]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/time/timer.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / kernel / time / timer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel internal timers
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
8 *
9 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
10 * "A Kernel Model for Precision Timekeeping" by Dave Mills
11 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12 * serialize accesses to xtime/lost_ticks).
13 * Copyright (C) 1998 Andrea Arcangeli
14 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
15 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
16 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
17 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
18 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19 */
20
21 #include <linux/kernel_stat.h>
22 #include <linux/export.h>
23 #include <linux/interrupt.h>
24 #include <linux/percpu.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39 #include <linux/irq_work.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/sched/nohz.h>
43 #include <linux/sched/debug.h>
44 #include <linux/slab.h>
45 #include <linux/compat.h>
46 #include <linux/random.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/div64.h>
51 #include <asm/timex.h>
52 #include <asm/io.h>
53
54 #include "tick-internal.h"
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/timer.h>
58
59 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
60
61 EXPORT_SYMBOL(jiffies_64);
62
63 /*
64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
66 * level has a different granularity.
67 *
68 * The level granularity is: LVL_CLK_DIV ^ lvl
69 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
70 *
71 * The array level of a newly armed timer depends on the relative expiry
72 * time. The farther the expiry time is away the higher the array level and
73 * therefor the granularity becomes.
74 *
75 * Contrary to the original timer wheel implementation, which aims for 'exact'
76 * expiry of the timers, this implementation removes the need for recascading
77 * the timers into the lower array levels. The previous 'classic' timer wheel
78 * implementation of the kernel already violated the 'exact' expiry by adding
79 * slack to the expiry time to provide batched expiration. The granularity
80 * levels provide implicit batching.
81 *
82 * This is an optimization of the original timer wheel implementation for the
83 * majority of the timer wheel use cases: timeouts. The vast majority of
84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
85 * the timeout expires it indicates that normal operation is disturbed, so it
86 * does not matter much whether the timeout comes with a slight delay.
87 *
88 * The only exception to this are networking timers with a small expiry
89 * time. They rely on the granularity. Those fit into the first wheel level,
90 * which has HZ granularity.
91 *
92 * We don't have cascading anymore. timers with a expiry time above the
93 * capacity of the last wheel level are force expired at the maximum timeout
94 * value of the last wheel level. From data sampling we know that the maximum
95 * value observed is 5 days (network connection tracking), so this should not
96 * be an issue.
97 *
98 * The currently chosen array constants values are a good compromise between
99 * array size and granularity.
100 *
101 * This results in the following granularity and range levels:
102 *
103 * HZ 1000 steps
104 * Level Offset Granularity Range
105 * 0 0 1 ms 0 ms - 63 ms
106 * 1 64 8 ms 64 ms - 511 ms
107 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
108 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
109 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
110 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
111 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
112 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
113 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
114 *
115 * HZ 300
116 * Level Offset Granularity Range
117 * 0 0 3 ms 0 ms - 210 ms
118 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
119 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
120 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
121 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
122 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
123 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
124 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
125 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
126 *
127 * HZ 250
128 * Level Offset Granularity Range
129 * 0 0 4 ms 0 ms - 255 ms
130 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
131 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
132 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
133 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
134 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
135 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
136 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
137 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
138 *
139 * HZ 100
140 * Level Offset Granularity Range
141 * 0 0 10 ms 0 ms - 630 ms
142 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
143 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
144 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
145 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
146 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
147 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
148 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
149 */
150
151 /* Clock divisor for the next level */
152 #define LVL_CLK_SHIFT 3
153 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
154 #define LVL_CLK_MASK (LVL_CLK_DIV - 1)
155 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
156 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
157
158 /*
159 * The time start value for each level to select the bucket at enqueue
160 * time. We start from the last possible delta of the previous level
161 * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
162 */
163 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
164
165 /* Size of each clock level */
166 #define LVL_BITS 6
167 #define LVL_SIZE (1UL << LVL_BITS)
168 #define LVL_MASK (LVL_SIZE - 1)
169 #define LVL_OFFS(n) ((n) * LVL_SIZE)
170
171 /* Level depth */
172 #if HZ > 100
173 # define LVL_DEPTH 9
174 # else
175 # define LVL_DEPTH 8
176 #endif
177
178 /* The cutoff (max. capacity of the wheel) */
179 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
180 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
181
182 /*
183 * The resulting wheel size. If NOHZ is configured we allocate two
184 * wheels so we have a separate storage for the deferrable timers.
185 */
186 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
187
188 #ifdef CONFIG_NO_HZ_COMMON
189 # define NR_BASES 2
190 # define BASE_STD 0
191 # define BASE_DEF 1
192 #else
193 # define NR_BASES 1
194 # define BASE_STD 0
195 # define BASE_DEF 0
196 #endif
197
198 struct timer_base {
199 raw_spinlock_t lock;
200 struct timer_list *running_timer;
201 #ifdef CONFIG_PREEMPT_RT
202 spinlock_t expiry_lock;
203 atomic_t timer_waiters;
204 #endif
205 unsigned long clk;
206 unsigned long next_expiry;
207 unsigned int cpu;
208 bool next_expiry_recalc;
209 bool is_idle;
210 DECLARE_BITMAP(pending_map, WHEEL_SIZE);
211 struct hlist_head vectors[WHEEL_SIZE];
212 } ____cacheline_aligned;
213
214 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
215
216 #ifdef CONFIG_NO_HZ_COMMON
217
218 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
219 static DEFINE_MUTEX(timer_keys_mutex);
220
221 static void timer_update_keys(struct work_struct *work);
222 static DECLARE_WORK(timer_update_work, timer_update_keys);
223
224 #ifdef CONFIG_SMP
225 unsigned int sysctl_timer_migration = 1;
226
227 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
228
229 static void timers_update_migration(void)
230 {
231 if (sysctl_timer_migration && tick_nohz_active)
232 static_branch_enable(&timers_migration_enabled);
233 else
234 static_branch_disable(&timers_migration_enabled);
235 }
236 #else
237 static inline void timers_update_migration(void) { }
238 #endif /* !CONFIG_SMP */
239
240 static void timer_update_keys(struct work_struct *work)
241 {
242 mutex_lock(&timer_keys_mutex);
243 timers_update_migration();
244 static_branch_enable(&timers_nohz_active);
245 mutex_unlock(&timer_keys_mutex);
246 }
247
248 void timers_update_nohz(void)
249 {
250 schedule_work(&timer_update_work);
251 }
252
253 int timer_migration_handler(struct ctl_table *table, int write,
254 void *buffer, size_t *lenp, loff_t *ppos)
255 {
256 int ret;
257
258 mutex_lock(&timer_keys_mutex);
259 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
260 if (!ret && write)
261 timers_update_migration();
262 mutex_unlock(&timer_keys_mutex);
263 return ret;
264 }
265
266 static inline bool is_timers_nohz_active(void)
267 {
268 return static_branch_unlikely(&timers_nohz_active);
269 }
270 #else
271 static inline bool is_timers_nohz_active(void) { return false; }
272 #endif /* NO_HZ_COMMON */
273
274 static unsigned long round_jiffies_common(unsigned long j, int cpu,
275 bool force_up)
276 {
277 int rem;
278 unsigned long original = j;
279
280 /*
281 * We don't want all cpus firing their timers at once hitting the
282 * same lock or cachelines, so we skew each extra cpu with an extra
283 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
284 * already did this.
285 * The skew is done by adding 3*cpunr, then round, then subtract this
286 * extra offset again.
287 */
288 j += cpu * 3;
289
290 rem = j % HZ;
291
292 /*
293 * If the target jiffie is just after a whole second (which can happen
294 * due to delays of the timer irq, long irq off times etc etc) then
295 * we should round down to the whole second, not up. Use 1/4th second
296 * as cutoff for this rounding as an extreme upper bound for this.
297 * But never round down if @force_up is set.
298 */
299 if (rem < HZ/4 && !force_up) /* round down */
300 j = j - rem;
301 else /* round up */
302 j = j - rem + HZ;
303
304 /* now that we have rounded, subtract the extra skew again */
305 j -= cpu * 3;
306
307 /*
308 * Make sure j is still in the future. Otherwise return the
309 * unmodified value.
