]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/time/timer.c
timers: Move __run_timers() function
[mirror_ubuntu-bionic-kernel.git] / kernel / time / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/slab.h>
44 #include <linux/compat.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/unistd.h>
48 #include <asm/div64.h>
49 #include <asm/timex.h>
50 #include <asm/io.h>
51
52 #include "tick-internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/timer.h>
56
57 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
58
59 EXPORT_SYMBOL(jiffies_64);
60
61 /*
62 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
63 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
64 * level has a different granularity.
65 *
66 * The level granularity is: LVL_CLK_DIV ^ lvl
67 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
68 *
69 * The array level of a newly armed timer depends on the relative expiry
70 * time. The farther the expiry time is away the higher the array level and
71 * therefor the granularity becomes.
72 *
73 * Contrary to the original timer wheel implementation, which aims for 'exact'
74 * expiry of the timers, this implementation removes the need for recascading
75 * the timers into the lower array levels. The previous 'classic' timer wheel
76 * implementation of the kernel already violated the 'exact' expiry by adding
77 * slack to the expiry time to provide batched expiration. The granularity
78 * levels provide implicit batching.
79 *
80 * This is an optimization of the original timer wheel implementation for the
81 * majority of the timer wheel use cases: timeouts. The vast majority of
82 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
83 * the timeout expires it indicates that normal operation is disturbed, so it
84 * does not matter much whether the timeout comes with a slight delay.
85 *
86 * The only exception to this are networking timers with a small expiry
87 * time. They rely on the granularity. Those fit into the first wheel level,
88 * which has HZ granularity.
89 *
90 * We don't have cascading anymore. timers with a expiry time above the
91 * capacity of the last wheel level are force expired at the maximum timeout
92 * value of the last wheel level. From data sampling we know that the maximum
93 * value observed is 5 days (network connection tracking), so this should not
94 * be an issue.
95 *
96 * The currently chosen array constants values are a good compromise between
97 * array size and granularity.
98 *
99 * This results in the following granularity and range levels:
100 *
101 * HZ 1000 steps
102 * Level Offset Granularity Range
103 * 0 0 1 ms 0 ms - 63 ms
104 * 1 64 8 ms 64 ms - 511 ms
105 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
106 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
107 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
108 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
109 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
110 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
111 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
112 *
113 * HZ 300
114 * Level Offset Granularity Range
115 * 0 0 3 ms 0 ms - 210 ms
116 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
117 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
118 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
119 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
120 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
121 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
122 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
123 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
124 *
125 * HZ 250
126 * Level Offset Granularity Range
127 * 0 0 4 ms 0 ms - 255 ms
128 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
129 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
130 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
131 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
132 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
133 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
134 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
135 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
136 *
137 * HZ 100
138 * Level Offset Granularity Range
139 * 0 0 10 ms 0 ms - 630 ms
140 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
141 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
142 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
143 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
144 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
145 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
146 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
147 */
148
149 /* Clock divisor for the next level */
150 #define LVL_CLK_SHIFT 3
151 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
152 #define LVL_CLK_MASK (LVL_CLK_DIV - 1)
153 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
154 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
155
156 /*
157 * The time start value for each level to select the bucket at enqueue
158 * time.
159 */
160 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
161
162 /* Size of each clock level */
163 #define LVL_BITS 6
164 #define LVL_SIZE (1UL << LVL_BITS)
165 #define LVL_MASK (LVL_SIZE - 1)
166 #define LVL_OFFS(n) ((n) * LVL_SIZE)
167
168 /* Level depth */
169 #if HZ > 100
170 # define LVL_DEPTH 9
171 # else
172 # define LVL_DEPTH 8
173 #endif
174
175 /* The cutoff (max. capacity of the wheel) */
176 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
177 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
178
179 /*
180 * The resulting wheel size. If NOHZ is configured we allocate two
181 * wheels so we have a separate storage for the deferrable timers.
182 */
183 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
184
185 #ifdef CONFIG_NO_HZ_COMMON
186 # define NR_BASES 2
187 # define BASE_STD 0
188 # define BASE_DEF 1
189 #else
190 # define NR_BASES 1
191 # define BASE_STD 0
192 # define BASE_DEF 0
193 #endif
194
195 struct timer_base {
196 spinlock_t lock;
197 struct timer_list *running_timer;
198 unsigned long clk;
199 unsigned int cpu;
200 bool migration_enabled;
201 bool nohz_active;
202 DECLARE_BITMAP(pending_map, WHEEL_SIZE);
203 struct hlist_head vectors[WHEEL_SIZE];
204 } ____cacheline_aligned;
205
206 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
207
208 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
209 unsigned int sysctl_timer_migration = 1;
210
211 void timers_update_migration(bool update_nohz)
212 {
213 bool on = sysctl_timer_migration && tick_nohz_active;
214 unsigned int cpu;
215
216 /* Avoid the loop, if nothing to update */
217 if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
218 return;
219
220 for_each_possible_cpu(cpu) {
221 per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
222 per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
223 per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
224 if (!update_nohz)
225 continue;
226 per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
227 per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
228 per_cpu(hrtimer_bases.nohz_active, cpu) = true;
229 }
230 }
231
232 int timer_migration_handler(struct ctl_table *table, int write,
233 void __user *buffer, size_t *lenp,
234 loff_t *ppos)
235 {
236 static DEFINE_MUTEX(mutex);
237 int ret;
238
239 mutex_lock(&mutex);
240 ret = proc_dointvec(table, write, buffer, lenp, ppos);
241 if (!ret && write)
242 timers_update_migration(false);
243 mutex_unlock(&mutex);
244 return ret;
245 }
246 #endif
247
248 static unsigned long round_jiffies_common(unsigned long j, int cpu,
249 bool force_up)
250 {
251 int rem;
252 unsigned long original = j;
253
254 /*
255 * We don't want all cpus firing their timers at once hitting the
256 * same lock or cachelines, so we skew each extra cpu with an extra
257 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
258 * already did this.
259 * The skew is done by adding 3*cpunr, then round, then subtract this
260 * extra offset again.
261 */
262 j += cpu * 3;
263
264 rem = j % HZ;
265
266 /*
267 * If the target jiffie is just after a whole second (which can happen
268 * due to delays of the timer irq, long irq off times etc etc) then
269 * we should round down to the whole second, not up. Use 1/4th second
270 * as cutoff for this rounding as an extreme upper bound for this.
271 * But never round down if @force_up is set.
272 */
273 if (rem < HZ/4 && !force_up) /* round down */
274 j = j - rem;
275 else /* round up */
276 j = j - rem + HZ;
277
278 /* now that we have rounded, subtract the extra skew again */
279 j -= cpu * 3;
280
281 /*
282 * Make sure j is still in the future. Otherwise return the
283 * unmodified value.
