_to_del_timer_sync(struct timer_list *timer)
1159 {
1160 struct timer_base *base;
1161 unsigned long flags;
1162 int ret = -1;
1163
1164 debug_assert_init(timer);
1165
1166 base = lock_timer_base(timer, &flags);
1167
1168 if (base->running_timer != timer)
1169 ret = detach_if_pending(timer, base, true);
1170
1171 raw_spin_unlock_irqrestore(&base->lock, flags);
1172
1173 return ret;
1174 }
1175 EXPORT_SYMBOL(try_to_del_timer_sync);
1176
1177 #ifdef CONFIG_SMP
1178 /**
1179 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1180 * @timer: the timer to be deactivated
1181 *
1182 * This function only differs from del_timer() on SMP: besides deactivating
1183 * the timer it also makes sure the handler has finished executing on other
1184 * CPUs.
1185 *
1186 * Synchronization rules: Callers must prevent restarting of the timer,
1187 * otherwise this function is meaningless. It must not be called from
1188 * interrupt contexts unless the timer is an irqsafe one. The caller must
1189 * not hold locks which would prevent completion of the timer's
1190 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1191 * timer is not queued and the handler is not running on any CPU.
1192 *
1193 * Note: For !irqsafe timers, you must not hold locks that are held in
1194 * interrupt context while calling this function. Even if the lock has
1195 * nothing to do with the timer in question. Here's why:
1196 *
1197 * CPU0 CPU1
1198 * ---- ----
1199 * <SOFTIRQ>
1200 * call_timer_fn();
1201 * base->running_timer = mytimer;
1202 * spin_lock_irq(somelock);
1203 * <IRQ>
1204 * spin_lock(somelock);
1205 * del_timer_sync(mytimer);
1206 * while (base->running_timer == mytimer);
1207 *
1208 * Now del_timer_sync() will never return and never release somelock.
1209 * The interrupt on the other CPU is waiting to grab somelock but
1210 * it has interrupted the softirq that CPU0 is waiting to finish.
1211 *
1212 * The function returns whether it has deactivated a pending timer or not.
1213 */
1214 int del_timer_sync(struct timer_list *timer)
1215 {
1216 #ifdef CONFIG_LOCKDEP
1217 unsigned long flags;
1218
1219 /*
1220 * If lockdep gives a backtrace here, please reference
1221 * the synchronization rules above.
1222 */
1223 local_irq_save(flags);
1224 lock_map_acquire(&timer->lockdep_map);
1225 lock_map_release(&timer->lockdep_map);
1226 local_irq_restore(flags);
1227 #endif
1228 /*
1229 * don't use it in hardirq context, because it
1230 * could lead to deadlock.
1231 */
1232 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1233 for (;;) {
1234 int ret = try_to_del_timer_sync(timer);
1235 if (ret >= 0)
1236 return ret;
1237 cpu_relax();
1238 }
1239 }
1240 EXPORT_SYMBOL(del_timer_sync);
1241 #endif
1242
1243 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1244 unsigned long data)
1245 {
1246 int count = preempt_count();
1247
1248 #ifdef CONFIG_LOCKDEP
1249 /*
1250 * It is permissible to free the timer from inside the
1251 * function that is called from it, this we need to take into
1252 * account for lockdep too. To avoid bogus "held lock freed"
1253 * warnings as well as problems when looking into
1254 * timer->lockdep_map, make a copy and use that here.
1255 */
1256 struct lockdep_map lockdep_map;
1257
1258 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1259 #endif
1260 /*
1261 * Couple the lock chain with the lock chain at
1262 * del_timer_sync() by acquiring the lock_map around the fn()
1263 * call here and in del_timer_sync().