310 */
311 return time_is_after_jiffies(j) ? j : original;
312 }
313
314 /**
315 * __round_jiffies - function to round jiffies to a full second
316 * @j: the time in (absolute) jiffies that should be rounded
317 * @cpu: the processor number on which the timeout will happen
318 *
319 * __round_jiffies() rounds an absolute time in the future (in jiffies)
320 * up or down to (approximately) full seconds. This is useful for timers
321 * for which the exact time they fire does not matter too much, as long as
322 * they fire approximately every X seconds.
323 *
324 * By rounding these timers to whole seconds, all such timers will fire
325 * at the same time, rather than at various times spread out. The goal
326 * of this is to have the CPU wake up less, which saves power.
327 *
328 * The exact rounding is skewed for each processor to avoid all
329 * processors firing at the exact same time, which could lead
330 * to lock contention or spurious cache line bouncing.
331 *
332 * The return value is the rounded version of the @j parameter.
333 */
334 unsigned long __round_jiffies(unsigned long j, int cpu)
335 {
336 return round_jiffies_common(j, cpu, false);
337 }
338 EXPORT_SYMBOL_GPL(__round_jiffies);
339
340 /**
341 * __round_jiffies_relative - function to round jiffies to a full second
342 * @j: the time in (relative) jiffies that should be rounded
343 * @cpu: the processor number on which the timeout will happen
344 *
345 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
346 * up or down to (approximately) full seconds. This is useful for timers
347 * for which the exact time they fire does not matter too much, as long as
348 * they fire approximately every X seconds.
349 *
350 * By rounding these timers to whole seconds, all such timers will fire
351 * at the same time, rather than at various times spread out. The goal
352 * of this is to have the CPU wake up less, which saves power.
353 *
354 * The exact rounding is skewed for each processor to avoid all
355 * processors firing at the exact same time, which could lead
356 * to lock contention or spurious cache line bouncing.
357 *
358 * The return value is the rounded version of the @j parameter.
359 */
360 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
361 {
362 unsigned long j0 = jiffies;
363
364 /* Use j0 because jiffies might change while we run */
365 return round_jiffies_common(j + j0, cpu, false) - j0;
366 }
367 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
368
369 /**
370 * round_jiffies - function to round jiffies to a full second
371 * @j: the time in (absolute) jiffies that should be rounded
372 *
373 * round_jiffies() rounds an absolute time in the future (in jiffies)
374 * up or down to (approximately) full seconds. This is useful for timers
375 * for which the exact time they fire does not matter too much, as long as
376 * they fire approximately every X seconds.
377 *
378 * By rounding these timers to whole seconds, all such timers will fire
379 * at the same time, rather than at various times spread out. The goal
380 * of this is to have the CPU wake up less, which saves power.
381 *
382 * The return value is the rounded version of the @j parameter.
383 */
384 unsigned long round_jiffies(unsigned long j)
385 {
386 return round_jiffies_common(j, raw_smp_processor_id(), false);
387 }
388 EXPORT_SYMBOL_GPL(round_jiffies);
389
390 /**
391 * round_jiffies_relative - function to round jiffies to a full second
392 * @j: the time in (relative) jiffies that should be rounded
393 *
394 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
395 * up or down to (approximately) full seconds. This is useful for timers
396 * for which the exact time they fire does not matter too much, as long as
397 * they fire approximately every X seconds.
398 *
399 * By rounding these timers to whole seconds, all such timers will fire
400 * at the same time, rather than at various times spread out. The goal
401 * of this is to have the CPU wake up less, which saves power.
402 *
403 * The return value is the rounded version of the @j parameter.
404 */
405 unsigned long round_jiffies_relative(unsigned long j)
406 {
407 return __round_jiffies_relative(j, raw_smp_processor_id());
408 }
409 EXPORT_SYMBOL_GPL(round_jiffies_relative);
410
411 /**
412 * __round_jiffies_up - function to round jiffies up to a full second
413 * @j: the time in (absolute) jiffies that should be rounded
414 * @cpu: the processor number on which the timeout will happen
415 *
416 * This is the same as __round_jiffies() except that it will never
417 * round down. This is useful for timeouts for which the exact time
418 * of firing does not matter too much, as long as they don't fire too
419 * early.
420 */
421 unsigned long __round_jiffies_up(unsigned long j, int cpu)
422 {
423 return round_jiffies_common(j, cpu, true);
424 }
425 EXPORT_SYMBOL_GPL(__round_jiffies_up);
426
427 /**
428 * __round_jiffies_up_relative - function to round jiffies up to a full second
429 * @j: the time in (relative) jiffies that should be rounded
430 * @cpu: the processor number on which the timeout will happen
431 *
432 * This is the same as __round_jiffies_relative() except that it will never
433 * round down. This is useful for timeouts for which the exact time
434 * of firing does not matter too much, as long as they don't fire too
435 * early.
436 */
437 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
438 {
439 unsigned long j0 = jiffies;
440
441 /* Use j0 because jiffies might change while we run */
442 return round_jiffies_common(j + j0, cpu, true) - j0;
443 }
444 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
445
446 /**
447 * round_jiffies_up - function to round jiffies up to a full second
448 * @j: the time in (absolute) jiffies that should be rounded
449 *
450 * This is the same as round_jiffies() except that it will never
451 * round down. This is useful for timeouts for which the exact time
452 * of firing does not matter too much, as long as they don't fire too
453 * early.
454 */
455 unsigned long round_jiffies_up(unsigned long j)
456 {
457 return round_jiffies_common(j, raw_smp_processor_id(), true);
458 }
459 EXPORT_SYMBOL_GPL(round_jiffies_up);
460
461 /**
462 * round_jiffies_up_relative - function to round jiffies up to a full second
463 * @j: the time in (relative) jiffies that should be rounded
464 *
465 * This is the same as round_jiffies_relative() except that it will never
466 * round down. This is useful for timeouts for which the exact time
467 * of firing does not matter too much, as long as they don't fire too
468 * early.
469 */
470 unsigned long round_jiffies_up_relative(unsigned long j)
471 {
472 return __round_jiffies_up_relative(j, raw_smp_processor_id());
473 }
474 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
475
476
477 static inline unsigned int timer_get_idx(struct timer_list *timer)
478 {
479 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
480 }
481
482 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
483 {
484 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
485 idx << TIMER_ARRAYSHIFT;
486 }
487
488 /*
489 * Helper function to calculate the array index for a given expiry
490 * time.
491 */
492 static inline unsigned calc_index(unsigned long expires, unsigned lvl,
493 unsigned long *bucket_expiry)
494 {
495
496 /*
497 * The timer wheel has to guarantee that a timer does not fire
498 * early. Early expiry can happen due to:
499 * - Timer is armed at the edge of a tick
500 * - Truncation of the expiry time in the outer wheel levels
501 *
502 * Round up with level granularity to prevent this.
503 */
504 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
505 *bucket_expiry = expires << LVL_SHIFT(lvl);
506 return LVL_OFFS(lvl) + (expires & LVL_MASK);
507 }
508
509 static int calc_wheel_index(unsigned long expires, unsigned long clk,
510 unsigned long *bucket_expiry)
511 {
512 unsigned long delta = expires - clk;
513 unsigned int idx;
514
515 if (delta < LVL_START(1)) {
516 idx = calc_index(expires, 0, bucket_expiry);
517 } else if (delta < LVL_START(2)) {
518 idx = calc_index(expires, 1, bucket_expiry);
519 } else if (delta < LVL_START(3)) {
520 idx = calc_index(expires, 2, bucket_expiry);
521 } else if (delta < LVL_START(4)) {
522 idx = calc_index(expires, 3, bucket_expiry);
523 } else if (delta < LVL_START(5)) {
524 idx = calc_index(expires, 4, bucket_expiry);
525 } else if (delta < LVL_START(6)) {
526 idx = calc_index(expires, 5, bucket_expiry);
527 } else if (delta < LVL_START(7)) {
528 idx = calc_index(expires, 6, bucket_expiry);
529 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
530 idx = calc_index(expires, 7, bucket_expiry);
531 } else if ((long) delta < 0) {
532 idx = clk & LVL_MASK;
533 *bucket_expiry = clk;
534 } else {
535 /*
536 * Force expire obscene large timeouts to expire at the
537 * capacity limit of the wheel.