284 */
285 return time_is_after_jiffies(j) ? j : original;
286 }
287
288 /**
289 * __round_jiffies - function to round jiffies to a full second
290 * @j: the time in (absolute) jiffies that should be rounded
291 * @cpu: the processor number on which the timeout will happen
292 *
293 * __round_jiffies() rounds an absolute time in the future (in jiffies)
294 * up or down to (approximately) full seconds. This is useful for timers
295 * for which the exact time they fire does not matter too much, as long as
296 * they fire approximately every X seconds.
297 *
298 * By rounding these timers to whole seconds, all such timers will fire
299 * at the same time, rather than at various times spread out. The goal
300 * of this is to have the CPU wake up less, which saves power.
301 *
302 * The exact rounding is skewed for each processor to avoid all
303 * processors firing at the exact same time, which could lead
304 * to lock contention or spurious cache line bouncing.
305 *
306 * The return value is the rounded version of the @j parameter.
307 */
308 unsigned long __round_jiffies(unsigned long j, int cpu)
309 {
310 return round_jiffies_common(j, cpu, false);
311 }
312 EXPORT_SYMBOL_GPL(__round_jiffies);
313
314 /**
315 * __round_jiffies_relative - function to round jiffies to a full second
316 * @j: the time in (relative) jiffies that should be rounded
317 * @cpu: the processor number on which the timeout will happen
318 *
319 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
320 * up or down to (approximately) full seconds. This is useful for timers
321 * for which the exact time they fire does not matter too much, as long as
322 * they fire approximately every X seconds.
323 *
324 * By rounding these timers to whole seconds, all such timers will fire
325 * at the same time, rather than at various times spread out. The goal
326 * of this is to have the CPU wake up less, which saves power.
327 *
328 * The exact rounding is skewed for each processor to avoid all
329 * processors firing at the exact same time, which could lead
330 * to lock contention or spurious cache line bouncing.
331 *
332 * The return value is the rounded version of the @j parameter.
333 */
334 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
335 {
336 unsigned long j0 = jiffies;
337
338 /* Use j0 because jiffies might change while we run */
339 return round_jiffies_common(j + j0, cpu, false) - j0;
340 }
341 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
342
343 /**
344 * round_jiffies - function to round jiffies to a full second
345 * @j: the time in (absolute) jiffies that should be rounded
346 *
347 * round_jiffies() rounds an absolute time in the future (in jiffies)
348 * up or down to (approximately) full seconds. This is useful for timers
349 * for which the exact time they fire does not matter too much, as long as
350 * they fire approximately every X seconds.
351 *
352 * By rounding these timers to whole seconds, all such timers will fire
353 * at the same time, rather than at various times spread out. The goal
354 * of this is to have the CPU wake up less, which saves power.
355 *
356 * The return value is the rounded version of the @j parameter.
357 */
358 unsigned long round_jiffies(unsigned long j)
359 {
360 return round_jiffies_common(j, raw_smp_processor_id(), false);
361 }
362 EXPORT_SYMBOL_GPL(round_jiffies);
363
364 /**
365 * round_jiffies_relative - function to round jiffies to a full second
366 * @j: the time in (relative) jiffies that should be rounded
367 *
368 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
369 * up or down to (approximately) full seconds. This is useful for timers
370 * for which the exact time they fire does not matter too much, as long as
371 * they fire approximately every X seconds.
372 *
373 * By rounding these timers to whole seconds, all such timers will fire
374 * at the same time, rather than at various times spread out. The goal
375 * of this is to have the CPU wake up less, which saves power.
376 *
377 * The return value is the rounded version of the @j parameter.
378 */
379 unsigned long round_jiffies_relative(unsigned long j)
380 {
381 return __round_jiffies_relative(j, raw_smp_processor_id());
382 }
383 EXPORT_SYMBOL_GPL(round_jiffies_relative);
384
385 /**
386 * __round_jiffies_up - function to round jiffies up to a full second
387 * @j: the time in (absolute) jiffies that should be rounded
388 * @cpu: the processor number on which the timeout will happen
389 *
390 * This is the same as __round_jiffies() except that it will never
391 * round down. This is useful for timeouts for which the exact time
392 * of firing does not matter too much, as long as they don't fire too
393 * early.
394 */
395 unsigned long __round_jiffies_up(unsigned long j, int cpu)
396 {
397 return round_jiffies_common(j, cpu, true);
398 }
399 EXPORT_SYMBOL_GPL(__round_jiffies_up);
400
401 /**
402 * __round_jiffies_up_relative - function to round jiffies up to a full second
403 * @j: the time in (relative) jiffies that should be rounded
404 * @cpu: the processor number on which the timeout will happen
405 *
406 * This is the same as __round_jiffies_relative() except that it will never
407 * round down. This is useful for timeouts for which the exact time
408 * of firing does not matter too much, as long as they don't fire too
409 * early.
410 */
411 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
412 {
413 unsigned long j0 = jiffies;
414
415 /* Use j0 because jiffies might change while we run */
416 return round_jiffies_common(j + j0, cpu, true) - j0;
417 }
418 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
419
420 /**
421 * round_jiffies_up - function to round jiffies up to a full second
422 * @j: the time in (absolute) jiffies that should be rounded
423 *
424 * This is the same as round_jiffies() except that it will never
425 * round down. This is useful for timeouts for which the exact time
426 * of firing does not matter too much, as long as they don't fire too
427 * early.
428 */
429 unsigned long round_jiffies_up(unsigned long j)
430 {
431 return round_jiffies_common(j, raw_smp_processor_id(), true);
432 }
433 EXPORT_SYMBOL_GPL(round_jiffies_up);
434
435 /**
436 * round_jiffies_up_relative - function to round jiffies up to a full second
437 * @j: the time in (relative) jiffies that should be rounded
438 *
439 * This is the same as round_jiffies_relative() except that it will never
440 * round down. This is useful for timeouts for which the exact time
441 * of firing does not matter too much, as long as they don't fire too
442 * early.
443 */
444 unsigned long round_jiffies_up_relative(unsigned long j)
445 {
446 return __round_jiffies_up_relative(j, raw_smp_processor_id());
447 }
448 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
449
450
451 static inline unsigned int timer_get_idx(struct timer_list *timer)
452 {
453 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
454 }
455
456 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
457 {
458 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
459 idx << TIMER_ARRAYSHIFT;
460 }
461
462 /*
463 * Helper function to calculate the array index for a given expiry
464 * time.