1264 */
1265 lock_map_acquire(&lockdep_map);
1266
1267 trace_timer_expire_entry(timer);
1268 fn(data);
1269 trace_timer_expire_exit(timer);
1270
1271 lock_map_release(&lockdep_map);
1272
1273 if (count != preempt_count()) {
1274 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1275 fn, count, preempt_count());
1276 /*
1277 * Restore the preempt count. That gives us a decent
1278 * chance to survive and extract information. If the
1279 * callback kept a lock held, bad luck, but not worse
1280 * than the BUG() we had.
1281 */
1282 preempt_count_set(count);
1283 }
1284 }
1285
1286 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1287 {
1288 while (!hlist_empty(head)) {
1289 struct timer_list *timer;
1290 void (*fn)(unsigned long);
1291 unsigned long data;
1292
1293 timer = hlist_entry(head->first, struct timer_list, entry);
1294
1295 base->running_timer = timer;
1296 detach_timer(timer, true);
1297
1298 fn = timer->function;
1299 data = timer->data;
1300
1301 if (timer->flags & TIMER_IRQSAFE) {
1302 raw_spin_unlock(&base->lock);
1303 call_timer_fn(timer, fn, data);
1304 raw_spin_lock(&base->lock);
1305 } else {
1306 raw_spin_unlock_irq(&base->lock);
1307 call_timer_fn(timer, fn, data);
1308 raw_spin_lock_irq(&base->lock);
1309 }
1310 }
1311 }
1312
1313 static int __collect_expired_timers(struct timer_base *base,
1314 struct hlist_head *heads)
1315 {
1316 unsigned long clk = base->clk;
1317 struct hlist_head *vec;
1318 int i, levels = 0;
1319 unsigned int idx;
1320
1321 for (i = 0; i < LVL_DEPTH; i++) {
1322 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1323
1324 if (__test_and_clear_bit(idx, base->pending_map)) {
1325 vec = base->vectors + idx;
1326 hlist_move_list(vec, heads++);
1327 levels++;
1328 }
1329 /* Is it time to look at the next level? */
1330 if (clk & LVL_CLK_MASK)
1331 break;
1332 /* Shift clock for the next level granularity */
1333 clk >>= LVL_CLK_SHIFT;
1334 }
1335 return levels;
1336 }
1337
1338 #ifdef CONFIG_NO_HZ_COMMON
1339 /*
1340 * Find the next pending bucket of a level. Search from level start (@offset)
1341 * + @clk upwards and if nothing there, search from start of the level
1342 * (@offset) up to @offset + clk.
1343 */
1344 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1345 unsigned clk)
1346 {
1347 unsigned pos, start = offset + clk;
1348 unsigned end = offset + LVL_SIZE;
1349
1350 pos = find_next_bit(base->pending_map, end, start);
1351 if (pos < end)
1352 return pos - start;
1353
1354 pos = find_next_bit(base->pending_map, start, offset);
1355 return pos < start ? pos + LVL_SIZE - start : -1;
1356 }
1357
1358 /*
1359 * Search the first expiring timer in the various clock levels. Caller must
1360 * hold base->lock.
1361 */
1362 static unsigned long __next_timer_interrupt(struct timer_base *base)
1363 {
1364 unsigned long clk, next, adj;
1365 unsigned lvl, offset = 0;
1366
1367 next = base->clk + NEXT_TIMER_MAX_DELTA;
1368 clk = base->clk;
1369 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1370 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1371
1372 if (pos >= 0) {
1373 unsigned long tmp = clk + (unsigned long) pos;
1374
1375 tmp <<= LVL_SHIFT(lvl);
1376 if (time_before(tmp, next))
1377 next = tmp;
1378 }
1379 /*
1380 * Clock for the next level. If the current level clock lower
1381 * bits are zero, we look at the next level as is. If not we
1382 * need to advance it by one because that's going to be the
1383 * next expiring bucket in that level. base->clk is the next
1384 * expiring jiffie. So in case of:
1385 *
1386 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1387 * 0 0 0 0 0 0
1388 *
1389 * we have to look at all levels @index 0. With
1390 *
1391 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1392 * 0 0 0 0 0 2
1393 *
1394 * LVL0 has the next expiring bucket @index 2. The upper
1395 * levels have the next expiring bucket @index 1.
