]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/time/timer.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / kernel / time / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched/signal.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/sched/nohz.h>
44 #include <linux/sched/debug.h>
45 #include <linux/slab.h>
46 #include <linux/compat.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/div64.h>
51 #include <asm/timex.h>
52 #include <asm/io.h>
53
54 #include "tick-internal.h"
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/timer.h>
58
59 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
60
61 EXPORT_SYMBOL(jiffies_64);
62
63 /*
64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
66 * level has a different granularity.
67 *
68 * The level granularity is: LVL_CLK_DIV ^ lvl
69 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
70 *
71 * The array level of a newly armed timer depends on the relative expiry
72 * time. The farther the expiry time is away the higher the array level and
73 * therefor the granularity becomes.
74 *
75 * Contrary to the original timer wheel implementation, which aims for 'exact'
76 * expiry of the timers, this implementation removes the need for recascading
77 * the timers into the lower array levels. The previous 'classic' timer wheel
78 * implementation of the kernel already violated the 'exact' expiry by adding
79 * slack to the expiry time to provide batched expiration. The granularity
80 * levels provide implicit batching.
81 *
82 * This is an optimization of the original timer wheel implementation for the
83 * majority of the timer wheel use cases: timeouts. The vast majority of
84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
85 * the timeout expires it indicates that normal operation is disturbed, so it
86 * does not matter much whether the timeout comes with a slight delay.
87 *
88 * The only exception to this are networking timers with a small expiry
89 * time. They rely on the granularity. Those fit into the first wheel level,
90 * which has HZ granularity.
91 *
92 * We don't have cascading anymore. timers with a expiry time above the
93 * capacity of the last wheel level are force expired at the maximum timeout
94 * value of the last wheel level. From data sampling we know that the maximum
95 * value observed is 5 days (network connection tracking), so this should not
96 * be an issue.
97 *
98 * The currently chosen array constants values are a good compromise between
99 * array size and granularity.
100 *
101 * This results in the following granularity and range levels:
102 *
103 * HZ 1000 steps
104 * Level Offset Granularity Range
105 * 0 0 1 ms 0 ms - 63 ms
106 * 1 64 8 ms 64 ms - 511 ms
107 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
108 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
109 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
110 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
111 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
112 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
113 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
114 *
115 * HZ 300
116 * Level Offset Granularity Range
117 * 0 0 3 ms 0 ms - 210 ms
118 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
119 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
120 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
121 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
122 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
123 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
124 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
125 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
126 *
127 * HZ 250
128 * Level Offset Granularity Range
129 * 0 0 4 ms 0 ms - 255 ms
130 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
131 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
132 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
133 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
134 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
135 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
136 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
137 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
138 *
139 * HZ 100
140 * Level Offset Granularity Range
141 * 0 0 10 ms 0 ms - 630 ms
142 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
143 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
144 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
145 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
146 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
147 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
148 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
149 */
150
151 /* Clock divisor for the next level */
152 #define LVL_CLK_SHIFT 3
153 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
154 #define LVL_CLK_MASK (LVL_CLK_DIV - 1)
155 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
156 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
157
158 /*
159 * The time start value for each level to select the bucket at enqueue
160 * time.
161 */
162 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
163
164 /* Size of each clock level */
165 #define LVL_BITS 6
166 #define LVL_SIZE (1UL << LVL_BITS)
167 #define LVL_MASK (LVL_SIZE - 1)
168 #define LVL_OFFS(n) ((n) * LVL_SIZE)
169
170 /* Level depth */
171 #if HZ > 100
172 # define LVL_DEPTH 9
173 # else
174 # define LVL_DEPTH 8
175 #endif
176
177 /* The cutoff (max. capacity of the wheel) */
178 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
179 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
180
181 /*
182 * The resulting wheel size. If NOHZ is configured we allocate two
183 * wheels so we have a separate storage for the deferrable timers.
184 */
185 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
186
187 #ifdef CONFIG_NO_HZ_COMMON
188 # define NR_BASES 2
189 # define BASE_STD 0
190 # define BASE_DEF 1
191 #else
192 # define NR_BASES 1
193 # define BASE_STD 0
194 # define BASE_DEF 0
195 #endif
196
197 struct timer_base {
198 raw_spinlock_t lock;
199 struct timer_list *running_timer;
200 unsigned long clk;
201 unsigned long next_expiry;
202 unsigned int cpu;
203 bool migration_enabled;
204 bool nohz_active;
205 bool is_idle;
206 bool must_forward_clk;
207 DECLARE_BITMAP(pending_map, WHEEL_SIZE);
208 struct hlist_head vectors[WHEEL_SIZE];
209 } ____cacheline_aligned;
210
211 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
212
213 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
214 unsigned int sysctl_timer_migration = 1;
215
216 void timers_update_migration(bool update_nohz)
217 {
218 bool on = sysctl_timer_migration && tick_nohz_active;
219 unsigned int cpu;
220
221 /* Avoid the loop, if nothing to update */
222 if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
223 return;
224
225 for_each_possible_cpu(cpu) {
226 per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
227 per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
228 per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
229 if (!update_nohz)
230 continue;
231 per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
232 per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
233 per_cpu(hrtimer_bases.nohz_active, cpu) = true;
234 }
235 }
236
237 int timer_migration_handler(struct ctl_table *table, int write,
238 void __user *buffer, size_t *lenp,
239 loff_t *ppos)
240 {
241 static DEFINE_MUTEX(mutex);
242 int ret;
243
244 mutex_lock(&mutex);
245 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
246 if (!ret && write)
247 timers_update_migration(false);
248 mutex_unlock(&mutex);
249 return ret;
250 }
251 #endif
252
253 static unsigned long round_jiffies_common(unsigned long j, int cpu,
254 bool force_up)
255 {
256 int rem;
257 unsigned long original = j;
258
259 /*
260 * We don't want all cpus firing their timers at once hitting the
261 * same lock or cachelines, so we skew each extra cpu with an extra
262 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
263 * already did this.
264 * The skew is done by adding 3*cpunr, then round, then subtract this
265 * extra offset again.
266 */
267 j += cpu * 3;
268
269 rem = j % HZ;
270
271 /*
272 * If the target jiffie is just after a whole second (which can happen
273 * due to delays of the timer irq, long irq off times etc etc) then
274 * we should round down to the whole second, not up. Use 1/4th second
275 * as cutoff for this rounding as an extreme upper bound for this.
276 * But never round down if @force_up is set.
277 */
278 if (rem < HZ/4 && !force_up) /* round down */
279 j = j - rem;
280 else /* round up */
281 j = j - rem + HZ;
282
283 /* now that we have rounded, subtract the extra skew again */
284 j -= cpu * 3;
285
286 /*
287 * Make sure j is still in the future. Otherwise return the
288 * unmodified value.
289 */
290 return time_is_after_jiffies(j) ? j : original;
291 }
292
293 /**
294 * __round_jiffies - function to round jiffies to a full second
295 * @j: the time in (absolute) jiffies that should be rounded
296 * @cpu: the processor number on which the timeout will happen
297 *
298 * __round_jiffies() rounds an absolute time in the future (in jiffies)
299 * up or down to (approximately) full seconds. This is useful for timers
300 * for which the exact time they fire does not matter too much, as long as
301 * they fire approximately every X seconds.
302 *
303 * By rounding these timers to whole seconds, all such timers will fire
304 * at the same time, rather than at various times spread out. The goal
305 * of this is to have the CPU wake up less, which saves power.
306 *
307 * The exact rounding is skewed for each processor to avoid all
308 * processors firing at the exact same time, which could lead
309 * to lock contention or spurious cache line bouncing.