465 */
466 static inline unsigned calc_index(unsigned expires, unsigned lvl)
467 {
468 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
469 return LVL_OFFS(lvl) + (expires & LVL_MASK);
470 }
471
472 static void
473 __internal_add_timer(struct timer_base *base, struct timer_list *timer)
474 {
475 unsigned long expires = timer->expires;
476 unsigned long delta = expires - base->clk;
477 struct hlist_head *vec;
478 unsigned int idx;
479
480 if (delta < LVL_START(1)) {
481 idx = calc_index(expires, 0);
482 } else if (delta < LVL_START(2)) {
483 idx = calc_index(expires, 1);
484 } else if (delta < LVL_START(3)) {
485 idx = calc_index(expires, 2);
486 } else if (delta < LVL_START(4)) {
487 idx = calc_index(expires, 3);
488 } else if (delta < LVL_START(5)) {
489 idx = calc_index(expires, 4);
490 } else if (delta < LVL_START(6)) {
491 idx = calc_index(expires, 5);
492 } else if (delta < LVL_START(7)) {
493 idx = calc_index(expires, 6);
494 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
495 idx = calc_index(expires, 7);
496 } else if ((long) delta < 0) {
497 idx = base->clk & LVL_MASK;
498 } else {
499 /*
500 * Force expire obscene large timeouts to expire at the
501 * capacity limit of the wheel.
502 */
503 if (expires >= WHEEL_TIMEOUT_CUTOFF)
504 expires = WHEEL_TIMEOUT_MAX;
505
506 idx = calc_index(expires, LVL_DEPTH - 1);
507 }
508 /*
509 * Enqueue the timer into the array bucket, mark it pending in
510 * the bitmap and store the index in the timer flags.
511 */
512 vec = base->vectors + idx;
513 hlist_add_head(&timer->entry, vec);
514 __set_bit(idx, base->pending_map);
515 timer_set_idx(timer, idx);
516 }
517
518 static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
519 {
520 __internal_add_timer(base, timer);
521
522 /*
523 * Check whether the other CPU is in dynticks mode and needs
524 * to be triggered to reevaluate the timer wheel. We are
525 * protected against the other CPU fiddling with the timer by
526 * holding the timer base lock. This also makes sure that a
527 * CPU on the way to stop its tick can not evaluate the timer
528 * wheel.
529 *
530 * Spare the IPI for deferrable timers on idle targets though.
531 * The next busy ticks will take care of it. Except full dynticks
532 * require special care against races with idle_cpu(), lets deal
533 * with that later.
534 */
535 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active) {
536 if (!(timer->flags & TIMER_DEFERRABLE) ||
537 tick_nohz_full_cpu(base->cpu))
538 wake_up_nohz_cpu(base->cpu);
539 }
540 }
541
542 #ifdef CONFIG_TIMER_STATS
543 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
544 {
545 if (timer->start_site)
546 return;
547
548 timer->start_site = addr;
549 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
550 timer->start_pid = current->pid;
551 }
552
553 static void timer_stats_account_timer(struct timer_list *timer)
554 {
555 void *site;
556
557 /*
558 * start_site can be concurrently reset by
559 * timer_stats_timer_clear_start_info()
560 */
561 site = READ_ONCE(timer->start_site);
562 if (likely(!site))
563 return;
564
565 timer_stats_update_stats(timer, timer->start_pid, site,
566 timer->function, timer->start_comm,
567 timer->flags);
568 }
569
570 #else
571 static void timer_stats_account_timer(struct timer_list *timer) {}
572 #endif
573
574 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
575
576 static struct debug_obj_descr timer_debug_descr;
577
578 static void *timer_debug_hint(void *addr)
579 {
580 return ((struct timer_list *) addr)->function;
581 }
582
583 static bool timer_is_static_object(void *addr)
584 {
585 struct timer_list *timer = addr;
586
587 return (timer->entry.pprev == NULL &&
588 timer->entry.next == TIMER_ENTRY_STATIC);
589 }
590
591 /*
592 * fixup_init is called when:
593 * - an active object is initialized
594 */
595 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
596 {
597 struct timer_list *timer = addr;
598
599 switch (state) {
600 case ODEBUG_STATE_ACTIVE:
601 del_timer_sync(timer);
602 debug_object_init(timer, &timer_debug_descr);
603 return true;
604 default:
605 return false;
606 }
607 }
608
609 /* Stub timer callback for improperly used timers. */
610 static void stub_timer(unsigned long data)
611 {
612 WARN_ON(1);
613 }
614
615 /*
616 * fixup_activate is called when:
617 * - an active object is activated
618 * - an unknown non-static object is activated
619 */
620 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
621 {
622 struct timer_list *timer = addr;
623
624 switch (state) {
625 case ODEBUG_STATE_NOTAVAILABLE:
626 setup_timer(timer, stub_timer, 0);
627 return true;
628
629 case ODEBUG_STATE_ACTIVE:
630 WARN_ON(1);
631
632 default:
633 return false;
634 }
635 }
636
637 /*
638 * fixup_free is called when:
639 * - an active object is freed
640 */
641 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
642 {
643 struct timer_list *timer = addr;
644
645 switch (state) {
646 case ODEBUG_STATE_ACTIVE:
647 del_timer_sync(timer);
648 debug_object_free(timer, &timer_debug_descr);
649 return true;
650 default:
651 return false;
652 }
653 }
654
655 /*
656 * fixup_assert_init is called when:
657 * - an untracked/uninit-ed object is found
658 */
659 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
660 {
661 struct timer_list *timer = addr;
662
663 switch (state) {
664 case ODEBUG_STATE_NOTAVAILABLE:
665 setup_timer(timer, stub_timer, 0);
666 return true;
667 default:
668 return false;
669 }
670 }
671
672 static struct debug_obj_descr timer_debug_descr = {
673 .name = "timer_list",
674 .debug_hint = timer_debug_hint,
675 .is_static_object = timer_is_static_object,
676 .fixup_init = timer_fixup_init,
677 .fixup_activate = timer_fixup_activate,
678 .fixup_free = timer_fixup_free,
679 .fixup_assert_init = timer_fixup_assert_init,
680 };
681
682 static inline void debug_timer_init(struct timer_list *timer)
683 {
684 debug_object_init(timer, &timer_debug_descr);
685 }
686
687 static inline void debug_timer_activate(struct timer_list *timer)
688 {
689 debug_object_activate(timer, &timer_debug_descr);
690 }
691
692 static inline void debug_timer_deactivate(struct timer_list *timer)
693 {
694 debug_object_deactivate(timer, &timer_debug_descr);
695 }
696
697 static inline void debug_timer_free(struct timer_list *timer)
698 {
699 debug_object_free(timer, &timer_debug_descr);
700 }
701
702 static inline void debug_timer_assert_init(struct timer_list *timer)
703 {
704 debug_object_assert_init(timer, &timer_debug_descr);
705 }
706
707 static void do_init_timer(struct timer_list *timer, unsigned int flags,
708 const char *name, struct lock_class_key *key);
709
710 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
711 const char *name, struct lock_class_key *key)