1396 *
1397 * In case that the propagation wraps the next level the same
1398 * rules apply:
1399 *
1400 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1401 * 0 0 0 0 F 2
1402 *
1403 * So after looking at LVL0 we get:
1404 *
1405 * LVL5 LVL4 LVL3 LVL2 LVL1
1406 * 0 0 0 1 0
1407 *
1408 * So no propagation from LVL1 to LVL2 because that happened
1409 * with the add already, but then we need to propagate further
1410 * from LVL2 to LVL3.
1411 *
1412 * So the simple check whether the lower bits of the current
1413 * level are 0 or not is sufficient for all cases.
1414 */
1415 adj = clk & LVL_CLK_MASK ? 1 : 0;
1416 clk >>= LVL_CLK_SHIFT;
1417 clk += adj;
1418 }
1419 return next;
1420 }
1421
1422 /*
1423 * Check, if the next hrtimer event is before the next timer wheel
1424 * event:
1425 */
1426 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1427 {
1428 u64 nextevt = hrtimer_get_next_event();
1429
1430 /*
1431 * If high resolution timers are enabled
1432 * hrtimer_get_next_event() returns KTIME_MAX.
1433 */
1434 if (expires <= nextevt)
1435 return expires;
1436
1437 /*
1438 * If the next timer is already expired, return the tick base
1439 * time so the tick is fired immediately.
1440 */
1441 if (nextevt <= basem)
1442 return basem;
1443
1444 /*
1445 * Round up to the next jiffie. High resolution timers are
1446 * off, so the hrtimers are expired in the tick and we need to
1447 * make sure that this tick really expires the timer to avoid
1448 * a ping pong of the nohz stop code.
1449 *
1450 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1451 */
1452 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1453 }
1454
1455 /**
1456 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1457 * @basej: base time jiffies
1458 * @basem: base time clock monotonic
1459 *
1460 * Returns the tick aligned clock monotonic time of the next pending
1461 * timer or KTIME_MAX if no timer is pending.
1462 */
1463 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1464 {
1465 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1466 u64 expires = KTIME_MAX;
1467 unsigned long nextevt;
1468 bool is_max_delta;
1469
1470 /*
1471 * Pretend that there is no timer pending if the cpu is offline.
1472 * Possible pending timers will be migrated later to an active cpu.
1473 */
1474 if (cpu_is_offline(smp_processor_id()))
1475 return expires;
1476
1477 raw_spin_lock(&base->lock);
1478 nextevt = __next_timer_interrupt(base);
1479 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1480 base->next_expiry = nextevt;
1481 /*
1482 * We have a fresh next event. Check whether we can forward the
1483 * base. We can only do that when @basej is past base->clk
1484 * otherwise we might rewind base->clk.
1485 */
1486 if (time_after(basej, base->clk)) {
1487 if (time_after(nextevt, basej))
1488 base->clk = basej;
1489 else if (time_after(nextevt, base->clk))
1490 base->clk = nextevt;
1491 }
1492
1493 if (time_before_eq(nextevt, basej)) {
1494 expires = basem;
1495 base->is_idle = false;
1496 } else {
1497 if (!is_max_delta)
1498 expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1499 /*
1500 * If we expect to sleep more than a tick, mark the base idle:
1501 */
1502 if ((expires - basem) > TICK_NSEC)
1503 base->is_idle = true;
1504 }
1505 raw_spin_unlock(&base->lock);
1506
1507 return cmp_next_hrtimer_event(basem, expires);
1508 }
1509
1510 /**
1511 * timer_clear_idle - Clear the idle state of the timer base
1512 *
1513 * Called with interrupts disabled
1514 */
1515 void timer_clear_idle(void)
1516 {
1517 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1518
1519 /*
1520 * We do this unlocked. The worst outcome is a remote enqueue sending
1521 * a pointless IPI, but taking the lock would just make the window for
1522 * sending the IPI a few instructions smaller for the cost of taking
1523 * the lock in the exit from idle path.