310 *
311 * The return value is the rounded version of the @j parameter.
312 */
313 unsigned long __round_jiffies(unsigned long j, int cpu)
314 {
315 return round_jiffies_common(j, cpu, false);
316 }
317 EXPORT_SYMBOL_GPL(__round_jiffies);
318
319 /**
320 * __round_jiffies_relative - function to round jiffies to a full second
321 * @j: the time in (relative) jiffies that should be rounded
322 * @cpu: the processor number on which the timeout will happen
323 *
324 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
325 * up or down to (approximately) full seconds. This is useful for timers
326 * for which the exact time they fire does not matter too much, as long as
327 * they fire approximately every X seconds.
328 *
329 * By rounding these timers to whole seconds, all such timers will fire
330 * at the same time, rather than at various times spread out. The goal
331 * of this is to have the CPU wake up less, which saves power.
332 *
333 * The exact rounding is skewed for each processor to avoid all
334 * processors firing at the exact same time, which could lead
335 * to lock contention or spurious cache line bouncing.
336 *
337 * The return value is the rounded version of the @j parameter.
338 */
339 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
340 {
341 unsigned long j0 = jiffies;
342
343 /* Use j0 because jiffies might change while we run */
344 return round_jiffies_common(j + j0, cpu, false) - j0;
345 }
346 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
347
348 /**
349 * round_jiffies - function to round jiffies to a full second
350 * @j: the time in (absolute) jiffies that should be rounded
351 *
352 * round_jiffies() rounds an absolute time in the future (in jiffies)
353 * up or down to (approximately) full seconds. This is useful for timers
354 * for which the exact time they fire does not matter too much, as long as
355 * they fire approximately every X seconds.
356 *
357 * By rounding these timers to whole seconds, all such timers will fire
358 * at the same time, rather than at various times spread out. The goal
359 * of this is to have the CPU wake up less, which saves power.
360 *
361 * The return value is the rounded version of the @j parameter.
362 */
363 unsigned long round_jiffies(unsigned long j)
364 {
365 return round_jiffies_common(j, raw_smp_processor_id(), false);
366 }
367 EXPORT_SYMBOL_GPL(round_jiffies);
368
369 /**
370 * round_jiffies_relative - function to round jiffies to a full second
371 * @j: the time in (relative) jiffies that should be rounded
372 *
373 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
374 * up or down to (approximately) full seconds. This is useful for timers
375 * for which the exact time they fire does not matter too much, as long as
376 * they fire approximately every X seconds.
377 *
378 * By rounding these timers to whole seconds, all such timers will fire
379 * at the same time, rather than at various times spread out. The goal
380 * of this is to have the CPU wake up less, which saves power.
381 *
382 * The return value is the rounded version of the @j parameter.
383 */
384 unsigned long round_jiffies_relative(unsigned long j)
385 {
386 return __round_jiffies_relative(j, raw_smp_processor_id());
387 }
388 EXPORT_SYMBOL_GPL(round_jiffies_relative);
389
390 /**
391 * __round_jiffies_up - function to round jiffies up to a full second
392 * @j: the time in (absolute) jiffies that should be rounded
393 * @cpu: the processor number on which the timeout will happen
394 *
395 * This is the same as __round_jiffies() except that it will never
396 * round down. This is useful for timeouts for which the exact time
397 * of firing does not matter too much, as long as they don't fire too
398 * early.
399 */
400 unsigned long __round_jiffies_up(unsigned long j, int cpu)
401 {
402 return round_jiffies_common(j, cpu, true);
403 }
404 EXPORT_SYMBOL_GPL(__round_jiffies_up);
405
406 /**
407 * __round_jiffies_up_relative - function to round jiffies up to a full second
408 * @j: the time in (relative) jiffies that should be rounded
409 * @cpu: the processor number on which the timeout will happen
410 *
411 * This is the same as __round_jiffies_relative() except that it will never
412 * round down. This is useful for timeouts for which the exact time
413 * of firing does not matter too much, as long as they don't fire too
414 * early.
415 */
416 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
417 {
418 unsigned long j0 = jiffies;
419
420 /* Use j0 because jiffies might change while we run */
421 return round_jiffies_common(j + j0, cpu, true) - j0;
422 }
423 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
424
425 /**
426 * round_jiffies_up - function to round jiffies up to a full second
427 * @j: the time in (absolute) jiffies that should be rounded
428 *
429 * This is the same as round_jiffies() except that it will never
430 * round down. This is useful for timeouts for which the exact time
431 * of firing does not matter too much, as long as they don't fire too
432 * early.
433 */
434 unsigned long round_jiffies_up(unsigned long j)
435 {
436 return round_jiffies_common(j, raw_smp_processor_id(), true);
437 }
438 EXPORT_SYMBOL_GPL(round_jiffies_up);
439
440 /**
441 * round_jiffies_up_relative - function to round jiffies up to a full second
442 * @j: the time in (relative) jiffies that should be rounded
443 *
444 * This is the same as round_jiffies_relative() except that it will never
445 * round down. This is useful for timeouts for which the exact time
446 * of firing does not matter too much, as long as they don't fire too
447 * early.
448 */
449 unsigned long round_jiffies_up_relative(unsigned long j)
450 {
451 return __round_jiffies_up_relative(j, raw_smp_processor_id());
452 }
453 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
454
455
456 static inline unsigned int timer_get_idx(struct timer_list *timer)
457 {
458 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
459 }
460
461 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
462 {
463 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
464 idx << TIMER_ARRAYSHIFT;
465 }
466
467 /*
468 * Helper function to calculate the array index for a given expiry
469 * time.
470 */
471 static inline unsigned calc_index(unsigned expires, unsigned lvl)
472 {
473 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
474 return LVL_OFFS(lvl) + (expires & LVL_MASK);
475 }
476
477 static int calc_wheel_index(unsigned long expires, unsigned long clk)
478 {
479 unsigned long delta = expires - clk;
480 unsigned int idx;
481
482 if (delta < LVL_START(1)) {
483 idx = calc_index(expires, 0);
484 } else if (delta < LVL_START(2)) {
485 idx = calc_index(expires, 1);
486 } else if (delta < LVL_START(3)) {
487 idx = calc_index(expires, 2);
488 } else if (delta < LVL_START(4)) {
489 idx = calc_index(expires, 3);
490 } else if (delta < LVL_START(5)) {
491 idx = calc_index(expires, 4);
492 } else if (delta < LVL_START(6)) {
493 idx = calc_index(expires, 5);
494 } else if (delta < LVL_START(7)) {
495 idx = calc_index(expires, 6);
496 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
497 idx = calc_index(expires, 7);
498 } else if ((long) delta < 0) {
499 idx = clk & LVL_MASK;
500 } else {
501 /*
502 * Force expire obscene large timeouts to expire at the
503 * capacity limit of the wheel.
504 */
505 if (expires >= WHEEL_TIMEOUT_CUTOFF)
506 expires = WHEEL_TIMEOUT_MAX;
507
508 idx = calc_index(expires, LVL_DEPTH - 1);
509 }
510 return idx;
511 }
512
513 /*
514 * Enqueue the timer into the hash bucket, mark it pending in
515 * the bitmap and store the index in the timer flags.
516 */
517 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
518 unsigned int idx)
519 {
520 hlist_add_head(&timer->entry, base->vectors + idx);
521 __set_bit(idx, base->pending_map);
522 timer_set_idx(timer, idx);
523 }
524
525 static void
526 __internal_add_timer(struct timer_base *base, struct timer_list *timer)
527 {
528 unsigned int idx;
529
530 idx = calc_wheel_index(timer->expires, base->clk);
531 enqueue_timer(base, timer, idx);
532 }
533
534 static void
535 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
536 {
537 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
538 return;
539
540 /*
541 * TODO: This wants some optimizing similar to the code below, but we
542 * will do that when we switch from push to pull for deferrable timers.