712 {
713 debug_object_init_on_stack(timer, &timer_debug_descr);
714 do_init_timer(timer, flags, name, key);
715 }
716 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
717
718 void destroy_timer_on_stack(struct timer_list *timer)
719 {
720 debug_object_free(timer, &timer_debug_descr);
721 }
722 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
723
724 #else
725 static inline void debug_timer_init(struct timer_list *timer) { }
726 static inline void debug_timer_activate(struct timer_list *timer) { }
727 static inline void debug_timer_deactivate(struct timer_list *timer) { }
728 static inline void debug_timer_assert_init(struct timer_list *timer) { }
729 #endif
730
731 static inline void debug_init(struct timer_list *timer)
732 {
733 debug_timer_init(timer);
734 trace_timer_init(timer);
735 }
736
737 static inline void
738 debug_activate(struct timer_list *timer, unsigned long expires)
739 {
740 debug_timer_activate(timer);
741 trace_timer_start(timer, expires, timer->flags);
742 }
743
744 static inline void debug_deactivate(struct timer_list *timer)
745 {
746 debug_timer_deactivate(timer);
747 trace_timer_cancel(timer);
748 }
749
750 static inline void debug_assert_init(struct timer_list *timer)
751 {
752 debug_timer_assert_init(timer);
753 }
754
755 static void do_init_timer(struct timer_list *timer, unsigned int flags,
756 const char *name, struct lock_class_key *key)
757 {
758 timer->entry.pprev = NULL;
759 timer->flags = flags | raw_smp_processor_id();
760 #ifdef CONFIG_TIMER_STATS
761 timer->start_site = NULL;
762 timer->start_pid = -1;
763 memset(timer->start_comm, 0, TASK_COMM_LEN);
764 #endif
765 lockdep_init_map(&timer->lockdep_map, name, key, 0);
766 }
767
768 /**
769 * init_timer_key - initialize a timer
770 * @timer: the timer to be initialized
771 * @flags: timer flags
772 * @name: name of the timer
773 * @key: lockdep class key of the fake lock used for tracking timer
774 * sync lock dependencies
775 *
776 * init_timer_key() must be done to a timer prior calling *any* of the
777 * other timer functions.
778 */
779 void init_timer_key(struct timer_list *timer, unsigned int flags,
780 const char *name, struct lock_class_key *key)
781 {
782 debug_init(timer);
783 do_init_timer(timer, flags, name, key);
784 }
785 EXPORT_SYMBOL(init_timer_key);
786
787 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
788 {
789 struct hlist_node *entry = &timer->entry;
790
791 debug_deactivate(timer);
792
793 __hlist_del(entry);
794 if (clear_pending)
795 entry->pprev = NULL;
796 entry->next = LIST_POISON2;
797 }
798
799 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
800 bool clear_pending)
801 {
802 unsigned idx = timer_get_idx(timer);
803
804 if (!timer_pending(timer))
805 return 0;
806
807 if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
808 __clear_bit(idx, base->pending_map);
809
810 detach_timer(timer, clear_pending);
811 return 1;
812 }
813
814 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
815 {
816 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
817
818 /*
819 * If the timer is deferrable and nohz is active then we need to use
820 * the deferrable base.
821 */
822 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
823 (tflags & TIMER_DEFERRABLE))
824 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
825 return base;
826 }
827
828 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
829 {
830 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
831
832 /*
833 * If the timer is deferrable and nohz is active then we need to use
834 * the deferrable base.
835 */
836 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
837 (tflags & TIMER_DEFERRABLE))
838 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
839 return base;
840 }
841
842 static inline struct timer_base *get_timer_base(u32 tflags)
843 {
844 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
845 }
846
847 static inline struct timer_base *get_target_base(struct timer_base *base,
848 unsigned tflags)
849 {
850 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
851 if ((tflags & TIMER_PINNED) || !base->migration_enabled)
852 return get_timer_this_cpu_base(tflags);
853 return get_timer_cpu_base(tflags, get_nohz_timer_target());
854 #else
855 return get_timer_this_cpu_base(tflags);
856 #endif
857 }
858
859 /*
860 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
861 * that all timers which are tied to this base are locked, and the base itself
862 * is locked too.
863 *
864 * So __run_timers/migrate_timers can safely modify all timers which could
865 * be found in the base->vectors array.
866 *
867 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
868 * to wait until the migration is done.
869 */
870 static struct timer_base *lock_timer_base(struct timer_list *timer,
871 unsigned long *flags)
872 __acquires(timer->base->lock)
873 {
874 for (;;) {
875 struct timer_base *base;
876 u32 tf = timer->flags;
877
878 if (!(tf & TIMER_MIGRATING)) {
879 base = get_timer_base(tf);
880 spin_lock_irqsave(&base->lock, *flags);
881 if (timer->flags == tf)
882 return base;
883 spin_unlock_irqrestore(&base->lock, *flags);
884 }
885 cpu_relax();
886 }
887 }
888
889 static inline int
890 __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
891 {
892 struct timer_base *base, *new_base;
893 unsigned long flags;
894 int ret = 0;
895
896 /*
897 * TODO: Calculate the array bucket of the timer right here w/o
898 * holding the base lock. This allows to check not only
899 * timer->expires == expires below, but also whether the timer
900 * ends up in the same bucket. If we really need to requeue
901 * the timer then we check whether base->clk have
902 * advanced between here and locking the timer base. If
903 * jiffies advanced we have to recalc the array bucket with the
904 * lock held.
905 */
906
907 /*
908 * This is a common optimization triggered by the
909 * networking code - if the timer is re-modified
910 * to be the same thing then just return:
911 */
912 if (timer_pending(timer)) {
913 if (timer->expires == expires)
914 return 1;
915 }
916
917 timer_stats_timer_set_start_info(timer);
918 BUG_ON(!timer->function);
919
920 base = lock_timer_base(timer, &flags);
921
922 ret = detach_if_pending(timer, base, false);
923 if (!ret && pending_only)
924 goto out_unlock;
925
926 debug_activate(timer, expires);
927
928 new_base = get_target_base(base, timer->flags);
929
930 if (base != new_base) {
931 /*
932 * We are trying to schedule the timer on the new base.
933 * However we can't change timer's base while it is running,
934 * otherwise del_timer_sync() can't detect that the timer's
935 * handler yet has not finished. This also guarantees that the
936 * timer is serialized wrt itself.