538 */
539 if (delta >= WHEEL_TIMEOUT_CUTOFF)
540 expires = clk + WHEEL_TIMEOUT_MAX;
541
542 idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
543 }
544 return idx;
545 }
546
547 static void
548 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
549 {
550 if (!is_timers_nohz_active())
551 return;
552
553 /*
554 * TODO: This wants some optimizing similar to the code below, but we
555 * will do that when we switch from push to pull for deferrable timers.
556 */
557 if (timer->flags & TIMER_DEFERRABLE) {
558 if (tick_nohz_full_cpu(base->cpu))
559 wake_up_nohz_cpu(base->cpu);
560 return;
561 }
562
563 /*
564 * We might have to IPI the remote CPU if the base is idle and the
565 * timer is not deferrable. If the other CPU is on the way to idle
566 * then it can't set base->is_idle as we hold the base lock:
567 */
568 if (base->is_idle)
569 wake_up_nohz_cpu(base->cpu);
570 }
571
572 /*
573 * Enqueue the timer into the hash bucket, mark it pending in
574 * the bitmap, store the index in the timer flags then wake up
575 * the target CPU if needed.
576 */
577 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
578 unsigned int idx, unsigned long bucket_expiry)
579 {
580
581 hlist_add_head(&timer->entry, base->vectors + idx);
582 __set_bit(idx, base->pending_map);
583 timer_set_idx(timer, idx);
584
585 trace_timer_start(timer, timer->expires, timer->flags);
586
587 /*
588 * Check whether this is the new first expiring timer. The
589 * effective expiry time of the timer is required here
590 * (bucket_expiry) instead of timer->expires.
591 */
592 if (time_before(bucket_expiry, base->next_expiry)) {
593 /*
594 * Set the next expiry time and kick the CPU so it
595 * can reevaluate the wheel:
596 */
597 base->next_expiry = bucket_expiry;
598 base->next_expiry_recalc = false;
599 trigger_dyntick_cpu(base, timer);
600 }
601 }
602
603 static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
604 {
605 unsigned long bucket_expiry;
606 unsigned int idx;
607
608 idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
609 enqueue_timer(base, timer, idx, bucket_expiry);
610 }
611
612 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
613
614 static const struct debug_obj_descr timer_debug_descr;
615
616 static void *timer_debug_hint(void *addr)
617 {
618 return ((struct timer_list *) addr)->function;
619 }
620
621 static bool timer_is_static_object(void *addr)
622 {
623 struct timer_list *timer = addr;
624
625 return (timer->entry.pprev == NULL &&
626 timer->entry.next == TIMER_ENTRY_STATIC);
627 }
628
629 /*
630 * fixup_init is called when:
631 * - an active object is initialized
632 */
633 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
634 {
635 struct timer_list *timer = addr;
636
637 switch (state) {
638 case ODEBUG_STATE_ACTIVE:
639 del_timer_sync(timer);
640 debug_object_init(timer, &timer_debug_descr);
641 return true;
642 default:
643 return false;
644 }
645 }
646
647 /* Stub timer callback for improperly used timers. */
648 static void stub_timer(struct timer_list *unused)
649 {
650 WARN_ON(1);
651 }
652
653 /*
654 * fixup_activate is called when:
655 * - an active object is activated
656 * - an unknown non-static object is activated
657 */
658 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
659 {
660 struct timer_list *timer = addr;
661
662 switch (state) {
663 case ODEBUG_STATE_NOTAVAILABLE:
664 timer_setup(timer, stub_timer, 0);
665 return true;
666
667 case ODEBUG_STATE_ACTIVE:
668 WARN_ON(1);
669 fallthrough;
670 default:
671 return false;
672 }
673 }
674
675 /*
676 * fixup_free is called when:
677 * - an active object is freed
678 */
679 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
680 {
681 struct timer_list *timer = addr;
682
683 switch (state) {
684 case ODEBUG_STATE_ACTIVE:
685 del_timer_sync(timer);
686 debug_object_free(timer, &timer_debug_descr);
687 return true;
688 default:
689 return false;
690 }
691 }
692
693 /*
694 * fixup_assert_init is called when:
695 * - an untracked/uninit-ed object is found
696 */
697 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
698 {
699 struct timer_list *timer = addr;
700
701 switch (state) {
702 case ODEBUG_STATE_NOTAVAILABLE:
703 timer_setup(timer, stub_timer, 0);
704 return true;
705 default:
706 return false;
707 }
708 }
709
710 static const struct debug_obj_descr timer_debug_descr = {
711 .name = "timer_list",
712 .debug_hint = timer_debug_hint,
713 .is_static_object = timer_is_static_object,
714 .fixup_init = timer_fixup_init,
715 .fixup_activate = timer_fixup_activate,
716 .fixup_free = timer_fixup_free,
717 .fixup_assert_init = timer_fixup_assert_init,
718 };
719
720 static inline void debug_timer_init(struct timer_list *timer)
721 {
722 debug_object_init(timer, &timer_debug_descr);
723 }
724
725 static inline void debug_timer_activate(struct timer_list *timer)
726 {
727 debug_object_activate(timer, &timer_debug_descr);
728 }
729
730 static inline void debug_timer_deactivate(struct timer_list *timer)
731 {
732 debug_object_deactivate(timer, &timer_debug_descr);
733 }
734
735 static inline void debug_timer_assert_init(struct timer_list *timer)
736 {
737 debug_object_assert_init(timer, &timer_debug_descr);
738 }
739
740 static void do_init_timer(struct timer_list *timer,
741 void (*func)(struct timer_list *),
742 unsigned int flags,
743 const char *name, struct lock_class_key *key);
744
745 void init_timer_on_stack_key(struct timer_list *timer,
746 void (*func)(struct timer_list *),
747 unsigned int flags,
748 const char *name, struct lock_class_key *key)
749 {
750 debug_object_init_on_stack(timer, &timer_debug_descr);
751 do_init_timer(timer, func, flags, name, key);
752 }
753 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
754
755 void destroy_timer_on_stack(struct timer_list *timer)
756 {
757 debug_object_free(timer, &timer_debug_descr);
758 }
759 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
760
761 #else
762 static inline void debug_timer_init(struct timer_list *timer) { }
763 static inline void debug_timer_activate(struct timer_list *timer) { }
764 static inline void debug_timer_deactivate(struct timer_list *timer) { }
765 static inline void debug_timer_assert_init(struct timer_list *timer) { }
766 #endif
767
768 static inline void debug_init(struct timer_list *timer)
769 {
770 debug_timer_init(timer);
771 trace_timer_init(timer);
772 }
773
774 static inline void debug_deactivate(struct timer_list *timer)
775 {
776 debug_timer_deactivate(timer);
777 trace_timer_cancel(timer);
778 }
779
780 static inline void debug_assert_init(struct timer_list *timer)
781 {
782 debug_timer_assert_init(timer);
783 }
784
785 static void do_init_timer(struct timer_list *timer,
786 void (*func)(struct timer_list *),
787 unsigned int flags,
788 const char *name, struct lock_class_key *key)
789 {
790 timer->entry.pprev = NULL;
791 timer->function = func;
792 if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
793 flags &= TIMER_INIT_FLAGS;
794 timer->flags = flags | raw_smp_processor_id();
795 lockdep_init_map(&timer->lockdep_map, name, key, 0);
796 }
797
798 /**
799 * init_timer_key - initialize a timer
800 * @timer: the timer to be initialized
801 * @func: timer callback function
802 * @flags: timer flags
803 * @name: name of the timer
804 * @key: lockdep class key of the fake lock used for tracking timer
805 * sync lock dependencies
806 *
807 * init_timer_key() must be done to a timer prior calling *any* of the
808 * other timer functions.