543 */
544 if (timer->flags & TIMER_DEFERRABLE) {
545 if (tick_nohz_full_cpu(base->cpu))
546 wake_up_nohz_cpu(base->cpu);
547 return;
548 }
549
550 /*
551 * We might have to IPI the remote CPU if the base is idle and the
552 * timer is not deferrable. If the other CPU is on the way to idle
553 * then it can't set base->is_idle as we hold the base lock:
554 */
555 if (!base->is_idle)
556 return;
557
558 /* Check whether this is the new first expiring timer: */
559 if (time_after_eq(timer->expires, base->next_expiry))
560 return;
561
562 /*
563 * Set the next expiry time and kick the CPU so it can reevaluate the
564 * wheel:
565 */
566 base->next_expiry = timer->expires;
567 wake_up_nohz_cpu(base->cpu);
568 }
569
570 static void
571 internal_add_timer(struct timer_base *base, struct timer_list *timer)
572 {
573 __internal_add_timer(base, timer);
574 trigger_dyntick_cpu(base, timer);
575 }
576
577 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
578
579 static struct debug_obj_descr timer_debug_descr;
580
581 static void *timer_debug_hint(void *addr)
582 {
583 return ((struct timer_list *) addr)->function;
584 }
585
586 static bool timer_is_static_object(void *addr)
587 {
588 struct timer_list *timer = addr;
589
590 return (timer->entry.pprev == NULL &&
591 timer->entry.next == TIMER_ENTRY_STATIC);
592 }
593
594 /*
595 * fixup_init is called when:
596 * - an active object is initialized
597 */
598 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
599 {
600 struct timer_list *timer = addr;
601
602 switch (state) {
603 case ODEBUG_STATE_ACTIVE:
604 del_timer_sync(timer);
605 debug_object_init(timer, &timer_debug_descr);
606 return true;
607 default:
608 return false;
609 }
610 }
611
612 /* Stub timer callback for improperly used timers. */
613 static void stub_timer(struct timer_list *unused)
614 {
615 WARN_ON(1);
616 }
617
618 /*
619 * fixup_activate is called when:
620 * - an active object is activated
621 * - an unknown non-static object is activated
622 */
623 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
624 {
625 struct timer_list *timer = addr;
626
627 switch (state) {
628 case ODEBUG_STATE_NOTAVAILABLE:
629 timer_setup(timer, stub_timer, 0);
630 return true;
631
632 case ODEBUG_STATE_ACTIVE:
633 WARN_ON(1);
634
635 default:
636 return false;
637 }
638 }
639
640 /*
641 * fixup_free is called when:
642 * - an active object is freed
643 */
644 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
645 {
646 struct timer_list *timer = addr;
647
648 switch (state) {
649 case ODEBUG_STATE_ACTIVE:
650 del_timer_sync(timer);
651 debug_object_free(timer, &timer_debug_descr);
652 return true;
653 default:
654 return false;
655 }
656 }
657
658 /*
659 * fixup_assert_init is called when:
660 * - an untracked/uninit-ed object is found
661 */
662 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
663 {
664 struct timer_list *timer = addr;
665
666 switch (state) {
667 case ODEBUG_STATE_NOTAVAILABLE:
668 timer_setup(timer, stub_timer, 0);
669 return true;
670 default:
671 return false;
672 }
673 }
674
675 static struct debug_obj_descr timer_debug_descr = {
676 .name = "timer_list",
677 .debug_hint = timer_debug_hint,
678 .is_static_object = timer_is_static_object,
679 .fixup_init = timer_fixup_init,
680 .fixup_activate = timer_fixup_activate,
681 .fixup_free = timer_fixup_free,
682 .fixup_assert_init = timer_fixup_assert_init,
683 };
684
685 static inline void debug_timer_init(struct timer_list *timer)
686 {
687 debug_object_init(timer, &timer_debug_descr);
688 }
689
690 static inline void debug_timer_activate(struct timer_list *timer)
691 {
692 debug_object_activate(timer, &timer_debug_descr);
693 }
694
695 static inline void debug_timer_deactivate(struct timer_list *timer)
696 {
697 debug_object_deactivate(timer, &timer_debug_descr);
698 }
699
700 static inline void debug_timer_free(struct timer_list *timer)
701 {
702 debug_object_free(timer, &timer_debug_descr);
703 }
704
705 static inline void debug_timer_assert_init(struct timer_list *timer)
706 {
707 debug_object_assert_init(timer, &timer_debug_descr);
708 }
709
710 static void do_init_timer(struct timer_list *timer,
711 void (*func)(struct timer_list *),
712 unsigned int flags,
713 const char *name, struct lock_class_key *key);
714
715 void init_timer_on_stack_key(struct timer_list *timer,
716 void (*func)(struct timer_list *),
717 unsigned int flags,
718 const char *name, struct lock_class_key *key)
719 {
720 debug_object_init_on_stack(timer, &timer_debug_descr);
721 do_init_timer(timer, func, flags, name, key);
722 }
723 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
724
725 void destroy_timer_on_stack(struct timer_list *timer)
726 {
727 debug_object_free(timer, &timer_debug_descr);
728 }
729 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
730
731 #else
732 static inline void debug_timer_init(struct timer_list *timer) { }
733 static inline void debug_timer_activate(struct timer_list *timer) { }
734 static inline void debug_timer_deactivate(struct timer_list *timer) { }
735 static inline void debug_timer_assert_init(struct timer_list *timer) { }
736 #endif
737
738 static inline void debug_init(struct timer_list *timer)
739 {
740 debug_timer_init(timer);
741 trace_timer_init(timer);
742 }
743
744 static inline void
745 debug_activate(struct timer_list *timer, unsigned long expires)
746 {
747 debug_timer_activate(timer);
748 trace_timer_start(timer, expires, timer->flags);
749 }
750
751 static inline void debug_deactivate(struct timer_list *timer)
752 {
753 debug_timer_deactivate(timer);
754 trace_timer_cancel(timer);
755 }
756
757 static inline void debug_assert_init(struct timer_list *timer)
758 {
759 debug_timer_assert_init(timer);
760 }
761
762 static void do_init_timer(struct timer_list *timer,
763 void (*func)(struct timer_list *),
764 unsigned int flags,
765 const char *name, struct lock_class_key *key)
766 {
767 timer->entry.pprev = NULL;
768 timer->function = func;
769 timer->flags = flags | raw_smp_processor_id();
770 lockdep_init_map(&timer->lockdep_map, name, key, 0);
771 }
772
773 /**
774 * init_timer_key - initialize a timer
775 * @timer: the timer to be initialized
776 * @func: timer callback function
777 * @flags: timer flags
778 * @name: name of the timer
779 * @key: lockdep class key of the fake lock used for tracking timer
780 * sync lock dependencies
781 *
782 * init_timer_key() must be done to a timer prior calling *any* of the
783 * other timer functions.