937 */
938 if (likely(base->running_timer != timer)) {
939 /* See the comment in lock_timer_base() */
940 timer->flags |= TIMER_MIGRATING;
941
942 spin_unlock(&base->lock);
943 base = new_base;
944 spin_lock(&base->lock);
945 WRITE_ONCE(timer->flags,
946 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
947 }
948 }
949
950 timer->expires = expires;
951 internal_add_timer(base, timer);
952
953 out_unlock:
954 spin_unlock_irqrestore(&base->lock, flags);
955
956 return ret;
957 }
958
959 /**
960 * mod_timer_pending - modify a pending timer's timeout
961 * @timer: the pending timer to be modified
962 * @expires: new timeout in jiffies
963 *
964 * mod_timer_pending() is the same for pending timers as mod_timer(),
965 * but will not re-activate and modify already deleted timers.
966 *
967 * It is useful for unserialized use of timers.
968 */
969 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
970 {
971 return __mod_timer(timer, expires, true);
972 }
973 EXPORT_SYMBOL(mod_timer_pending);
974
975 /**
976 * mod_timer - modify a timer's timeout
977 * @timer: the timer to be modified
978 * @expires: new timeout in jiffies
979 *
980 * mod_timer() is a more efficient way to update the expire field of an
981 * active timer (if the timer is inactive it will be activated)
982 *
983 * mod_timer(timer, expires) is equivalent to:
984 *
985 * del_timer(timer); timer->expires = expires; add_timer(timer);
986 *
987 * Note that if there are multiple unserialized concurrent users of the
988 * same timer, then mod_timer() is the only safe way to modify the timeout,
989 * since add_timer() cannot modify an already running timer.
990 *
991 * The function returns whether it has modified a pending timer or not.
992 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
993 * active timer returns 1.)
994 */
995 int mod_timer(struct timer_list *timer, unsigned long expires)
996 {
997 return __mod_timer(timer, expires, false);
998 }
999 EXPORT_SYMBOL(mod_timer);
1000
1001 /**
1002 * add_timer - start a timer
1003 * @timer: the timer to be added
1004 *
1005 * The kernel will do a ->function(->data) callback from the
1006 * timer interrupt at the ->expires point in the future. The
1007 * current time is 'jiffies'.
1008 *
1009 * The timer's ->expires, ->function (and if the handler uses it, ->data)
1010 * fields must be set prior calling this function.
1011 *
1012 * Timers with an ->expires field in the past will be executed in the next
1013 * timer tick.
1014 */
1015 void add_timer(struct timer_list *timer)
1016 {
1017 BUG_ON(timer_pending(timer));
1018 mod_timer(timer, timer->expires);
1019 }
1020 EXPORT_SYMBOL(add_timer);
1021
1022 /**
1023 * add_timer_on - start a timer on a particular CPU
1024 * @timer: the timer to be added
1025 * @cpu: the CPU to start it on
1026 *
1027 * This is not very scalable on SMP. Double adds are not possible.
1028 */
1029 void add_timer_on(struct timer_list *timer, int cpu)
1030 {
1031 struct timer_base *new_base, *base;
1032 unsigned long flags;
1033
1034 timer_stats_timer_set_start_info(timer);
1035 BUG_ON(timer_pending(timer) || !timer->function);
1036
1037 new_base = get_timer_cpu_base(timer->flags, cpu);
1038
1039 /*
1040 * If @timer was on a different CPU, it should be migrated with the
1041 * old base locked to prevent other operations proceeding with the
1042 * wrong base locked. See lock_timer_base().
1043 */
1044 base = lock_timer_base(timer, &flags);
1045 if (base != new_base) {
1046 timer->flags |= TIMER_MIGRATING;
1047
1048 spin_unlock(&base->lock);
1049 base = new_base;
1050 spin_lock(&base->lock);
1051 WRITE_ONCE(timer->flags,
1052 (timer->flags & ~TIMER_BASEMASK) | cpu);
1053 }
1054
1055 debug_activate(timer, timer->expires);
1056 internal_add_timer(base, timer);
1057 spin_unlock_irqrestore(&base->lock, flags);
1058 }
1059 EXPORT_SYMBOL_GPL(add_timer_on);
1060
1061 /**
1062 * del_timer - deactive a timer.
1063 * @timer: the timer to be deactivated
1064 *
1065 * del_timer() deactivates a timer - this works on both active and inactive
1066 * timers.
1067 *
1068 * The function returns whether it has deactivated a pending timer or not.
1069 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1070 * active timer returns 1.)
1071 */
1072 int del_timer(struct timer_list *timer)
1073 {
1074 struct timer_base *base;
1075 unsigned long flags;
1076 int ret = 0;
1077
1078 debug_assert_init(timer);
1079
1080 timer_stats_timer_clear_start_info(timer);
1081 if (timer_pending(timer)) {
1082 base = lock_timer_base(timer, &flags);
1083 ret = detach_if_pending(timer, base, true);
1084 spin_unlock_irqrestore(&base->lock, flags);
1085 }
1086
1087 return ret;
1088 }
1089 EXPORT_SYMBOL(del_timer);
1090
1091 /**
1092 * try_to_del_timer_sync - Try to deactivate a timer
1093 * @timer: timer do del
1094 *
1095 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1096 * exit the timer is not queued and the handler is not running on any CPU.
1097 */
1098 int try_to_del_timer_sync(struct timer_list *timer)
1099 {
1100 struct timer_base *base;
1101 unsigned long flags;
1102 int ret = -1;
1103
1104 debug_assert_init(timer);
1105
1106 base = lock_timer_base(timer, &flags);
1107
1108 if (base->running_timer != timer) {
1109 timer_stats_timer_clear_start_info(timer);
1110 ret = detach_if_pending(timer, base, true);
1111 }
1112 spin_unlock_irqrestore(&base->lock, flags);
1113
1114 return ret;
1115 }
1116 EXPORT_SYMBOL(try_to_del_timer_sync);
1117
1118 #ifdef CONFIG_SMP
1119 /**
1120 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1121 * @timer: the timer to be deactivated
1122 *
1123 * This function only differs from del_timer() on SMP: besides deactivating
1124 * the timer it also makes sure the handler has finished executing on other
1125 * CPUs.
1126 *
1127 * Synchronization rules: Callers must prevent restarting of the timer,
1128 * otherwise this function is meaningless. It must not be called from
1129 * interrupt contexts unless the timer is an irqsafe one. The caller must
1130 * not hold locks which would prevent completion of the timer's
1131 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1132 * timer is not queued and the handler is not running on any CPU.