809 */
810 void init_timer_key(struct timer_list *timer,
811 void (*func)(struct timer_list *), unsigned int flags,
812 const char *name, struct lock_class_key *key)
813 {
814 debug_init(timer);
815 do_init_timer(timer, func, flags, name, key);
816 }
817 EXPORT_SYMBOL(init_timer_key);
818
819 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
820 {
821 struct hlist_node *entry = &timer->entry;
822
823 debug_deactivate(timer);
824
825 __hlist_del(entry);
826 if (clear_pending)
827 entry->pprev = NULL;
828 entry->next = LIST_POISON2;
829 }
830
831 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
832 bool clear_pending)
833 {
834 unsigned idx = timer_get_idx(timer);
835
836 if (!timer_pending(timer))
837 return 0;
838
839 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
840 __clear_bit(idx, base->pending_map);
841 base->next_expiry_recalc = true;
842 }
843
844 detach_timer(timer, clear_pending);
845 return 1;
846 }
847
848 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
849 {
850 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
851
852 /*
853 * If the timer is deferrable and NO_HZ_COMMON is set then we need
854 * to use the deferrable base.
855 */
856 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
857 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
858 return base;
859 }
860
861 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
862 {
863 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
864
865 /*
866 * If the timer is deferrable and NO_HZ_COMMON is set then we need
867 * to use the deferrable base.
868 */
869 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
870 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
871 return base;
872 }
873
874 static inline struct timer_base *get_timer_base(u32 tflags)
875 {
876 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
877 }
878
879 static inline struct timer_base *
880 get_target_base(struct timer_base *base, unsigned tflags)
881 {
882 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
883 if (static_branch_likely(&timers_migration_enabled) &&
884 !(tflags & TIMER_PINNED))
885 return get_timer_cpu_base(tflags, get_nohz_timer_target());
886 #endif
887 return get_timer_this_cpu_base(tflags);
888 }
889
890 static inline void forward_timer_base(struct timer_base *base)
891 {
892 unsigned long jnow = READ_ONCE(jiffies);
893
894 /*
895 * No need to forward if we are close enough below jiffies.
896 * Also while executing timers, base->clk is 1 offset ahead
897 * of jiffies to avoid endless requeuing to current jffies.
898 */
899 if ((long)(jnow - base->clk) < 1)
900 return;
901
902 /*
903 * If the next expiry value is > jiffies, then we fast forward to
904 * jiffies otherwise we forward to the next expiry value.
905 */
906 if (time_after(base->next_expiry, jnow)) {
907 base->clk = jnow;
908 } else {
909 if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
910 return;
911 base->clk = base->next_expiry;
912 }
913 }
914
915
916 /*
917 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
918 * that all timers which are tied to this base are locked, and the base itself
919 * is locked too.
920 *
921 * So __run_timers/migrate_timers can safely modify all timers which could
922 * be found in the base->vectors array.
923 *
924 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
925 * to wait until the migration is done.
926 */
927 static struct timer_base *lock_timer_base(struct timer_list *timer,
928 unsigned long *flags)
929 __acquires(timer->base->lock)
930 {
931 for (;;) {
932 struct timer_base *base;
933 u32 tf;
934
935 /*
936 * We need to use READ_ONCE() here, otherwise the compiler
937 * might re-read @tf between the check for TIMER_MIGRATING
938 * and spin_lock().
939 */
940 tf = READ_ONCE(timer->flags);
941
942 if (!(tf & TIMER_MIGRATING)) {
943 base = get_timer_base(tf);
944 raw_spin_lock_irqsave(&base->lock, *flags);
945 if (timer->flags == tf)
946 return base;
947 raw_spin_unlock_irqrestore(&base->lock, *flags);
948 }
949 cpu_relax();
950 }
951 }
952
953 #define MOD_TIMER_PENDING_ONLY 0x01
954 #define MOD_TIMER_REDUCE 0x02
955 #define MOD_TIMER_NOTPENDING 0x04
956
957 static inline int
958 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
959 {
960 unsigned long clk = 0, flags, bucket_expiry;
961 struct timer_base *base, *new_base;
962 unsigned int idx = UINT_MAX;
963 int ret = 0;
964
965 BUG_ON(!timer->function);
966
967 /*
968 * This is a common optimization triggered by the networking code - if
969 * the timer is re-modified to have the same timeout or ends up in the
970 * same array bucket then just return:
971 */
972 if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
973 /*
974 * The downside of this optimization is that it can result in
975 * larger granularity than you would get from adding a new
976 * timer with this expiry.
977 */
978 long diff = timer->expires - expires;
979
980 if (!diff)
981 return 1;
982 if (options & MOD_TIMER_REDUCE && diff <= 0)
983 return 1;
984
985 /*
986 * We lock timer base and calculate the bucket index right
987 * here. If the timer ends up in the same bucket, then we
988 * just update the expiry time and avoid the whole
989 * dequeue/enqueue dance.
990 */
991 base = lock_timer_base(timer, &flags);
992 forward_timer_base(base);
993
994 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
995 time_before_eq(timer->expires, expires)) {
996 ret = 1;
997 goto out_unlock;
998 }
999
1000 clk = base->clk;
1001 idx = calc_wheel_index(expires, clk, &bucket_expiry);
1002
1003 /*
1004 * Retrieve and compare the array index of the pending
1005 * timer. If it matches set the expiry to the new value so a
1006 * subsequent call will exit in the expires check above.
1007 */
1008 if (idx == timer_get_idx(timer)) {
1009 if (!(options & MOD_TIMER_REDUCE))
1010 timer->expires = expires;
1011 else if (time_after(timer->expires, expires))
1012 timer->expires = expires;
1013 ret = 1;
1014 goto out_unlock;
1015 }
1016 } else {
1017 base = lock_timer_base(timer, &flags);
1018 forward_timer_base(base);
1019 }
1020
1021 ret = detach_if_pending(timer, base, false);
1022 if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1023 goto out_unlock;
1024
1025 new_base = get_target_base(base, timer->flags);
1026
1027 if (base != new_base) {
1028 /*
1029 * We are trying to schedule the timer on the new base.
1030 * However we can't change timer's base while it is running,
1031 * otherwise del_timer_sync() can't detect that the timer's
1032 * handler yet has not finished. This also guarantees that the
1033 * timer is serialized wrt itself.
1034 */
1035 if (likely(base->running_timer != timer)) {
1036 /* See the comment in lock_timer_base() */
1037 timer->flags |= TIMER_MIGRATING;
1038
1039 raw_spin_unlock(&base->lock);
1040 base = new_base;
1041 raw_spin_lock(&base->lock);
1042 WRITE_ONCE(timer->flags,
1043 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1044 forward_timer_base(base);
1045 }
1046 }
1047
1048 debug_timer_activate(timer);
1049
1050 timer->expires = expires;
1051 /*
1052 * If 'idx' was calculated above and the base time did not advance
1053 * between calculating 'idx' and possibly switching the base, only
1054 * enqueue_timer() is required. Otherwise we need to (re)calculate
1055 * the wheel index via internal_add_timer().
1056 */
1057 if (idx != UINT_MAX && clk == base->clk)
1058 enqueue_timer(base, timer, idx, bucket_expiry);
1059 else
1060 internal_add_timer(base, timer);
1061
1062 out_unlock:
1063 raw_spin_unlock_irqrestore(&base->lock, flags);
1064
1065 return ret;
1066 }
1067
1068 /**
1069 * mod_timer_pending - modify a pending timer's timeout
1070 * @timer: the pending timer to be modified
1071 * @expires: new timeout in jiffies
1072 *
1073 * mod_timer_pending() is the same for pending timers as mod_timer(),
1074 * but will not re-activate and modify already deleted timers.
1075 *
1076 * It is useful for unserialized use of timers.