784 */
785 void init_timer_key(struct timer_list *timer,
786 void (*func)(struct timer_list *), unsigned int flags,
787 const char *name, struct lock_class_key *key)
788 {
789 debug_init(timer);
790 do_init_timer(timer, func, flags, name, key);
791 }
792 EXPORT_SYMBOL(init_timer_key);
793
794 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
795 {
796 struct hlist_node *entry = &timer->entry;
797
798 debug_deactivate(timer);
799
800 __hlist_del(entry);
801 if (clear_pending)
802 entry->pprev = NULL;
803 entry->next = LIST_POISON2;
804 }
805
806 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
807 bool clear_pending)
808 {
809 unsigned idx = timer_get_idx(timer);
810
811 if (!timer_pending(timer))
812 return 0;
813
814 if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
815 __clear_bit(idx, base->pending_map);
816
817 detach_timer(timer, clear_pending);
818 return 1;
819 }
820
821 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
822 {
823 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
824
825 /*
826 * If the timer is deferrable and NO_HZ_COMMON is set then we need
827 * to use the deferrable base.
828 */
829 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
830 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
831 return base;
832 }
833
834 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
835 {
836 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
837
838 /*
839 * If the timer is deferrable and NO_HZ_COMMON is set then we need
840 * to use the deferrable base.
841 */
842 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
843 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
844 return base;
845 }
846
847 static inline struct timer_base *get_timer_base(u32 tflags)
848 {
849 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
850 }
851
852 #ifdef CONFIG_NO_HZ_COMMON
853 static inline struct timer_base *
854 get_target_base(struct timer_base *base, unsigned tflags)
855 {
856 #ifdef CONFIG_SMP
857 if ((tflags & TIMER_PINNED) || !base->migration_enabled)
858 return get_timer_this_cpu_base(tflags);
859 return get_timer_cpu_base(tflags, get_nohz_timer_target());
860 #else
861 return get_timer_this_cpu_base(tflags);
862 #endif
863 }
864
865 static inline void forward_timer_base(struct timer_base *base)
866 {
867 unsigned long jnow;
868
869 /*
870 * We only forward the base when we are idle or have just come out of
871 * idle (must_forward_clk logic), and have a delta between base clock
872 * and jiffies. In the common case, run_timers will take care of it.
873 */
874 if (likely(!base->must_forward_clk))
875 return;
876
877 jnow = READ_ONCE(jiffies);
878 base->must_forward_clk = base->is_idle;
879 if ((long)(jnow - base->clk) < 2)
880 return;
881
882 /*
883 * If the next expiry value is > jiffies, then we fast forward to
884 * jiffies otherwise we forward to the next expiry value.
885 */
886 if (time_after(base->next_expiry, jnow))
887 base->clk = jnow;
888 else
889 base->clk = base->next_expiry;
890 }
891 #else
892 static inline struct timer_base *
893 get_target_base(struct timer_base *base, unsigned tflags)
894 {
895 return get_timer_this_cpu_base(tflags);
896 }
897
898 static inline void forward_timer_base(struct timer_base *base) { }
899 #endif
900
901
902 /*
903 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
904 * that all timers which are tied to this base are locked, and the base itself
905 * is locked too.
906 *
907 * So __run_timers/migrate_timers can safely modify all timers which could
908 * be found in the base->vectors array.
909 *
910 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
911 * to wait until the migration is done.
912 */
913 static struct timer_base *lock_timer_base(struct timer_list *timer,
914 unsigned long *flags)
915 __acquires(timer->base->lock)
916 {
917 for (;;) {
918 struct timer_base *base;
919 u32 tf;
920
921 /*
922 * We need to use READ_ONCE() here, otherwise the compiler
923 * might re-read @tf between the check for TIMER_MIGRATING
924 * and spin_lock().
925 */
926 tf = READ_ONCE(timer->flags);
927
928 if (!(tf & TIMER_MIGRATING)) {
929 base = get_timer_base(tf);
930 raw_spin_lock_irqsave(&base->lock, *flags);
931 if (timer->flags == tf)
932 return base;
933 raw_spin_unlock_irqrestore(&base->lock, *flags);
934 }
935 cpu_relax();
936 }
937 }
938
939 #define MOD_TIMER_PENDING_ONLY 0x01
940 #define MOD_TIMER_REDUCE 0x02
941
942 static inline int
943 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
944 {
945 struct timer_base *base, *new_base;
946 unsigned int idx = UINT_MAX;
947 unsigned long clk = 0, flags;
948 int ret = 0;
949
950 BUG_ON(!timer->function);
951
952 /*
953 * This is a common optimization triggered by the networking code - if
954 * the timer is re-modified to have the same timeout or ends up in the
955 * same array bucket then just return:
956 */
957 if (timer_pending(timer)) {
958 /*
959 * The downside of this optimization is that it can result in
960 * larger granularity than you would get from adding a new
961 * timer with this expiry.
962 */
963 long diff = timer->expires - expires;
964
965 if (!diff)
966 return 1;
967 if (options & MOD_TIMER_REDUCE && diff <= 0)
968 return 1;
969
970 /*
971 * We lock timer base and calculate the bucket index right
972 * here. If the timer ends up in the same bucket, then we
973 * just update the expiry time and avoid the whole
974 * dequeue/enqueue dance.
975 */
976 base = lock_timer_base(timer, &flags);
977 forward_timer_base(base);
978
979 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
980 time_before_eq(timer->expires, expires)) {
981 ret = 1;
982 goto out_unlock;
983 }
984
985 clk = base->clk;
986 idx = calc_wheel_index(expires, clk);
987
988 /*
989 * Retrieve and compare the array index of the pending
990 * timer. If it matches set the expiry to the new value so a
991 * subsequent call will exit in the expires check above.
992 */
993 if (idx == timer_get_idx(timer)) {
994 if (!(options & MOD_TIMER_REDUCE))
995 timer->expires = expires;
996 else if (time_after(timer->expires, expires))
997 timer->expires = expires;
998 ret = 1;
999 goto out_unlock;
1000 }
1001 } else {
1002 base = lock_timer_base(timer, &flags);
1003 forward_timer_base(base);
1004 }
1005
1006 ret = detach_if_pending(timer, base, false);
1007 if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1008 goto out_unlock;
1009
1010 new_base = get_target_base(base, timer->flags);
1011
1012 if (base != new_base) {
1013 /*
1014 * We are trying to schedule the timer on the new base.
1015 * However we can't change timer's base while it is running,
1016 * otherwise del_timer_sync() can't detect that the timer's
1017 * handler yet has not finished. This also guarantees that the
1018 * timer is serialized wrt itself.
1019 */
1020 if (likely(base->running_timer != timer)) {
1021 /* See the comment in lock_timer_base() */
1022 timer->flags |= TIMER_MIGRATING;
1023
1024 raw_spin_unlock(&base->lock);
1025 base = new_base;
1026 raw_spin_lock(&base->lock);
1027 WRITE_ONCE(timer->flags,
1028 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1029 forward_timer_base(base);
1030 }
1031 }
1032
1033 debug_activate(timer, expires);
1034
1035 timer->expires = expires;
1036 /*
1037 * If 'idx' was calculated above and the base time did not advance
1038 * between calculating 'idx' and possibly switching the base, only
1039 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1040 * we need to (re)calculate the wheel index via
1041 * internal_add_timer().
1042 */
1043 if (idx != UINT_MAX && clk == base->clk) {
1044 enqueue_timer(base, timer, idx);
1045 trigger_dyntick_cpu(base, timer);
1046 } else {
1047 internal_add_timer(base, timer);
1048 }
1049
1050 out_unlock:
1051 raw_spin_unlock_irqrestore(&base->lock, flags);
1052
1053 return ret;
1054 }
1055
1056 /**
1057 * mod_timer_pending - modify a pending timer's timeout
1058 * @timer: the pending timer to be modified
1059 * @expires: new timeout in jiffies
1060 *
1061 * mod_timer_pending() is the same for pending timers as mod_timer(),
1062 * but will not re-activate and modify already deleted timers.