1133 *
1134 * Note: For !irqsafe timers, you must not hold locks that are held in
1135 * interrupt context while calling this function. Even if the lock has
1136 * nothing to do with the timer in question. Here's why:
1137 *
1138 * CPU0 CPU1
1139 * ---- ----
1140 * <SOFTIRQ>
1141 * call_timer_fn();
1142 * base->running_timer = mytimer;
1143 * spin_lock_irq(somelock);
1144 * <IRQ>
1145 * spin_lock(somelock);
1146 * del_timer_sync(mytimer);
1147 * while (base->running_timer == mytimer);
1148 *
1149 * Now del_timer_sync() will never return and never release somelock.
1150 * The interrupt on the other CPU is waiting to grab somelock but
1151 * it has interrupted the softirq that CPU0 is waiting to finish.
1152 *
1153 * The function returns whether it has deactivated a pending timer or not.
1154 */
1155 int del_timer_sync(struct timer_list *timer)
1156 {
1157 #ifdef CONFIG_LOCKDEP
1158 unsigned long flags;
1159
1160 /*
1161 * If lockdep gives a backtrace here, please reference
1162 * the synchronization rules above.
1163 */
1164 local_irq_save(flags);
1165 lock_map_acquire(&timer->lockdep_map);
1166 lock_map_release(&timer->lockdep_map);
1167 local_irq_restore(flags);
1168 #endif
1169 /*
1170 * don't use it in hardirq context, because it
1171 * could lead to deadlock.
1172 */
1173 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1174 for (;;) {
1175 int ret = try_to_del_timer_sync(timer);
1176 if (ret >= 0)
1177 return ret;
1178 cpu_relax();
1179 }
1180 }
1181 EXPORT_SYMBOL(del_timer_sync);
1182 #endif
1183
1184 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1185 unsigned long data)
1186 {
1187 int count = preempt_count();
1188
1189 #ifdef CONFIG_LOCKDEP
1190 /*
1191 * It is permissible to free the timer from inside the
1192 * function that is called from it, this we need to take into
1193 * account for lockdep too. To avoid bogus "held lock freed"
1194 * warnings as well as problems when looking into
1195 * timer->lockdep_map, make a copy and use that here.
1196 */
1197 struct lockdep_map lockdep_map;
1198
1199 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1200 #endif
1201 /*
1202 * Couple the lock chain with the lock chain at
1203 * del_timer_sync() by acquiring the lock_map around the fn()
1204 * call here and in del_timer_sync().
1205 */
1206 lock_map_acquire(&lockdep_map);
1207
1208 trace_timer_expire_entry(timer);
1209 fn(data);
1210 trace_timer_expire_exit(timer);
1211
1212 lock_map_release(&lockdep_map);
1213
1214 if (count != preempt_count()) {
1215 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1216 fn, count, preempt_count());
1217 /*
1218 * Restore the preempt count. That gives us a decent
1219 * chance to survive and extract information. If the
1220 * callback kept a lock held, bad luck, but not worse
1221 * than the BUG() we had.
1222 */
1223 preempt_count_set(count);
1224 }
1225 }
1226
1227 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1228 {
1229 while (!hlist_empty(head)) {
1230 struct timer_list *timer;
1231 void (*fn)(unsigned long);
1232 unsigned long data;
1233
1234 timer = hlist_entry(head->first, struct timer_list, entry);
1235 timer_stats_account_timer(timer);
1236
1237 base->running_timer = timer;
1238 detach_timer(timer, true);
1239
1240 fn = timer->function;
1241 data = timer->data;
1242
1243 if (timer->flags & TIMER_IRQSAFE) {
1244 spin_unlock(&base->lock);
1245 call_timer_fn(timer, fn, data);
1246 spin_lock(&base->lock);
1247 } else {
1248 spin_unlock_irq(&base->lock);
1249 call_timer_fn(timer, fn, data);
1250 spin_lock_irq(&base->lock);
1251 }
1252 }
1253 }
1254
1255 static int collect_expired_timers(struct timer_base *base,
1256 struct hlist_head *heads)
1257 {
1258 unsigned long clk = base->clk;
1259 struct hlist_head *vec;
1260 int i, levels = 0;
1261 unsigned int idx;
1262
1263 for (i = 0; i < LVL_DEPTH; i++) {
1264 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1265
1266 if (__test_and_clear_bit(idx, base->pending_map)) {
1267 vec = base->vectors + idx;
1268 hlist_move_list(vec, heads++);
1269 levels++;
1270 }
1271 /* Is it time to look at the next level? */
1272 if (clk & LVL_CLK_MASK)
1273 break;
1274 /* Shift clock for the next level granularity */
1275 clk >>= LVL_CLK_SHIFT;
1276 }
1277 return levels;
1278 }
1279
1280 #ifdef CONFIG_NO_HZ_COMMON
1281 /*
1282 * Find the next pending bucket of a level. Search from @offset + @clk upwards
1283 * and if nothing there, search from start of the level (@offset) up to
1284 * @offset + clk.
1285 */
1286 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1287 unsigned clk)
1288 {
1289 unsigned pos, start = offset + clk;
1290 unsigned end = offset + LVL_SIZE;
1291
1292 pos = find_next_bit(base->pending_map, end, start);
1293 if (pos < end)
1294 return pos - start;
1295
1296 pos = find_next_bit(base->pending_map, start, offset);
1297 return pos < start ? pos + LVL_SIZE - start : -1;
1298 }
1299
1300 /*
1301 * Search the first expiring timer in the various clock levels.
1302 */
1303 static unsigned long __next_timer_interrupt(struct timer_base *base)
1304 {
1305 unsigned long clk, next, adj;
1306 unsigned lvl, offset = 0;
1307
1308 spin_lock(&base->lock);
1309 next = base->clk + NEXT_TIMER_MAX_DELTA;
1310 clk = base->clk;
1311 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1312 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1313
1314 if (pos >= 0) {
1315 unsigned long tmp = clk + (unsigned long) pos;
1316
1317 tmp <<= LVL_SHIFT(lvl);
1318 if (time_before(tmp, next))
1319 next = tmp;
1320 }
1321 /*
1322 * Clock for the next level. If the current level clock lower
1323 * bits are zero, we look at the next level as is. If not we
1324 * need to advance it by one because that's going to be the
1325 * next expiring bucket in that level. base->clk is the next
1326 * expiring jiffie. So in case of:
1327 *
1328 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1329 * 0 0 0 0 0 0
1330 *
1331 * we have to look at all levels @index 0. With
1332 *
1333 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1334 * 0 0 0 0 0 2
1335 *
1336 * LVL0 has the next expiring bucket @index 2. The upper
1337 * levels have the next expiring bucket @index 1.