1077 */
1078 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1079 {
1080 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1081 }
1082 EXPORT_SYMBOL(mod_timer_pending);
1083
1084 /**
1085 * mod_timer - modify a timer's timeout
1086 * @timer: the timer to be modified
1087 * @expires: new timeout in jiffies
1088 *
1089 * mod_timer() is a more efficient way to update the expire field of an
1090 * active timer (if the timer is inactive it will be activated)
1091 *
1092 * mod_timer(timer, expires) is equivalent to:
1093 *
1094 * del_timer(timer); timer->expires = expires; add_timer(timer);
1095 *
1096 * Note that if there are multiple unserialized concurrent users of the
1097 * same timer, then mod_timer() is the only safe way to modify the timeout,
1098 * since add_timer() cannot modify an already running timer.
1099 *
1100 * The function returns whether it has modified a pending timer or not.
1101 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1102 * active timer returns 1.)
1103 */
1104 int mod_timer(struct timer_list *timer, unsigned long expires)
1105 {
1106 return __mod_timer(timer, expires, 0);
1107 }
1108 EXPORT_SYMBOL(mod_timer);
1109
1110 /**
1111 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1112 * @timer: The timer to be modified
1113 * @expires: New timeout in jiffies
1114 *
1115 * timer_reduce() is very similar to mod_timer(), except that it will only
1116 * modify a running timer if that would reduce the expiration time (it will
1117 * start a timer that isn't running).
1118 */
1119 int timer_reduce(struct timer_list *timer, unsigned long expires)
1120 {
1121 return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1122 }
1123 EXPORT_SYMBOL(timer_reduce);
1124
1125 /**
1126 * add_timer - start a timer
1127 * @timer: the timer to be added
1128 *
1129 * The kernel will do a ->function(@timer) callback from the
1130 * timer interrupt at the ->expires point in the future. The
1131 * current time is 'jiffies'.
1132 *
1133 * The timer's ->expires, ->function fields must be set prior calling this
1134 * function.
1135 *
1136 * Timers with an ->expires field in the past will be executed in the next
1137 * timer tick.
1138 */
1139 void add_timer(struct timer_list *timer)
1140 {
1141 BUG_ON(timer_pending(timer));
1142 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1143 }
1144 EXPORT_SYMBOL(add_timer);
1145
1146 /**
1147 * add_timer_on - start a timer on a particular CPU
1148 * @timer: the timer to be added
1149 * @cpu: the CPU to start it on
1150 *
1151 * This is not very scalable on SMP. Double adds are not possible.
1152 */
1153 void add_timer_on(struct timer_list *timer, int cpu)
1154 {
1155 struct timer_base *new_base, *base;
1156 unsigned long flags;
1157
1158 BUG_ON(timer_pending(timer) || !timer->function);
1159
1160 new_base = get_timer_cpu_base(timer->flags, cpu);
1161
1162 /*
1163 * If @timer was on a different CPU, it should be migrated with the
1164 * old base locked to prevent other operations proceeding with the
1165 * wrong base locked. See lock_timer_base().
1166 */
1167 base = lock_timer_base(timer, &flags);
1168 if (base != new_base) {
1169 timer->flags |= TIMER_MIGRATING;
1170
1171 raw_spin_unlock(&base->lock);
1172 base = new_base;
1173 raw_spin_lock(&base->lock);
1174 WRITE_ONCE(timer->flags,
1175 (timer->flags & ~TIMER_BASEMASK) | cpu);
1176 }
1177 forward_timer_base(base);
1178
1179 debug_timer_activate(timer);
1180 internal_add_timer(base, timer);
1181 raw_spin_unlock_irqrestore(&base->lock, flags);
1182 }
1183 EXPORT_SYMBOL_GPL(add_timer_on);
1184
1185 /**
1186 * del_timer - deactivate a timer.
1187 * @timer: the timer to be deactivated
1188 *
1189 * del_timer() deactivates a timer - this works on both active and inactive
1190 * timers.
1191 *
1192 * The function returns whether it has deactivated a pending timer or not.
1193 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1194 * active timer returns 1.)
1195 */
1196 int del_timer(struct timer_list *timer)
1197 {
1198 struct timer_base *base;
1199 unsigned long flags;
1200 int ret = 0;
1201
1202 debug_assert_init(timer);
1203
1204 if (timer_pending(timer)) {
1205 base = lock_timer_base(timer, &flags);
1206 ret = detach_if_pending(timer, base, true);
1207 raw_spin_unlock_irqrestore(&base->lock, flags);
1208 }
1209
1210 return ret;
1211 }
1212 EXPORT_SYMBOL(del_timer);
1213
1214 /**
1215 * try_to_del_timer_sync - Try to deactivate a timer
1216 * @timer: timer to delete
1217 *
1218 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1219 * exit the timer is not queued and the handler is not running on any CPU.
1220 */
1221 int try_to_del_timer_sync(struct timer_list *timer)
1222 {
1223 struct timer_base *base;
1224 unsigned long flags;
1225 int ret = -1;
1226
1227 debug_assert_init(timer);
1228
1229 base = lock_timer_base(timer, &flags);
1230
1231 if (base->running_timer != timer)
1232 ret = detach_if_pending(timer, base, true);
1233
1234 raw_spin_unlock_irqrestore(&base->lock, flags);
1235
1236 return ret;
1237 }
1238 EXPORT_SYMBOL(try_to_del_timer_sync);
1239
1240 #ifdef CONFIG_PREEMPT_RT
1241 static __init void timer_base_init_expiry_lock(struct timer_base *base)
1242 {
1243 spin_lock_init(&base->expiry_lock);
1244 }
1245
1246 static inline void timer_base_lock_expiry(struct timer_base *base)
1247 {
1248 spin_lock(&base->expiry_lock);
1249 }
1250
1251 static inline void timer_base_unlock_expiry(struct timer_base *base)
1252 {
1253 spin_unlock(&base->expiry_lock);
1254 }
1255
1256 /*
1257 * The counterpart to del_timer_wait_running().
1258 *
1259 * If there is a waiter for base->expiry_lock, then it was waiting for the
1260 * timer callback to finish. Drop expiry_lock and reaquire it. That allows
1261 * the waiter to acquire the lock and make progress.
1262 */
1263 static void timer_sync_wait_running(struct timer_base *base)
1264 {
1265 if (atomic_read(&base->timer_waiters)) {
1266 spin_unlock(&base->expiry_lock);
1267 spin_lock(&base->expiry_lock);
1268 }
1269 }
1270
1271 /*
1272 * This function is called on PREEMPT_RT kernels when the fast path
1273 * deletion of a timer failed because the timer callback function was
1274 * running.
1275 *
1276 * This prevents priority inversion, if the softirq thread on a remote CPU
1277 * got preempted, and it prevents a life lock when the task which tries to
1278 * delete a timer preempted the softirq thread running the timer callback
1279 * function.
1280 */
1281 static void del_timer_wait_running(struct timer_list *timer)
1282 {
1283 u32 tf;
1284
1285 tf = READ_ONCE(timer->flags);
1286 if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
1287 struct timer_base *base = get_timer_base(tf);
1288
1289 /*
1290 * Mark the base as contended and grab the expiry lock,
1291 * which is held by the softirq across the timer
1292 * callback. Drop the lock immediately so the softirq can
1293 * expire the next timer. In theory the timer could already
1294 * be running again, but that's more than unlikely and just
1295 * causes another wait loop.
1296 */
1297 atomic_inc(&base->timer_waiters);
1298 spin_lock_bh(&base->expiry_lock);
1299 atomic_dec(&base->timer_waiters);
1300 spin_unlock_bh(&base->expiry_lock);
1301 }
1302 }
1303 #else
1304 static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1305 static inline void timer_base_lock_expiry(struct timer_base *base) { }
1306 static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1307 static inline void timer_sync_wait_running(struct timer_base *base) { }
1308 static inline void del_timer_wait_running(struct timer_list *timer) { }
1309 #endif
1310
1311 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
1312 /**
1313 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1314 * @timer: the timer to be deactivated
1315 *
1316 * This function only differs from del_timer() on SMP: besides deactivating
1317 * the timer it also makes sure the handler has finished executing on other
1318 * CPUs.