1063 *
1064 * It is useful for unserialized use of timers.
1065 */
1066 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1067 {
1068 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1069 }
1070 EXPORT_SYMBOL(mod_timer_pending);
1071
1072 /**
1073 * mod_timer - modify a timer's timeout
1074 * @timer: the timer to be modified
1075 * @expires: new timeout in jiffies
1076 *
1077 * mod_timer() is a more efficient way to update the expire field of an
1078 * active timer (if the timer is inactive it will be activated)
1079 *
1080 * mod_timer(timer, expires) is equivalent to:
1081 *
1082 * del_timer(timer); timer->expires = expires; add_timer(timer);
1083 *
1084 * Note that if there are multiple unserialized concurrent users of the
1085 * same timer, then mod_timer() is the only safe way to modify the timeout,
1086 * since add_timer() cannot modify an already running timer.
1087 *
1088 * The function returns whether it has modified a pending timer or not.
1089 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1090 * active timer returns 1.)
1091 */
1092 int mod_timer(struct timer_list *timer, unsigned long expires)
1093 {
1094 return __mod_timer(timer, expires, 0);
1095 }
1096 EXPORT_SYMBOL(mod_timer);
1097
1098 /**
1099 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1100 * @timer: The timer to be modified
1101 * @expires: New timeout in jiffies
1102 *
1103 * timer_reduce() is very similar to mod_timer(), except that it will only
1104 * modify a running timer if that would reduce the expiration time (it will
1105 * start a timer that isn't running).
1106 */
1107 int timer_reduce(struct timer_list *timer, unsigned long expires)
1108 {
1109 return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1110 }
1111 EXPORT_SYMBOL(timer_reduce);
1112
1113 /**
1114 * add_timer - start a timer
1115 * @timer: the timer to be added
1116 *
1117 * The kernel will do a ->function(@timer) callback from the
1118 * timer interrupt at the ->expires point in the future. The
1119 * current time is 'jiffies'.
1120 *
1121 * The timer's ->expires, ->function fields must be set prior calling this
1122 * function.
1123 *
1124 * Timers with an ->expires field in the past will be executed in the next
1125 * timer tick.
1126 */
1127 void add_timer(struct timer_list *timer)
1128 {
1129 BUG_ON(timer_pending(timer));
1130 mod_timer(timer, timer->expires);
1131 }
1132 EXPORT_SYMBOL(add_timer);
1133
1134 /**
1135 * add_timer_on - start a timer on a particular CPU
1136 * @timer: the timer to be added
1137 * @cpu: the CPU to start it on
1138 *
1139 * This is not very scalable on SMP. Double adds are not possible.
1140 */
1141 void add_timer_on(struct timer_list *timer, int cpu)
1142 {
1143 struct timer_base *new_base, *base;
1144 unsigned long flags;
1145
1146 BUG_ON(timer_pending(timer) || !timer->function);
1147
1148 new_base = get_timer_cpu_base(timer->flags, cpu);
1149
1150 /*
1151 * If @timer was on a different CPU, it should be migrated with the
1152 * old base locked to prevent other operations proceeding with the
1153 * wrong base locked. See lock_timer_base().
1154 */
1155 base = lock_timer_base(timer, &flags);
1156 if (base != new_base) {
1157 timer->flags |= TIMER_MIGRATING;
1158
1159 raw_spin_unlock(&base->lock);
1160 base = new_base;
1161 raw_spin_lock(&base->lock);
1162 WRITE_ONCE(timer->flags,
1163 (timer->flags & ~TIMER_BASEMASK) | cpu);
1164 }
1165 forward_timer_base(base);
1166
1167 debug_activate(timer, timer->expires);
1168 internal_add_timer(base, timer);
1169 raw_spin_unlock_irqrestore(&base->lock, flags);
1170 }
1171 EXPORT_SYMBOL_GPL(add_timer_on);
1172
1173 /**
1174 * del_timer - deactivate a timer.
1175 * @timer: the timer to be deactivated
1176 *
1177 * del_timer() deactivates a timer - this works on both active and inactive
1178 * timers.
1179 *
1180 * The function returns whether it has deactivated a pending timer or not.
1181 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1182 * active timer returns 1.)
1183 */
1184 int del_timer(struct timer_list *timer)
1185 {
1186 struct timer_base *base;
1187 unsigned long flags;
1188 int ret = 0;
1189
1190 debug_assert_init(timer);
1191
1192 if (timer_pending(timer)) {
1193 base = lock_timer_base(timer, &flags);
1194 ret = detach_if_pending(timer, base, true);
1195 raw_spin_unlock_irqrestore(&base->lock, flags);
1196 }
1197
1198 return ret;
1199 }
1200 EXPORT_SYMBOL(del_timer);
1201
1202 /**
1203 * try_to_del_timer_sync - Try to deactivate a timer
1204 * @timer: timer to delete
1205 *
1206 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1207 * exit the timer is not queued and the handler is not running on any CPU.
1208 */
1209 int try_to_del_timer_sync(struct timer_list *timer)
1210 {
1211 struct timer_base *base;
1212 unsigned long flags;
1213 int ret = -1;
1214
1215 debug_assert_init(timer);
1216
1217 base = lock_timer_base(timer, &flags);
1218
1219 if (base->running_timer != timer)
1220 ret = detach_if_pending(timer, base, true);
1221
1222 raw_spin_unlock_irqrestore(&base->lock, flags);
1223
1224 return ret;
1225 }
1226 EXPORT_SYMBOL(try_to_del_timer_sync);
1227
1228 #ifdef CONFIG_SMP
1229 /**
1230 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1231 * @timer: the timer to be deactivated
1232 *
1233 * This function only differs from del_timer() on SMP: besides deactivating
1234 * the timer it also makes sure the handler has finished executing on other
1235 * CPUs.
1236 *
1237 * Synchronization rules: Callers must prevent restarting of the timer,
1238 * otherwise this function is meaningless. It must not be called from
1239 * interrupt contexts unless the timer is an irqsafe one. The caller must
1240 * not hold locks which would prevent completion of the timer's
1241 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1242 * timer is not queued and the handler is not running on any CPU.
1243 *
1244 * Note: For !irqsafe timers, you must not hold locks that are held in
1245 * interrupt context while calling this function. Even if the lock has
1246 * nothing to do with the timer in question. Here's why:
1247 *
1248 * CPU0 CPU1
1249 * ---- ----
1250 * <SOFTIRQ>
1251 * call_timer_fn();
1252 * base->running_timer = mytimer;
1253 * spin_lock_irq(somelock);
1254 * <IRQ>
1255 * spin_lock(somelock);
1256 * del_timer_sync(mytimer);
1257 * while (base->running_timer == mytimer);
1258 *
1259 * Now del_timer_sync() will never return and never release somelock.
1260 * The interrupt on the other CPU is waiting to grab somelock but
1261 * it has interrupted the softirq that CPU0 is waiting to finish.
1262 *
1263 * The function returns whether it has deactivated a pending timer or not.
1264 */
1265 int del_timer_sync(struct timer_list *timer)
1266 {
1267 #ifdef CONFIG_LOCKDEP
1268 unsigned long flags;
1269
1270 /*
1271 * If lockdep gives a backtrace here, please reference
1272 * the synchronization rules above.
1273 */
1274 local_irq_save(flags);
1275 lock_map_acquire(&timer->lockdep_map);
1276 lock_map_release(&timer->lockdep_map);
1277 local_irq_restore(flags);
1278 #endif
1279 /*
1280 * don't use it in hardirq context, because it
1281 * could lead to deadlock.