1524 */
1525 base->is_idle = false;
1526 }
1527
1528 static int collect_expired_timers(struct timer_base *base,
1529 struct hlist_head *heads)
1530 {
1531 /*
1532 * NOHZ optimization. After a long idle sleep we need to forward the
1533 * base to current jiffies. Avoid a loop by searching the bitfield for
1534 * the next expiring timer.
1535 */
1536 if ((long)(jiffies - base->clk) > 2) {
1537 unsigned long next = __next_timer_interrupt(base);
1538
1539 /*
1540 * If the next timer is ahead of time forward to current
1541 * jiffies, otherwise forward to the next expiry time:
1542 */
1543 if (time_after(next, jiffies)) {
1544 /* The call site will increment clock! */
1545 base->clk = jiffies - 1;
1546 return 0;
1547 }
1548 base->clk = next;
1549 }
1550 return __collect_expired_timers(base, heads);
1551 }
1552 #else
1553 static inline int collect_expired_timers(struct timer_base *base,
1554 struct hlist_head *heads)
1555 {
1556 return __collect_expired_timers(base, heads);
1557 }
1558 #endif
1559
1560 /*
1561 * Called from the timer interrupt handler to charge one tick to the current
1562 * process. user_tick is 1 if the tick is user time, 0 for system.
1563 */
1564 void update_process_times(int user_tick)
1565 {
1566 struct task_struct *p = current;
1567
1568 /* Note: this timer irq context must be accounted for as well. */
1569 account_process_tick(p, user_tick);
1570 run_local_timers();
1571 rcu_check_callbacks(user_tick);
1572 #ifdef CONFIG_IRQ_WORK
1573 if (in_irq())
1574 irq_work_tick();
1575 #endif
1576 scheduler_tick();
1577 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1578 run_posix_cpu_timers(p);
1579 }
1580
1581 /**
1582 * __run_timers - run all expired timers (if any) on this CPU.
1583 * @base: the timer vector to be processed.
1584 */
1585 static inline void __run_timers(struct timer_base *base)
1586 {
1587 struct hlist_head heads[LVL_DEPTH];
1588 int levels;
1589
1590 if (!time_after_eq(jiffies, base->clk))
1591 return;
1592
1593 raw_spin_lock_irq(&base->lock);
1594
1595 while (time_after_eq(jiffies, base->clk)) {
1596
1597 levels = collect_expired_timers(base, heads);
1598 base->clk++;
1599
1600 while (levels--)
1601 expire_timers(base, heads + levels);
1602 }
1603 base->running_timer = NULL;
1604 raw_spin_unlock_irq(&base->lock);
1605 }
1606
1607 /*
1608 * This function runs timers and the timer-tq in bottom half context.
1609 */
1610 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1611 {
1612 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1613
1614 __run_timers(base);
1615 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active)
1616 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1617 }
1618
1619 /*
1620 * Called by the local, per-CPU timer interrupt on SMP.
1621 */
1622 void run_local_timers(void)
1623 {
1624 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1625
1626 hrtimer_run_queues();
1627 /* Raise the softirq only if required. */
1628 if (time_before(jiffies, base->clk)) {
1629 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
1630 return;
1631 /* CPU is awake, so check the deferrable base. */
1632 base++;
1633 if (time_before(jiffies, base->clk))
1634 return;
1635 }
1636 raise_softirq(TIMER_SOFTIRQ);
1637 }
1638
1639 static void process_timeout(unsigned long __data)
1640 {
1641 wake_up_process((struct task_struct *)__data);
1642 }
1643
1644 /**
1645 * schedule_timeout - sleep until timeout
1646 * @timeout: timeout value in jiffies
1647 *
1648 * Make the current task sleep until @timeout jiffies have
1649 * elapsed. The routine will return immediately unless
1650 * the current task state has been set (see set_current_state()).