1319 *
1320 * Synchronization rules: Callers must prevent restarting of the timer,
1321 * otherwise this function is meaningless. It must not be called from
1322 * interrupt contexts unless the timer is an irqsafe one. The caller must
1323 * not hold locks which would prevent completion of the timer's
1324 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1325 * timer is not queued and the handler is not running on any CPU.
1326 *
1327 * Note: For !irqsafe timers, you must not hold locks that are held in
1328 * interrupt context while calling this function. Even if the lock has
1329 * nothing to do with the timer in question. Here's why::
1330 *
1331 * CPU0 CPU1
1332 * ---- ----
1333 * <SOFTIRQ>
1334 * call_timer_fn();
1335 * base->running_timer = mytimer;
1336 * spin_lock_irq(somelock);
1337 * <IRQ>
1338 * spin_lock(somelock);
1339 * del_timer_sync(mytimer);
1340 * while (base->running_timer == mytimer);
1341 *
1342 * Now del_timer_sync() will never return and never release somelock.
1343 * The interrupt on the other CPU is waiting to grab somelock but
1344 * it has interrupted the softirq that CPU0 is waiting to finish.
1345 *
1346 * The function returns whether it has deactivated a pending timer or not.
1347 */
1348 int del_timer_sync(struct timer_list *timer)
1349 {
1350 int ret;
1351
1352 #ifdef CONFIG_LOCKDEP
1353 unsigned long flags;
1354
1355 /*
1356 * If lockdep gives a backtrace here, please reference
1357 * the synchronization rules above.
1358 */
1359 local_irq_save(flags);
1360 lock_map_acquire(&timer->lockdep_map);
1361 lock_map_release(&timer->lockdep_map);
1362 local_irq_restore(flags);
1363 #endif
1364 /*
1365 * don't use it in hardirq context, because it
1366 * could lead to deadlock.
1367 */
1368 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1369
1370 /*
1371 * Must be able to sleep on PREEMPT_RT because of the slowpath in
1372 * del_timer_wait_running().
1373 */
1374 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
1375 lockdep_assert_preemption_enabled();
1376
1377 do {
1378 ret = try_to_del_timer_sync(timer);
1379
1380 if (unlikely(ret < 0)) {
1381 del_timer_wait_running(timer);
1382 cpu_relax();
1383 }
1384 } while (ret < 0);
1385
1386 return ret;
1387 }
1388 EXPORT_SYMBOL(del_timer_sync);
1389 #endif
1390
1391 static void call_timer_fn(struct timer_list *timer,
1392 void (*fn)(struct timer_list *),
1393 unsigned long baseclk)
1394 {
1395 int count = preempt_count();
1396
1397 #ifdef CONFIG_LOCKDEP
1398 /*
1399 * It is permissible to free the timer from inside the
1400 * function that is called from it, this we need to take into
1401 * account for lockdep too. To avoid bogus "held lock freed"
1402 * warnings as well as problems when looking into
1403 * timer->lockdep_map, make a copy and use that here.
1404 */
1405 struct lockdep_map lockdep_map;
1406
1407 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1408 #endif
1409 /*
1410 * Couple the lock chain with the lock chain at
1411 * del_timer_sync() by acquiring the lock_map around the fn()
1412 * call here and in del_timer_sync().
1413 */
1414 lock_map_acquire(&lockdep_map);
1415
1416 trace_timer_expire_entry(timer, baseclk);
1417 fn(timer);
1418 trace_timer_expire_exit(timer);
1419
1420 lock_map_release(&lockdep_map);
1421
1422 if (count != preempt_count()) {
1423 WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1424 fn, count, preempt_count());
1425 /*
1426 * Restore the preempt count. That gives us a decent
1427 * chance to survive and extract information. If the
1428 * callback kept a lock held, bad luck, but not worse
1429 * than the BUG() we had.
1430 */
1431 preempt_count_set(count);
1432 }
1433 }
1434
1435 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1436 {
1437 /*
1438 * This value is required only for tracing. base->clk was
1439 * incremented directly before expire_timers was called. But expiry
1440 * is related to the old base->clk value.
1441 */
1442 unsigned long baseclk = base->clk - 1;
1443
1444 while (!hlist_empty(head)) {
1445 struct timer_list *timer;
1446 void (*fn)(struct timer_list *);
1447
1448 timer = hlist_entry(head->first, struct timer_list, entry);
1449
1450 base->running_timer = timer;
1451 detach_timer(timer, true);
1452
1453 fn = timer->function;
1454
1455 if (timer->flags & TIMER_IRQSAFE) {
1456 raw_spin_unlock(&base->lock);
1457 call_timer_fn(timer, fn, baseclk);
1458 base->running_timer = NULL;
1459 raw_spin_lock(&base->lock);
1460 } else {
1461 raw_spin_unlock_irq(&base->lock);
1462 call_timer_fn(timer, fn, baseclk);
1463 base->running_timer = NULL;
1464 timer_sync_wait_running(base);
1465 raw_spin_lock_irq(&base->lock);
1466 }
1467 }
1468 }
1469
1470 static int collect_expired_timers(struct timer_base *base,
1471 struct hlist_head *heads)
1472 {
1473 unsigned long clk = base->clk = base->next_expiry;
1474 struct hlist_head *vec;
1475 int i, levels = 0;
1476 unsigned int idx;
1477
1478 for (i = 0; i < LVL_DEPTH; i++) {
1479 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1480
1481 if (__test_and_clear_bit(idx, base->pending_map)) {
1482 vec = base->vectors + idx;
1483 hlist_move_list(vec, heads++);
1484 levels++;
1485 }
1486 /* Is it time to look at the next level? */
1487 if (clk & LVL_CLK_MASK)
1488 break;
1489 /* Shift clock for the next level granularity */
1490 clk >>= LVL_CLK_SHIFT;
1491 }
1492 return levels;
1493 }
1494
1495 /*
1496 * Find the next pending bucket of a level. Search from level start (@offset)
1497 * + @clk upwards and if nothing there, search from start of the level
1498 * (@offset) up to @offset + clk.
1499 */
1500 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1501 unsigned clk)
1502 {
1503 unsigned pos, start = offset + clk;
1504 unsigned end = offset + LVL_SIZE;
1505
1506 pos = find_next_bit(base->pending_map, end, start);
1507 if (pos < end)
1508 return pos - start;
1509
1510 pos = find_next_bit(base->pending_map, start, offset);
1511 return pos < start ? pos + LVL_SIZE - start : -1;
1512 }
1513
1514 /*
1515 * Search the first expiring timer in the various clock levels. Caller must
1516 * hold base->lock.
1517 */
1518 static unsigned long __next_timer_interrupt(struct timer_base *base)
1519 {
1520 unsigned long clk, next, adj;
1521 unsigned lvl, offset = 0;
1522
1523 next = base->clk + NEXT_TIMER_MAX_DELTA;
1524 clk = base->clk;
1525 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1526 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1527 unsigned long lvl_clk = clk & LVL_CLK_MASK;
1528
1529 if (pos >= 0) {
1530 unsigned long tmp = clk + (unsigned long) pos;
1531
1532 tmp <<= LVL_SHIFT(lvl);
1533 if (time_before(tmp, next))
1534 next = tmp;
1535
1536 /*
1537 * If the next expiration happens before we reach
1538 * the next level, no need to check further.
1539 */
1540 if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1541 break;
1542 }
1543 /*
1544 * Clock for the next level. If the current level clock lower
1545 * bits are zero, we look at the next level as is. If not we
1546 * need to advance it by one because that's going to be the
1547 * next expiring bucket in that level. base->clk is the next
1548 * expiring jiffie. So in case of:
1549 *
1550 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1551 * 0 0 0 0 0 0
1552 *
1553 * we have to look at all levels @index 0. With
1554 *
1555 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1556 * 0 0 0 0 0 2
1557 *
1558 * LVL0 has the next expiring bucket @index 2. The upper
1559 * levels have the next expiring bucket @index 1.