1282 */
1283 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1284 for (;;) {
1285 int ret = try_to_del_timer_sync(timer);
1286 if (ret >= 0)
1287 return ret;
1288 cpu_relax();
1289 }
1290 }
1291 EXPORT_SYMBOL(del_timer_sync);
1292 #endif
1293
1294 static void call_timer_fn(struct timer_list *timer, void (*fn)(struct timer_list *))
1295 {
1296 int count = preempt_count();
1297
1298 #ifdef CONFIG_LOCKDEP
1299 /*
1300 * It is permissible to free the timer from inside the
1301 * function that is called from it, this we need to take into
1302 * account for lockdep too. To avoid bogus "held lock freed"
1303 * warnings as well as problems when looking into
1304 * timer->lockdep_map, make a copy and use that here.
1305 */
1306 struct lockdep_map lockdep_map;
1307
1308 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1309 #endif
1310 /*
1311 * Couple the lock chain with the lock chain at
1312 * del_timer_sync() by acquiring the lock_map around the fn()
1313 * call here and in del_timer_sync().
1314 */
1315 lock_map_acquire(&lockdep_map);
1316
1317 trace_timer_expire_entry(timer);
1318 fn(timer);
1319 trace_timer_expire_exit(timer);
1320
1321 lock_map_release(&lockdep_map);
1322
1323 if (count != preempt_count()) {
1324 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1325 fn, count, preempt_count());
1326 /*
1327 * Restore the preempt count. That gives us a decent
1328 * chance to survive and extract information. If the
1329 * callback kept a lock held, bad luck, but not worse
1330 * than the BUG() we had.
1331 */
1332 preempt_count_set(count);
1333 }
1334 }
1335
1336 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1337 {
1338 while (!hlist_empty(head)) {
1339 struct timer_list *timer;
1340 void (*fn)(struct timer_list *);
1341
1342 timer = hlist_entry(head->first, struct timer_list, entry);
1343
1344 base->running_timer = timer;
1345 detach_timer(timer, true);
1346
1347 fn = timer->function;
1348
1349 if (timer->flags & TIMER_IRQSAFE) {
1350 raw_spin_unlock(&base->lock);
1351 call_timer_fn(timer, fn);
1352 raw_spin_lock(&base->lock);
1353 } else {
1354 raw_spin_unlock_irq(&base->lock);
1355 call_timer_fn(timer, fn);
1356 raw_spin_lock_irq(&base->lock);
1357 }
1358 }
1359 }
1360
1361 static int __collect_expired_timers(struct timer_base *base,
1362 struct hlist_head *heads)
1363 {
1364 unsigned long clk = base->clk;
1365 struct hlist_head *vec;
1366 int i, levels = 0;
1367 unsigned int idx;
1368
1369 for (i = 0; i < LVL_DEPTH; i++) {
1370 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1371
1372 if (__test_and_clear_bit(idx, base->pending_map)) {
1373 vec = base->vectors + idx;
1374 hlist_move_list(vec, heads++);
1375 levels++;
1376 }
1377 /* Is it time to look at the next level? */
1378 if (clk & LVL_CLK_MASK)
1379 break;
1380 /* Shift clock for the next level granularity */
1381 clk >>= LVL_CLK_SHIFT;
1382 }
1383 return levels;
1384 }
1385
1386 #ifdef CONFIG_NO_HZ_COMMON
1387 /*
1388 * Find the next pending bucket of a level. Search from level start (@offset)
1389 * + @clk upwards and if nothing there, search from start of the level
1390 * (@offset) up to @offset + clk.
1391 */
1392 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1393 unsigned clk)
1394 {
1395 unsigned pos, start = offset + clk;
1396 unsigned end = offset + LVL_SIZE;
1397
1398 pos = find_next_bit(base->pending_map, end, start);
1399 if (pos < end)
1400 return pos - start;
1401
1402 pos = find_next_bit(base->pending_map, start, offset);
1403 return pos < start ? pos + LVL_SIZE - start : -1;
1404 }
1405
1406 /*
1407 * Search the first expiring timer in the various clock levels. Caller must
1408 * hold base->lock.
1409 */
1410 static unsigned long __next_timer_interrupt(struct timer_base *base)
1411 {
1412 unsigned long clk, next, adj;
1413 unsigned lvl, offset = 0;
1414
1415 next = base->clk + NEXT_TIMER_MAX_DELTA;
1416 clk = base->clk;
1417 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1418 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1419
1420 if (pos >= 0) {
1421 unsigned long tmp = clk + (unsigned long) pos;
1422
1423 tmp <<= LVL_SHIFT(lvl);
1424 if (time_before(tmp, next))
1425 next = tmp;
1426 }
1427 /*
1428 * Clock for the next level. If the current level clock lower
1429 * bits are zero, we look at the next level as is. If not we
1430 * need to advance it by one because that's going to be the
1431 * next expiring bucket in that level. base->clk is the next
1432 * expiring jiffie. So in case of:
1433 *
1434 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1435 * 0 0 0 0 0 0
1436 *
1437 * we have to look at all levels @index 0. With
1438 *
1439 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1440 * 0 0 0 0 0 2
1441 *
1442 * LVL0 has the next expiring bucket @index 2. The upper
1443 * levels have the next expiring bucket @index 1.
1444 *
1445 * In case that the propagation wraps the next level the same
1446 * rules apply:
1447 *
1448 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1449 * 0 0 0 0 F 2
1450 *
1451 * So after looking at LVL0 we get:
1452 *
1453 * LVL5 LVL4 LVL3 LVL2 LVL1
1454 * 0 0 0 1 0
1455 *
1456 * So no propagation from LVL1 to LVL2 because that happened
1457 * with the add already, but then we need to propagate further
1458 * from LVL2 to LVL3.
1459 *
1460 * So the simple check whether the lower bits of the current
1461 * level are 0 or not is sufficient for all cases.
1462 */
1463 adj = clk & LVL_CLK_MASK ? 1 : 0;
1464 clk >>= LVL_CLK_SHIFT;
1465 clk += adj;
1466 }
1467 return next;
1468 }
1469
1470 /*
1471 * Check, if the next hrtimer event is before the next timer wheel
1472 * event:
1473 */
1474 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1475 {
1476 u64 nextevt = hrtimer_get_next_event();
1477
1478 /*
1479 * If high resolution timers are enabled
1480 * hrtimer_get_next_event() returns KTIME_MAX.
1481 */
1482 if (expires <= nextevt)
1483 return expires;
1484
1485 /*
1486 * If the next timer is already expired, return the tick base
1487 * time so the tick is fired immediately.
1488 */
1489 if (nextevt <= basem)
1490 return basem;
1491
1492 /*
1493 * Round up to the next jiffie. High resolution timers are
1494 * off, so the hrtimers are expired in the tick and we need to
1495 * make sure that this tick really expires the timer to avoid
1496 * a ping pong of the nohz stop code.
1497 *
1498 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1499 */
1500 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1501 }
1502
1503 /**
1504 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1505 * @basej: base time jiffies
1506 * @basem: base time clock monotonic
1507 *
1508 * Returns the tick aligned clock monotonic time of the next pending
1509 * timer or KTIME_MAX if no timer is pending.
1510 */
1511 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1512 {
1513 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1514 u64 expires = KTIME_MAX;
1515 unsigned long nextevt;
1516 bool is_max_delta;
1517
1518 /*
1519 * Pretend that there is no timer pending if the cpu is offline.
1520 * Possible pending timers will be migrated later to an active cpu.