1651 *
1652 * You can set the task state as follows -
1653 *
1654 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1655 * pass before the routine returns unless the current task is explicitly
1656 * woken up, (e.g. by wake_up_process())".
1657 *
1658 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1659 * delivered to the current task or the current task is explicitly woken
1660 * up.
1661 *
1662 * The current task state is guaranteed to be TASK_RUNNING when this
1663 * routine returns.
1664 *
1665 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1666 * the CPU away without a bound on the timeout. In this case the return
1667 * value will be %MAX_SCHEDULE_TIMEOUT.
1668 *
1669 * Returns 0 when the timer has expired otherwise the remaining time in
1670 * jiffies will be returned. In all cases the return value is guaranteed
1671 * to be non-negative.
1672 */
1673 signed long __sched schedule_timeout(signed long timeout)
1674 {
1675 struct timer_list timer;
1676 unsigned long expire;
1677
1678 switch (timeout)
1679 {
1680 case MAX_SCHEDULE_TIMEOUT:
1681 /*
1682 * These two special cases are useful to be comfortable
1683 * in the caller. Nothing more. We could take
1684 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1685 * but I' d like to return a valid offset (>=0) to allow
1686 * the caller to do everything it want with the retval.
1687 */
1688 schedule();
1689 goto out;
1690 default:
1691 /*
1692 * Another bit of PARANOID. Note that the retval will be
1693 * 0 since no piece of kernel is supposed to do a check
1694 * for a negative retval of schedule_timeout() (since it
1695 * should never happens anyway). You just have the printk()
1696 * that will tell you if something is gone wrong and where.
1697 */
1698 if (timeout < 0) {
1699 printk(KERN_ERR "schedule_timeout: wrong timeout "
1700 "value %lx\n", timeout);
1701 dump_stack();
1702 current->state = TASK_RUNNING;
1703 goto out;
1704 }
1705 }
1706
1707 expire = timeout + jiffies;
1708
1709 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1710 __mod_timer(&timer, expire, false);
1711 schedule();
1712 del_singleshot_timer_sync(&timer);
1713
1714 /* Remove the timer from the object tracker */
1715 destroy_timer_on_stack(&timer);
1716
1717 timeout = expire - jiffies;
1718
1719 out:
1720 return timeout < 0 ? 0 : timeout;
1721 }
1722 EXPORT_SYMBOL(schedule_timeout);
1723
1724 /*
1725 * We can use __set_current_state() here because schedule_timeout() calls
1726 * schedule() unconditionally.
1727 */
1728 signed long __sched schedule_timeout_interruptible(signed long timeout)
1729 {
1730 __set_current_state(TASK_INTERRUPTIBLE);
1731 return schedule_timeout(timeout);
1732 }
1733 EXPORT_SYMBOL(schedule_timeout_interruptible);
1734
1735 signed long __sched schedule_timeout_killable(signed long timeout)
1736 {
1737 __set_current_state(TASK_KILLABLE);
1738 return schedule_timeout(timeout);
1739 }
1740 EXPORT_SYMBOL(schedule_timeout_killable);
1741
1742 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1743 {
1744 __set_current_state(TASK_UNINTERRUPTIBLE);
1745 return schedule_timeout(timeout);
1746 }
1747 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1748
1749 /*
1750 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1751 * to load average.