1560 *
1561 * In case that the propagation wraps the next level the same
1562 * rules apply:
1563 *
1564 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1565 * 0 0 0 0 F 2
1566 *
1567 * So after looking at LVL0 we get:
1568 *
1569 * LVL5 LVL4 LVL3 LVL2 LVL1
1570 * 0 0 0 1 0
1571 *
1572 * So no propagation from LVL1 to LVL2 because that happened
1573 * with the add already, but then we need to propagate further
1574 * from LVL2 to LVL3.
1575 *
1576 * So the simple check whether the lower bits of the current
1577 * level are 0 or not is sufficient for all cases.
1578 */
1579 adj = lvl_clk ? 1 : 0;
1580 clk >>= LVL_CLK_SHIFT;
1581 clk += adj;
1582 }
1583
1584 base->next_expiry_recalc = false;
1585
1586 return next;
1587 }
1588
1589 #ifdef CONFIG_NO_HZ_COMMON
1590 /*
1591 * Check, if the next hrtimer event is before the next timer wheel
1592 * event:
1593 */
1594 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1595 {
1596 u64 nextevt = hrtimer_get_next_event();
1597
1598 /*
1599 * If high resolution timers are enabled
1600 * hrtimer_get_next_event() returns KTIME_MAX.
1601 */
1602 if (expires <= nextevt)
1603 return expires;
1604
1605 /*
1606 * If the next timer is already expired, return the tick base
1607 * time so the tick is fired immediately.
1608 */
1609 if (nextevt <= basem)
1610 return basem;
1611
1612 /*
1613 * Round up to the next jiffie. High resolution timers are
1614 * off, so the hrtimers are expired in the tick and we need to
1615 * make sure that this tick really expires the timer to avoid
1616 * a ping pong of the nohz stop code.
1617 *
1618 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1619 */
1620 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1621 }
1622
1623 /**
1624 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1625 * @basej: base time jiffies
1626 * @basem: base time clock monotonic
1627 *
1628 * Returns the tick aligned clock monotonic time of the next pending
1629 * timer or KTIME_MAX if no timer is pending.
1630 */
1631 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1632 {
1633 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1634 u64 expires = KTIME_MAX;
1635 unsigned long nextevt;
1636 bool is_max_delta;
1637
1638 /*
1639 * Pretend that there is no timer pending if the cpu is offline.
1640 * Possible pending timers will be migrated later to an active cpu.
1641 */
1642 if (cpu_is_offline(smp_processor_id()))
1643 return expires;
1644
1645 raw_spin_lock(&base->lock);
1646 if (base->next_expiry_recalc)
1647 base->next_expiry = __next_timer_interrupt(base);
1648 nextevt = base->next_expiry;
1649 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1650
1651 /*
1652 * We have a fresh next event. Check whether we can forward the
1653 * base. We can only do that when @basej is past base->clk
1654 * otherwise we might rewind base->clk.
1655 */
1656 if (time_after(basej, base->clk)) {
1657 if (time_after(nextevt, basej))
1658 base->clk = basej;
1659 else if (time_after(nextevt, base->clk))
1660 base->clk = nextevt;
1661 }
1662
1663 if (time_before_eq(nextevt, basej)) {
1664 expires = basem;
1665 base->is_idle = false;
1666 } else {
1667 if (!is_max_delta)
1668 expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1669 /*
1670 * If we expect to sleep more than a tick, mark the base idle.
1671 * Also the tick is stopped so any added timer must forward
1672 * the base clk itself to keep granularity small. This idle
1673 * logic is only maintained for the BASE_STD base, deferrable
1674 * timers may still see large granularity skew (by design).
1675 */
1676 if ((expires - basem) > TICK_NSEC)
1677 base->is_idle = true;
1678 }
1679 raw_spin_unlock(&base->lock);
1680
1681 return cmp_next_hrtimer_event(basem, expires);
1682 }
1683
1684 /**
1685 * timer_clear_idle - Clear the idle state of the timer base
1686 *
1687 * Called with interrupts disabled
1688 */
1689 void timer_clear_idle(void)
1690 {
1691 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1692
1693 /*
1694 * We do this unlocked. The worst outcome is a remote enqueue sending
1695 * a pointless IPI, but taking the lock would just make the window for
1696 * sending the IPI a few instructions smaller for the cost of taking
1697 * the lock in the exit from idle path.
1698 */
1699 base->is_idle = false;
1700 }
1701 #endif
1702
1703 /**
1704 * __run_timers - run all expired timers (if any) on this CPU.
1705 * @base: the timer vector to be processed.
1706 */
1707 static inline void __run_timers(struct timer_base *base)
1708 {
1709 struct hlist_head heads[LVL_DEPTH];
1710 int levels;
1711
1712 if (time_before(jiffies, base->next_expiry))
1713 return;
1714
1715 timer_base_lock_expiry(base);
1716 raw_spin_lock_irq(&base->lock);
1717
1718 while (time_after_eq(jiffies, base->clk) &&
1719 time_after_eq(jiffies, base->next_expiry)) {
1720 levels = collect_expired_timers(base, heads);
1721 /*
1722 * The only possible reason for not finding any expired
1723 * timer at this clk is that all matching timers have been
1724 * dequeued.
1725 */
1726 WARN_ON_ONCE(!levels && !base->next_expiry_recalc);
1727 base->clk++;
1728 base->next_expiry = __next_timer_interrupt(base);
1729
1730 while (levels--)
1731 expire_timers(base, heads + levels);
1732 }
1733 raw_spin_unlock_irq(&base->lock);
1734 timer_base_unlock_expiry(base);
1735 }
1736
1737 /*
1738 * This function runs timers and the timer-tq in bottom half context.
1739 */
1740 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1741 {
1742 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1743
1744 __run_timers(base);
1745 if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1746 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1747 }
1748
1749 /*
1750 * Called by the local, per-CPU timer interrupt on SMP.
1751 */
1752 static void run_local_timers(void)
1753 {
1754 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1755
1756 hrtimer_run_queues();
1757 /* Raise the softirq only if required. */
1758 if (time_before(jiffies, base->next_expiry)) {
1759 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1760 return;
1761 /* CPU is awake, so check the deferrable base. */
1762 base++;
1763 if (time_before(jiffies, base->next_expiry))
1764 return;
1765 }
1766 raise_softirq(TIMER_SOFTIRQ);
1767 }
1768
1769 /*
1770 * Called from the timer interrupt handler to charge one tick to the current
1771 * process. user_tick is 1 if the tick is user time, 0 for system.
1772 */
1773 void update_process_times(int user_tick)
1774 {
1775 struct task_struct *p = current;
1776
1777 PRANDOM_ADD_NOISE(jiffies, user_tick, p, 0);
1778
1779 /* Note: this timer irq context must be accounted for as well. */
1780 account_process_tick(p, user_tick);
1781 run_local_timers();
1782 rcu_sched_clock_irq(user_tick);
1783 #ifdef CONFIG_IRQ_WORK
1784 if (in_irq())
1785 irq_work_tick();
1786 #endif
1787 scheduler_tick();
1788 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1789 run_posix_cpu_timers();
1790 }
1791
1792 /*
1793 * Since schedule_timeout()'s timer is defined on the stack, it must store
1794 * the target task on the stack as well.
1795 */
1796 struct process_timer {
1797 struct timer_list timer;
1798 struct task_struct *task;
1799 };
1800
1801 static void process_timeout(struct timer_list *t)
1802 {
1803 struct process_timer *timeout = from_timer(timeout, t, timer);
1804
1805 wake_up_process(timeout->task);
1806 }
1807
1808 /**
1809 * schedule_timeout - sleep until timeout
1810 * @timeout: timeout value in jiffies
1811 *
1812 * Make the current task sleep until @timeout jiffies have elapsed.
1813 * The function behavior depends on the current task state
1814 * (see also set_current_state() description):
1815 *
1816 * %TASK_RUNNING - the scheduler is called, but the task does not sleep
1817 * at all. That happens because sched_submit_work() does nothing for
1818 * tasks in %TASK_RUNNING state.
1819 *
1820 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1821 * pass before the routine returns unless the current task is explicitly
1822 * woken up, (e.g. by wake_up_process()).
1823 *
1824 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1825 * delivered to the current task or the current task is explicitly woken
1826 * up.