1521 */
1522 if (cpu_is_offline(smp_processor_id()))
1523 return expires;
1524
1525 raw_spin_lock(&base->lock);
1526 nextevt = __next_timer_interrupt(base);
1527 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1528 base->next_expiry = nextevt;
1529 /*
1530 * We have a fresh next event. Check whether we can forward the
1531 * base. We can only do that when @basej is past base->clk
1532 * otherwise we might rewind base->clk.
1533 */
1534 if (time_after(basej, base->clk)) {
1535 if (time_after(nextevt, basej))
1536 base->clk = basej;
1537 else if (time_after(nextevt, base->clk))
1538 base->clk = nextevt;
1539 }
1540
1541 if (time_before_eq(nextevt, basej)) {
1542 expires = basem;
1543 base->is_idle = false;
1544 } else {
1545 if (!is_max_delta)
1546 expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1547 /*
1548 * If we expect to sleep more than a tick, mark the base idle.
1549 * Also the tick is stopped so any added timer must forward
1550 * the base clk itself to keep granularity small. This idle
1551 * logic is only maintained for the BASE_STD base, deferrable
1552 * timers may still see large granularity skew (by design).
1553 */
1554 if ((expires - basem) > TICK_NSEC) {
1555 base->must_forward_clk = true;
1556 base->is_idle = true;
1557 }
1558 }
1559 raw_spin_unlock(&base->lock);
1560
1561 return cmp_next_hrtimer_event(basem, expires);
1562 }
1563
1564 /**
1565 * timer_clear_idle - Clear the idle state of the timer base
1566 *
1567 * Called with interrupts disabled
1568 */
1569 void timer_clear_idle(void)
1570 {
1571 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1572
1573 /*
1574 * We do this unlocked. The worst outcome is a remote enqueue sending
1575 * a pointless IPI, but taking the lock would just make the window for
1576 * sending the IPI a few instructions smaller for the cost of taking
1577 * the lock in the exit from idle path.
1578 */
1579 base->is_idle = false;
1580 }
1581
1582 static int collect_expired_timers(struct timer_base *base,
1583 struct hlist_head *heads)
1584 {
1585 unsigned long now = READ_ONCE(jiffies);
1586
1587 /*
1588 * NOHZ optimization. After a long idle sleep we need to forward the
1589 * base to current jiffies. Avoid a loop by searching the bitfield for
1590 * the next expiring timer.
1591 */
1592 if ((long)(now - base->clk) > 2) {
1593 unsigned long next = __next_timer_interrupt(base);
1594
1595 /*
1596 * If the next timer is ahead of time forward to current
1597 * jiffies, otherwise forward to the next expiry time:
1598 */
1599 if (time_after(next, now)) {
1600 /*
1601 * The call site will increment base->clk and then
1602 * terminate the expiry loop immediately.
1603 */
1604 base->clk = now;
1605 return 0;
1606 }
1607 base->clk = next;
1608 }
1609 return __collect_expired_timers(base, heads);
1610 }
1611 #else
1612 static inline int collect_expired_timers(struct timer_base *base,
1613 struct hlist_head *heads)
1614 {
1615 return __collect_expired_timers(base, heads);
1616 }
1617 #endif
1618
1619 /*
1620 * Called from the timer interrupt handler to charge one tick to the current
1621 * process. user_tick is 1 if the tick is user time, 0 for system.
1622 */
1623 void update_process_times(int user_tick)
1624 {
1625 struct task_struct *p = current;
1626
1627 /* Note: this timer irq context must be accounted for as well. */
1628 account_process_tick(p, user_tick);
1629 run_local_timers();
1630 rcu_check_callbacks(user_tick);
1631 #ifdef CONFIG_IRQ_WORK
1632 if (in_irq())
1633 irq_work_tick();
1634 #endif
1635 scheduler_tick();
1636 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1637 run_posix_cpu_timers(p);
1638 }
1639
1640 /**
1641 * __run_timers - run all expired timers (if any) on this CPU.
1642 * @base: the timer vector to be processed.
1643 */
1644 static inline void __run_timers(struct timer_base *base)
1645 {
1646 struct hlist_head heads[LVL_DEPTH];
1647 int levels;
1648
1649 if (!time_after_eq(jiffies, base->clk))
1650 return;
1651
1652 raw_spin_lock_irq(&base->lock);
1653
1654 /*
1655 * timer_base::must_forward_clk must be cleared before running
1656 * timers so that any timer functions that call mod_timer() will
1657 * not try to forward the base. Idle tracking / clock forwarding
1658 * logic is only used with BASE_STD timers.
1659 *
1660 * The must_forward_clk flag is cleared unconditionally also for
1661 * the deferrable base. The deferrable base is not affected by idle
1662 * tracking and never forwarded, so clearing the flag is a NOOP.
1663 *
1664 * The fact that the deferrable base is never forwarded can cause
1665 * large variations in granularity for deferrable timers, but they
1666 * can be deferred for long periods due to idle anyway.
1667 */
1668 base->must_forward_clk = false;
1669
1670 while (time_after_eq(jiffies, base->clk)) {
1671
1672 levels = collect_expired_timers(base, heads);
1673 base->clk++;
1674
1675 while (levels--)
1676 expire_timers(base, heads + levels);
1677 }
1678 base->running_timer = NULL;
1679 raw_spin_unlock_irq(&base->lock);
1680 }
1681
1682 /*
1683 * This function runs timers and the timer-tq in bottom half context.
1684 */
1685 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1686 {
1687 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1688
1689 __run_timers(base);
1690 if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1691 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1692 }
1693
1694 /*
1695 * Called by the local, per-CPU timer interrupt on SMP.
1696 */
1697 void run_local_timers(void)
1698 {
1699 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1700
1701 hrtimer_run_queues();
1702 /* Raise the softirq only if required. */
1703 if (time_before(jiffies, base->clk)) {
1704 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1705 return;
1706 /* CPU is awake, so check the deferrable base. */
1707 base++;
1708 if (time_before(jiffies, base->clk))
1709 return;
1710 }
1711 raise_softirq(TIMER_SOFTIRQ);
1712 }
1713
1714 /*
1715 * Since schedule_timeout()'s timer is defined on the stack, it must store
1716 * the target task on the stack as well.
1717 */
1718 struct process_timer {
1719 struct timer_list timer;
1720 struct task_struct *task;
1721 };
1722
1723 static void process_timeout(struct timer_list *t)
1724 {
1725 struct process_timer *timeout = from_timer(timeout, t, timer);
1726
1727 wake_up_process(timeout->task);
1728 }
1729
1730 /**
1731 * schedule_timeout - sleep until timeout
1732 * @timeout: timeout value in jiffies
1733 *
1734 * Make the current task sleep until @timeout jiffies have
1735 * elapsed. The routine will return immediately unless
1736 * the current task state has been set (see set_current_state()).
1737 *
1738 * You can set the task state as follows -
1739 *
1740 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1741 * pass before the routine returns unless the current task is explicitly
1742 * woken up, (e.g. by wake_up_process())".
1743 *
1744 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1745 * delivered to the current task or the current task is explicitly woken
1746 * up.
1747 *
1748 * The current task state is guaranteed to be TASK_RUNNING when this
1749 * routine returns.
1750 *
1751 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1752 * the CPU away without a bound on the timeout. In this case the return
1753 * value will be %MAX_SCHEDULE_TIMEOUT.
1754 *
1755 * Returns 0 when the timer has expired otherwise the remaining time in
1756 * jiffies will be returned. In all cases the return value is guaranteed
1757 * to be non-negative.