1338 *
1339 * In case that the propagation wraps the next level the same
1340 * rules apply:
1341 *
1342 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1343 * 0 0 0 0 F 2
1344 *
1345 * So after looking at LVL0 we get:
1346 *
1347 * LVL5 LVL4 LVL3 LVL2 LVL1
1348 * 0 0 0 1 0
1349 *
1350 * So no propagation from LVL1 to LVL2 because that happened
1351 * with the add already, but then we need to propagate further
1352 * from LVL2 to LVL3.
1353 *
1354 * So the simple check whether the lower bits of the current
1355 * level are 0 or not is sufficient for all cases.
1356 */
1357 adj = clk & LVL_CLK_MASK ? 1 : 0;
1358 clk >>= LVL_CLK_SHIFT;
1359 clk += adj;
1360 }
1361 spin_unlock(&base->lock);
1362 return next;
1363 }
1364
1365 /*
1366 * Check, if the next hrtimer event is before the next timer wheel
1367 * event:
1368 */
1369 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1370 {
1371 u64 nextevt = hrtimer_get_next_event();
1372
1373 /*
1374 * If high resolution timers are enabled
1375 * hrtimer_get_next_event() returns KTIME_MAX.
1376 */
1377 if (expires <= nextevt)
1378 return expires;
1379
1380 /*
1381 * If the next timer is already expired, return the tick base
1382 * time so the tick is fired immediately.
1383 */
1384 if (nextevt <= basem)
1385 return basem;
1386
1387 /*
1388 * Round up to the next jiffie. High resolution timers are
1389 * off, so the hrtimers are expired in the tick and we need to
1390 * make sure that this tick really expires the timer to avoid
1391 * a ping pong of the nohz stop code.
1392 *
1393 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1394 */
1395 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1396 }
1397
1398 /**
1399 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1400 * @basej: base time jiffies
1401 * @basem: base time clock monotonic
1402 *
1403 * Returns the tick aligned clock monotonic time of the next pending
1404 * timer or KTIME_MAX if no timer is pending.
1405 */
1406 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1407 {
1408 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1409 u64 expires = KTIME_MAX;
1410 unsigned long nextevt;
1411
1412 /*
1413 * Pretend that there is no timer pending if the cpu is offline.
1414 * Possible pending timers will be migrated later to an active cpu.
1415 */
1416 if (cpu_is_offline(smp_processor_id()))
1417 return expires;
1418
1419 nextevt = __next_timer_interrupt(base);
1420 if (time_before_eq(nextevt, basej))
1421 expires = basem;
1422 else
1423 expires = basem + (nextevt - basej) * TICK_NSEC;
1424
1425 return cmp_next_hrtimer_event(basem, expires);
1426 }
1427 #endif
1428
1429 /*
1430 * Called from the timer interrupt handler to charge one tick to the current
1431 * process. user_tick is 1 if the tick is user time, 0 for system.
1432 */
1433 void update_process_times(int user_tick)
1434 {
1435 struct task_struct *p = current;
1436
1437 /* Note: this timer irq context must be accounted for as well. */
1438 account_process_tick(p, user_tick);
1439 run_local_timers();
1440 rcu_check_callbacks(user_tick);
1441 #ifdef CONFIG_IRQ_WORK
1442 if (in_irq())
1443 irq_work_tick();
1444 #endif
1445 scheduler_tick();
1446 run_posix_cpu_timers(p);
1447 }
1448
1449 /**
1450 * __run_timers - run all expired timers (if any) on this CPU.
1451 * @base: the timer vector to be processed.
1452 */
1453 static inline void __run_timers(struct timer_base *base)
1454 {
1455 struct hlist_head heads[LVL_DEPTH];
1456 int levels;
1457
1458 if (!time_after_eq(jiffies, base->clk))
1459 return;
1460
1461 spin_lock_irq(&base->lock);
1462
1463 while (time_after_eq(jiffies, base->clk)) {
1464
1465 levels = collect_expired_timers(base, heads);
1466 base->clk++;
1467
1468 while (levels--)
1469 expire_timers(base, heads + levels);
1470 }
1471 base->running_timer = NULL;
1472 spin_unlock_irq(&base->lock);
1473 }
1474
1475 /*
1476 * This function runs timers and the timer-tq in bottom half context.
1477 */
1478 static void run_timer_softirq(struct softirq_action *h)
1479 {
1480 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1481
1482 __run_timers(base);
1483 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active)
1484 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1485 }
1486
1487 /*
1488 * Called by the local, per-CPU timer interrupt on SMP.
1489 */
1490 void run_local_timers(void)
1491 {
1492 hrtimer_run_queues();
1493 raise_softirq(TIMER_SOFTIRQ);
1494 }
1495
1496 #ifdef __ARCH_WANT_SYS_ALARM
1497
1498 /*
1499 * For backwards compatibility? This can be done in libc so Alpha
1500 * and all newer ports shouldn't need it.
1501 */
1502 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1503 {
1504 return alarm_setitimer(seconds);
1505 }
1506
1507 #endif
1508
1509 static void process_timeout(unsigned long __data)
1510 {
1511 wake_up_process((struct task_struct *)__data);
1512 }
1513
1514 /**
1515 * schedule_timeout - sleep until timeout
1516 * @timeout: timeout value in jiffies
1517 *
1518 * Make the current task sleep until @timeout jiffies have
1519 * elapsed. The routine will return immediately unless
1520 * the current task state has been set (see set_current_state()).
1521 *
1522 * You can set the task state as follows -
1523 *
1524 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1525 * pass before the routine returns. The routine will return 0
1526 *
1527 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1528 * delivered to the current task. In this case the remaining time
1529 * in jiffies will be returned, or 0 if the timer expired in time
1530 *
1531 * The current task state is guaranteed to be TASK_RUNNING when this
1532 * routine returns.
1533 *
1534 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1535 * the CPU away without a bound on the timeout. In this case the return
1536 * value will be %MAX_SCHEDULE_TIMEOUT.
1537 *
1538 * In all cases the return value is guaranteed to be non-negative.
1539 */
1540 signed long __sched schedule_timeout(signed long timeout)
1541 {
1542 struct timer_list timer;
1543 unsigned long expire;
1544
1545 switch (timeout)
1546 {
1547 case MAX_SCHEDULE_TIMEOUT:
1548 /*
1549 * These two special cases are useful to be comfortable
1550 * in the caller. Nothing more. We could take
1551 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1552 * but I' d like to return a valid offset (>=0) to allow
1553 * the caller to do everything it want with the retval.
1554 */
1555 schedule();
1556 goto out;
1557 default:
1558 /*
1559 * Another bit of PARANOID. Note that the retval will be
1560 * 0 since no piece of kernel is supposed to do a check
1561 * for a negative retval of schedule_timeout() (since it
1562 * should never happens anyway). You just have the printk()
1563 * that will tell you if something is gone wrong and where.