1752 */
1753 signed long __sched schedule_timeout_idle(signed long timeout)
1754 {
1755 __set_current_state(TASK_IDLE);
1756 return schedule_timeout(timeout);
1757 }
1758 EXPORT_SYMBOL(schedule_timeout_idle);
1759
1760 #ifdef CONFIG_HOTPLUG_CPU
1761 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1762 {
1763 struct timer_list *timer;
1764 int cpu = new_base->cpu;
1765
1766 while (!hlist_empty(head)) {
1767 timer = hlist_entry(head->first, struct timer_list, entry);
1768 detach_timer(timer, false);
1769 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1770 internal_add_timer(new_base, timer);
1771 }
1772 }
1773
1774 int timers_dead_cpu(unsigned int cpu)
1775 {
1776 struct timer_base *old_base;
1777 struct timer_base *new_base;
1778 int b, i;
1779
1780 BUG_ON(cpu_online(cpu));
1781
1782 for (b = 0; b < NR_BASES; b++) {
1783 old_base = per_cpu_ptr(&timer_bases[b], cpu);
1784 new_base = get_cpu_ptr(&timer_bases[b]);
1785 /*
1786 * The caller is globally serialized and nobody else
1787 * takes two locks at once, deadlock is not possible.
1788 */
1789 raw_spin_lock_irq(&new_base->lock);
1790 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1791
1792 BUG_ON(old_base->running_timer);
1793
1794 for (i = 0; i < WHEEL_SIZE; i++)
1795 migrate_timer_list(new_base, old_base->vectors + i);
1796
1797 raw_spin_unlock(&old_base->lock);
1798 raw_spin_unlock_irq(&new_base->lock);
1799 put_cpu_ptr(&timer_bases);
1800 }
1801 return 0;
1802 }
1803
1804 #endif /* CONFIG_HOTPLUG_CPU */
1805
1806 static void __init init_timer_cpu(int cpu)
1807 {
1808 struct timer_base *base;
1809 int i;
1810
1811 for (i = 0; i < NR_BASES; i++) {
1812 base = per_cpu_ptr(&timer_bases[i], cpu);
1813 base->cpu = cpu;
1814 raw_spin_lock_init(&base->lock);
1815 base->clk = jiffies;
1816 }
1817 }
1818
1819 static void __init init_timer_cpus(void)
1820 {
1821 int cpu;
1822
1823 for_each_possible_cpu(cpu)
1824 init_timer_cpu(cpu);
1825 }
1826
1827 void __init init_timers(void)
1828 {
1829 init_timer_cpus();
1830 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1831 }
1832
1833 /**
1834 * msleep - sleep safely even with waitqueue interruptions
1835 * @msecs: Time in milliseconds to sleep for
1836 */
1837 void msleep(unsigned int msecs)
1838 {
1839 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1840
1841 while (timeout)
1842 timeout = schedule_timeout_uninterruptible(timeout);
1843 }
1844
1845 EXPORT_SYMBOL(msleep);
1846
1847 /**
1848 * msleep_interruptible - sleep waiting for signals
1849 * @msecs: Time in milliseconds to sleep for
1850 */
1851 unsigned long msleep_interruptible(unsigned int msecs)
1852 {
1853 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1854
1855 while (timeout && !signal_pending(current))
1856 timeout = schedule_timeout_interruptible(timeout);
1857 return jiffies_to_msecs(timeout);
1858 }
1859
1860 EXPORT_SYMBOL(msleep_interruptible);
1861
1862 /**
1863 * usleep_range - Sleep for an approximate time
1864 * @min: Minimum time in usecs to sleep
1865 * @max: Maximum time in usecs to sleep
1866 *
1867 * In non-atomic context where the exact wakeup time is flexible, use
1868 * usleep_range() instead of udelay(). The sleep improves responsiveness
1869 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1870 * power usage by allowing hrtimers to take advantage of an already-
1871 * scheduled interrupt instead of scheduling a new one just for this sleep.
1872 */
1873 void __sched usleep_range(unsigned long min, unsigned long max)
1874 {
1875 ktime_t exp = ktime_add_us(ktime_get(), min);
1876 u64 delta = (u64)(max - min) * NSEC_PER_USEC;
1877
1878 for (;;) {
1879 __set_current_state(TASK_UNINTERRUPTIBLE);
1880 /* Do not return before the requested sleep time has elapsed */
1881 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
1882 break;
1883 }
1884 }
1885 EXPORT_SYMBOL(usleep_range);