1758 */
1759 signed long __sched schedule_timeout(signed long timeout)
1760 {
1761 struct process_timer timer;
1762 unsigned long expire;
1763
1764 switch (timeout)
1765 {
1766 case MAX_SCHEDULE_TIMEOUT:
1767 /*
1768 * These two special cases are useful to be comfortable
1769 * in the caller. Nothing more. We could take
1770 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1771 * but I' d like to return a valid offset (>=0) to allow
1772 * the caller to do everything it want with the retval.
1773 */
1774 schedule();
1775 goto out;
1776 default:
1777 /*
1778 * Another bit of PARANOID. Note that the retval will be
1779 * 0 since no piece of kernel is supposed to do a check
1780 * for a negative retval of schedule_timeout() (since it
1781 * should never happens anyway). You just have the printk()
1782 * that will tell you if something is gone wrong and where.
1783 */
1784 if (timeout < 0) {
1785 printk(KERN_ERR "schedule_timeout: wrong timeout "
1786 "value %lx\n", timeout);
1787 dump_stack();
1788 current->state = TASK_RUNNING;
1789 goto out;
1790 }
1791 }
1792
1793 expire = timeout + jiffies;
1794
1795 timer.task = current;
1796 timer_setup_on_stack(&timer.timer, process_timeout, 0);
1797 __mod_timer(&timer.timer, expire, 0);
1798 schedule();
1799 del_singleshot_timer_sync(&timer.timer);
1800
1801 /* Remove the timer from the object tracker */
1802 destroy_timer_on_stack(&timer.timer);
1803
1804 timeout = expire - jiffies;
1805
1806 out:
1807 return timeout < 0 ? 0 : timeout;
1808 }
1809 EXPORT_SYMBOL(schedule_timeout);
1810
1811 /*
1812 * We can use __set_current_state() here because schedule_timeout() calls
1813 * schedule() unconditionally.
1814 */
1815 signed long __sched schedule_timeout_interruptible(signed long timeout)
1816 {
1817 __set_current_state(TASK_INTERRUPTIBLE);
1818 return schedule_timeout(timeout);
1819 }
1820 EXPORT_SYMBOL(schedule_timeout_interruptible);
1821
1822 signed long __sched schedule_timeout_killable(signed long timeout)
1823 {
1824 __set_current_state(TASK_KILLABLE);
1825 return schedule_timeout(timeout);
1826 }
1827 EXPORT_SYMBOL(schedule_timeout_killable);
1828
1829 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1830 {
1831 __set_current_state(TASK_UNINTERRUPTIBLE);
1832 return schedule_timeout(timeout);
1833 }
1834 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1835
1836 /*
1837 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1838 * to load average.
1839 */
1840 signed long __sched schedule_timeout_idle(signed long timeout)
1841 {
1842 __set_current_state(TASK_IDLE);
1843 return schedule_timeout(timeout);
1844 }
1845 EXPORT_SYMBOL(schedule_timeout_idle);
1846
1847 #ifdef CONFIG_HOTPLUG_CPU
1848 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1849 {
1850 struct timer_list *timer;
1851 int cpu = new_base->cpu;
1852
1853 while (!hlist_empty(head)) {
1854 timer = hlist_entry(head->first, struct timer_list, entry);
1855 detach_timer(timer, false);
1856 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1857 internal_add_timer(new_base, timer);
1858 }
1859 }
1860
1861 int timers_prepare_cpu(unsigned int cpu)
1862 {
1863 struct timer_base *base;
1864 int b;
1865
1866 for (b = 0; b < NR_BASES; b++) {
1867 base = per_cpu_ptr(&timer_bases[b], cpu);
1868 base->clk = jiffies;
1869 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1870 base->is_idle = false;
1871 base->must_forward_clk = true;
1872 }
1873 return 0;
1874 }
1875
1876 int timers_dead_cpu(unsigned int cpu)
1877 {
1878 struct timer_base *old_base;
1879 struct timer_base *new_base;
1880 int b, i;
1881
1882 BUG_ON(cpu_online(cpu));
1883
1884 for (b = 0; b < NR_BASES; b++) {
1885 old_base = per_cpu_ptr(&timer_bases[b], cpu);
1886 new_base = get_cpu_ptr(&timer_bases[b]);
1887 /*
1888 * The caller is globally serialized and nobody else
1889 * takes two locks at once, deadlock is not possible.
1890 */
1891 raw_spin_lock_irq(&new_base->lock);
1892 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1893
1894 /*
1895 * The current CPUs base clock might be stale. Update it
1896 * before moving the timers over.
1897 */
1898 forward_timer_base(new_base);
1899
1900 BUG_ON(old_base->running_timer);
1901
1902 for (i = 0; i < WHEEL_SIZE; i++)
1903 migrate_timer_list(new_base, old_base->vectors + i);
1904
1905 raw_spin_unlock(&old_base->lock);
1906 raw_spin_unlock_irq(&new_base->lock);
1907 put_cpu_ptr(&timer_bases);
1908 }
1909 return 0;
1910 }
1911
1912 #endif /* CONFIG_HOTPLUG_CPU */
1913
1914 static void __init init_timer_cpu(int cpu)
1915 {
1916 struct timer_base *base;
1917 int i;
1918
1919 for (i = 0; i < NR_BASES; i++) {
1920 base = per_cpu_ptr(&timer_bases[i], cpu);
1921 base->cpu = cpu;
1922 raw_spin_lock_init(&base->lock);
1923 base->clk = jiffies;
1924 }
1925 }
1926
1927 static void __init init_timer_cpus(void)
1928 {
1929 int cpu;
1930
1931 for_each_possible_cpu(cpu)
1932 init_timer_cpu(cpu);
1933 }
1934
1935 void __init init_timers(void)
1936 {
1937 init_timer_cpus();
1938 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1939 }
1940
1941 /**
1942 * msleep - sleep safely even with waitqueue interruptions
1943 * @msecs: Time in milliseconds to sleep for
1944 */
1945 void msleep(unsigned int msecs)
1946 {
1947 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1948
1949 while (timeout)
1950 timeout = schedule_timeout_uninterruptible(timeout);
1951 }
1952
1953 EXPORT_SYMBOL(msleep);
1954
1955 /**
1956 * msleep_interruptible - sleep waiting for signals
1957 * @msecs: Time in milliseconds to sleep for
1958 */
1959 unsigned long msleep_interruptible(unsigned int msecs)
1960 {
1961 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1962
1963 while (timeout && !signal_pending(current))
1964 timeout = schedule_timeout_interruptible(timeout);
1965 return jiffies_to_msecs(timeout);
1966 }
1967
1968 EXPORT_SYMBOL(msleep_interruptible);
1969
1970 /**
1971 * usleep_range - Sleep for an approximate time
1972 * @min: Minimum time in usecs to sleep
1973 * @max: Maximum time in usecs to sleep
1974 *
1975 * In non-atomic context where the exact wakeup time is flexible, use
1976 * usleep_range() instead of udelay(). The sleep improves responsiveness
1977 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1978 * power usage by allowing hrtimers to take advantage of an already-
1979 * scheduled interrupt instead of scheduling a new one just for this sleep.
1980 */
1981 void __sched usleep_range(unsigned long min, unsigned long max)
1982 {
1983 ktime_t exp = ktime_add_us(ktime_get(), min);
1984 u64 delta = (u64)(max - min) * NSEC_PER_USEC;
1985
1986 for (;;) {
1987 __set_current_state(TASK_UNINTERRUPTIBLE);
1988 /* Do not return before the requested sleep time has elapsed */
1989 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
1990 break;
1991 }
1992 }
1993 EXPORT_SYMBOL(usleep_range);