1827 *
1828 * The current task state is guaranteed to be %TASK_RUNNING when this
1829 * routine returns.
1830 *
1831 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1832 * the CPU away without a bound on the timeout. In this case the return
1833 * value will be %MAX_SCHEDULE_TIMEOUT.
1834 *
1835 * Returns 0 when the timer has expired otherwise the remaining time in
1836 * jiffies will be returned. In all cases the return value is guaranteed
1837 * to be non-negative.
1838 */
1839 signed long __sched schedule_timeout(signed long timeout)
1840 {
1841 struct process_timer timer;
1842 unsigned long expire;
1843
1844 switch (timeout)
1845 {
1846 case MAX_SCHEDULE_TIMEOUT:
1847 /*
1848 * These two special cases are useful to be comfortable
1849 * in the caller. Nothing more. We could take
1850 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1851 * but I' d like to return a valid offset (>=0) to allow
1852 * the caller to do everything it want with the retval.
1853 */
1854 schedule();
1855 goto out;
1856 default:
1857 /*
1858 * Another bit of PARANOID. Note that the retval will be
1859 * 0 since no piece of kernel is supposed to do a check
1860 * for a negative retval of schedule_timeout() (since it
1861 * should never happens anyway). You just have the printk()
1862 * that will tell you if something is gone wrong and where.
1863 */
1864 if (timeout < 0) {
1865 printk(KERN_ERR "schedule_timeout: wrong timeout "
1866 "value %lx\n", timeout);
1867 dump_stack();
1868 current->state = TASK_RUNNING;
1869 goto out;
1870 }
1871 }
1872
1873 expire = timeout + jiffies;
1874
1875 timer.task = current;
1876 timer_setup_on_stack(&timer.timer, process_timeout, 0);
1877 __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
1878 schedule();
1879 del_singleshot_timer_sync(&timer.timer);
1880
1881 /* Remove the timer from the object tracker */
1882 destroy_timer_on_stack(&timer.timer);
1883
1884 timeout = expire - jiffies;
1885
1886 out:
1887 return timeout < 0 ? 0 : timeout;
1888 }
1889 EXPORT_SYMBOL(schedule_timeout);
1890
1891 /*
1892 * We can use __set_current_state() here because schedule_timeout() calls
1893 * schedule() unconditionally.
1894 */
1895 signed long __sched schedule_timeout_interruptible(signed long timeout)
1896 {
1897 __set_current_state(TASK_INTERRUPTIBLE);
1898 return schedule_timeout(timeout);
1899 }
1900 EXPORT_SYMBOL(schedule_timeout_interruptible);
1901
1902 signed long __sched schedule_timeout_killable(signed long timeout)
1903 {
1904 __set_current_state(TASK_KILLABLE);
1905 return schedule_timeout(timeout);
1906 }
1907 EXPORT_SYMBOL(schedule_timeout_killable);
1908
1909 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1910 {
1911 __set_current_state(TASK_UNINTERRUPTIBLE);
1912 return schedule_timeout(timeout);
1913 }
1914 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1915
1916 /*
1917 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1918 * to load average.
1919 */
1920 signed long __sched schedule_timeout_idle(signed long timeout)
1921 {
1922 __set_current_state(TASK_IDLE);
1923 return schedule_timeout(timeout);
1924 }
1925 EXPORT_SYMBOL(schedule_timeout_idle);
1926
1927 #ifdef CONFIG_HOTPLUG_CPU
1928 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1929 {
1930 struct timer_list *timer;
1931 int cpu = new_base->cpu;
1932
1933 while (!hlist_empty(head)) {
1934 timer = hlist_entry(head->first, struct timer_list, entry);
1935 detach_timer(timer, false);
1936 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1937 internal_add_timer(new_base, timer);
1938 }
1939 }
1940
1941 int timers_prepare_cpu(unsigned int cpu)
1942 {
1943 struct timer_base *base;
1944 int b;
1945
1946 for (b = 0; b < NR_BASES; b++) {
1947 base = per_cpu_ptr(&timer_bases[b], cpu);
1948 base->clk = jiffies;
1949 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1950 base->is_idle = false;
1951 }
1952 return 0;
1953 }
1954
1955 int timers_dead_cpu(unsigned int cpu)
1956 {
1957 struct timer_base *old_base;
1958 struct timer_base *new_base;
1959 int b, i;
1960
1961 BUG_ON(cpu_online(cpu));
1962
1963 for (b = 0; b < NR_BASES; b++) {
1964 old_base = per_cpu_ptr(&timer_bases[b], cpu);
1965 new_base = get_cpu_ptr(&timer_bases[b]);
1966 /*
1967 * The caller is globally serialized and nobody else
1968 * takes two locks at once, deadlock is not possible.
1969 */
1970 raw_spin_lock_irq(&new_base->lock);
1971 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1972
1973 /*
1974 * The current CPUs base clock might be stale. Update it
1975 * before moving the timers over.
1976 */
1977 forward_timer_base(new_base);
1978
1979 BUG_ON(old_base->running_timer);
1980
1981 for (i = 0; i < WHEEL_SIZE; i++)
1982 migrate_timer_list(new_base, old_base->vectors + i);
1983
1984 raw_spin_unlock(&old_base->lock);
1985 raw_spin_unlock_irq(&new_base->lock);
1986 put_cpu_ptr(&timer_bases);
1987 }
1988 return 0;
1989 }
1990
1991 #endif /* CONFIG_HOTPLUG_CPU */
1992
1993 static void __init init_timer_cpu(int cpu)
1994 {
1995 struct timer_base *base;
1996 int i;
1997
1998 for (i = 0; i < NR_BASES; i++) {
1999 base = per_cpu_ptr(&timer_bases[i], cpu);
2000 base->cpu = cpu;
2001 raw_spin_lock_init(&base->lock);
2002 base->clk = jiffies;
2003 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2004 timer_base_init_expiry_lock(base);
2005 }
2006 }
2007
2008 static void __init init_timer_cpus(void)
2009 {
2010 int cpu;
2011
2012 for_each_possible_cpu(cpu)
2013 init_timer_cpu(cpu);
2014 }
2015
2016 void __init init_timers(void)
2017 {
2018 init_timer_cpus();
2019 posix_cputimers_init_work();
2020 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2021 }
2022
2023 /**
2024 * msleep - sleep safely even with waitqueue interruptions
2025 * @msecs: Time in milliseconds to sleep for
2026 */
2027 void msleep(unsigned int msecs)
2028 {
2029 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2030
2031 while (timeout)
2032 timeout = schedule_timeout_uninterruptible(timeout);
2033 }
2034
2035 EXPORT_SYMBOL(msleep);
2036
2037 /**
2038 * msleep_interruptible - sleep waiting for signals
2039 * @msecs: Time in milliseconds to sleep for
2040 */
2041 unsigned long msleep_interruptible(unsigned int msecs)
2042 {
2043 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2044
2045 while (timeout && !signal_pending(current))
2046 timeout = schedule_timeout_interruptible(timeout);
2047 return jiffies_to_msecs(timeout);
2048 }
2049
2050 EXPORT_SYMBOL(msleep_interruptible);
2051
2052 /**
2053 * usleep_range - Sleep for an approximate time
2054 * @min: Minimum time in usecs to sleep
2055 * @max: Maximum time in usecs to sleep
2056 *
2057 * In non-atomic context where the exact wakeup time is flexible, use
2058 * usleep_range() instead of udelay(). The sleep improves responsiveness
2059 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2060 * power usage by allowing hrtimers to take advantage of an already-
2061 * scheduled interrupt instead of scheduling a new one just for this sleep.
2062 */
2063 void __sched usleep_range(unsigned long min, unsigned long max)
2064 {
2065 ktime_t exp = ktime_add_us(ktime_get(), min);
2066 u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2067
2068 for (;;) {
2069 __set_current_state(TASK_UNINTERRUPTIBLE);
2070 /* Do not return before the requested sleep time has elapsed */
2071 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2072 break;
2073 }
2074 }
2075 EXPORT_SYMBOL(usleep_range);