1564 */
1565 if (timeout < 0) {
1566 printk(KERN_ERR "schedule_timeout: wrong timeout "
1567 "value %lx\n", timeout);
1568 dump_stack();
1569 current->state = TASK_RUNNING;
1570 goto out;
1571 }
1572 }
1573
1574 expire = timeout + jiffies;
1575
1576 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1577 __mod_timer(&timer, expire, false);
1578 schedule();
1579 del_singleshot_timer_sync(&timer);
1580
1581 /* Remove the timer from the object tracker */
1582 destroy_timer_on_stack(&timer);
1583
1584 timeout = expire - jiffies;
1585
1586 out:
1587 return timeout < 0 ? 0 : timeout;
1588 }
1589 EXPORT_SYMBOL(schedule_timeout);
1590
1591 /*
1592 * We can use __set_current_state() here because schedule_timeout() calls
1593 * schedule() unconditionally.
1594 */
1595 signed long __sched schedule_timeout_interruptible(signed long timeout)
1596 {
1597 __set_current_state(TASK_INTERRUPTIBLE);
1598 return schedule_timeout(timeout);
1599 }
1600 EXPORT_SYMBOL(schedule_timeout_interruptible);
1601
1602 signed long __sched schedule_timeout_killable(signed long timeout)
1603 {
1604 __set_current_state(TASK_KILLABLE);
1605 return schedule_timeout(timeout);
1606 }
1607 EXPORT_SYMBOL(schedule_timeout_killable);
1608
1609 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1610 {
1611 __set_current_state(TASK_UNINTERRUPTIBLE);
1612 return schedule_timeout(timeout);
1613 }
1614 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1615
1616 /*
1617 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1618 * to load average.
1619 */
1620 signed long __sched schedule_timeout_idle(signed long timeout)
1621 {
1622 __set_current_state(TASK_IDLE);
1623 return schedule_timeout(timeout);
1624 }
1625 EXPORT_SYMBOL(schedule_timeout_idle);
1626
1627 #ifdef CONFIG_HOTPLUG_CPU
1628 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1629 {
1630 struct timer_list *timer;
1631 int cpu = new_base->cpu;
1632
1633 while (!hlist_empty(head)) {
1634 timer = hlist_entry(head->first, struct timer_list, entry);
1635 detach_timer(timer, false);
1636 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1637 internal_add_timer(new_base, timer);
1638 }
1639 }
1640
1641 static void migrate_timers(int cpu)
1642 {
1643 struct timer_base *old_base;
1644 struct timer_base *new_base;
1645 int b, i;
1646
1647 BUG_ON(cpu_online(cpu));
1648
1649 for (b = 0; b < NR_BASES; b++) {
1650 old_base = per_cpu_ptr(&timer_bases[b], cpu);
1651 new_base = get_cpu_ptr(&timer_bases[b]);
1652 /*
1653 * The caller is globally serialized and nobody else
1654 * takes two locks at once, deadlock is not possible.
1655 */
1656 spin_lock_irq(&new_base->lock);
1657 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1658
1659 BUG_ON(old_base->running_timer);
1660
1661 for (i = 0; i < WHEEL_SIZE; i++)
1662 migrate_timer_list(new_base, old_base->vectors + i);
1663
1664 spin_unlock(&old_base->lock);
1665 spin_unlock_irq(&new_base->lock);
1666 put_cpu_ptr(&timer_bases);
1667 }
1668 }
1669
1670 static int timer_cpu_notify(struct notifier_block *self,
1671 unsigned long action, void *hcpu)
1672 {
1673 switch (action) {
1674 case CPU_DEAD:
1675 case CPU_DEAD_FROZEN:
1676 migrate_timers((long)hcpu);
1677 break;
1678 default:
1679 break;
1680 }
1681
1682 return NOTIFY_OK;
1683 }
1684
1685 static inline void timer_register_cpu_notifier(void)
1686 {
1687 cpu_notifier(timer_cpu_notify, 0);
1688 }
1689 #else
1690 static inline void timer_register_cpu_notifier(void) { }
1691 #endif /* CONFIG_HOTPLUG_CPU */
1692
1693 static void __init init_timer_cpu(int cpu)
1694 {
1695 struct timer_base *base;
1696 int i;
1697
1698 for (i = 0; i < NR_BASES; i++) {
1699 base = per_cpu_ptr(&timer_bases[i], cpu);
1700 base->cpu = cpu;
1701 spin_lock_init(&base->lock);
1702 base->clk = jiffies;
1703 }
1704 }
1705
1706 static void __init init_timer_cpus(void)
1707 {
1708 int cpu;
1709
1710 for_each_possible_cpu(cpu)
1711 init_timer_cpu(cpu);
1712 }
1713
1714 void __init init_timers(void)
1715 {
1716 init_timer_cpus();
1717 init_timer_stats();
1718 timer_register_cpu_notifier();
1719 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1720 }
1721
1722 /**
1723 * msleep - sleep safely even with waitqueue interruptions
1724 * @msecs: Time in milliseconds to sleep for
1725 */
1726 void msleep(unsigned int msecs)
1727 {
1728 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1729
1730 while (timeout)
1731 timeout = schedule_timeout_uninterruptible(timeout);
1732 }
1733
1734 EXPORT_SYMBOL(msleep);
1735
1736 /**
1737 * msleep_interruptible - sleep waiting for signals
1738 * @msecs: Time in milliseconds to sleep for
1739 */
1740 unsigned long msleep_interruptible(unsigned int msecs)
1741 {
1742 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1743
1744 while (timeout && !signal_pending(current))
1745 timeout = schedule_timeout_interruptible(timeout);
1746 return jiffies_to_msecs(timeout);
1747 }
1748
1749 EXPORT_SYMBOL(msleep_interruptible);
1750
1751 static void __sched do_usleep_range(unsigned long min, unsigned long max)
1752 {
1753 ktime_t kmin;
1754 u64 delta;
1755
1756 kmin = ktime_set(0, min * NSEC_PER_USEC);
1757 delta = (u64)(max - min) * NSEC_PER_USEC;
1758 schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1759 }
1760
1761 /**
1762 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1763 * @min: Minimum time in usecs to sleep
1764 * @max: Maximum time in usecs to sleep
1765 */
1766 void __sched usleep_range(unsigned long min, unsigned long max)
1767 {
1768 __set_current_state(TASK_UNINTERRUPTIBLE);
1769 do_usleep_range(min, max);
1770 }
1771 EXPORT_SYMBOL(usleep_range);