]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/time/timer.c
Merge tag 'mfd-next-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[mirror_ubuntu-bionic-kernel.git] / kernel / time / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched/signal.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/sched/nohz.h>
44 #include <linux/sched/debug.h>
45 #include <linux/slab.h>
46 #include <linux/compat.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/div64.h>
51 #include <asm/timex.h>
52 #include <asm/io.h>
53
54 #include "tick-internal.h"
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/timer.h>
58
59 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
60
61 EXPORT_SYMBOL(jiffies_64);
62
63 /*
64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
66 * level has a different granularity.
67 *
68 * The level granularity is: LVL_CLK_DIV ^ lvl
69 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
70 *
71 * The array level of a newly armed timer depends on the relative expiry
72 * time. The farther the expiry time is away the higher the array level and
73 * therefor the granularity becomes.
74 *
75 * Contrary to the original timer wheel implementation, which aims for 'exact'
76 * expiry of the timers, this implementation removes the need for recascading
77 * the timers into the lower array levels. The previous 'classic' timer wheel
78 * implementation of the kernel already violated the 'exact' expiry by adding
79 * slack to the expiry time to provide batched expiration. The granularity
80 * levels provide implicit batching.
81 *
82 * This is an optimization of the original timer wheel implementation for the
83 * majority of the timer wheel use cases: timeouts. The vast majority of
84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
85 * the timeout expires it indicates that normal operation is disturbed, so it
86 * does not matter much whether the timeout comes with a slight delay.
87 *
88 * The only exception to this are networking timers with a small expiry
89 * time. They rely on the granularity. Those fit into the first wheel level,
90 * which has HZ granularity.
91 *
92 * We don't have cascading anymore. timers with a expiry time above the
93 * capacity of the last wheel level are force expired at the maximum timeout
94 * value of the last wheel level. From data sampling we know that the maximum
95 * value observed is 5 days (network connection tracking), so this should not
96 * be an issue.
97 *
98 * The currently chosen array constants values are a good compromise between
99 * array size and granularity.
100 *
101 * This results in the following granularity and range levels:
102 *
103 * HZ 1000 steps
104 * Level Offset Granularity Range
105 * 0 0 1 ms 0 ms - 63 ms
106 * 1 64 8 ms 64 ms - 511 ms
107 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
108 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
109 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
110 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
111 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
112 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
113 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
114 *
115 * HZ 300
116 * Level Offset Granularity Range
117 * 0 0 3 ms 0 ms - 210 ms
118 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
119 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
120 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
121 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
122 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
123 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
124 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
125 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
126 *
127 * HZ 250
128 * Level Offset Granularity Range
129 * 0 0 4 ms 0 ms - 255 ms
130 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
131 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
132 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
133 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
134 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
135 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
136 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
137 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
138 *
139 * HZ 100
140 * Level Offset Granularity Range
141 * 0 0 10 ms 0 ms - 630 ms
142 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
143 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
144 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
145 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
146 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
147 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
148 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
149 */
150
151 /* Clock divisor for the next level */
152 #define LVL_CLK_SHIFT 3
153 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
154 #define LVL_CLK_MASK (LVL_CLK_DIV - 1)
155 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
156 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
157
158 /*
159 * The time start value for each level to select the bucket at enqueue
160 * time.
161 */
162 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
163
164 /* Size of each clock level */
165 #define LVL_BITS 6
166 #define LVL_SIZE (1UL << LVL_BITS)
167 #define LVL_MASK (LVL_SIZE - 1)
168 #define LVL_OFFS(n) ((n) * LVL_SIZE)
169
170 /* Level depth */
171 #if HZ > 100
172 # define LVL_DEPTH 9
173 # else
174 # define LVL_DEPTH 8
175 #endif
176
177 /* The cutoff (max. capacity of the wheel) */
178 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
179 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
180
181 /*
182 * The resulting wheel size. If NOHZ is configured we allocate two
183 * wheels so we have a separate storage for the deferrable timers.
184 */
185 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
186
187 #ifdef CONFIG_NO_HZ_COMMON
188 # define NR_BASES 2
189 # define BASE_STD 0
190 # define BASE_DEF 1
191 #else
192 # define NR_BASES 1
193 # define BASE_STD 0
194 # define BASE_DEF 0
195 #endif
196
197 struct timer_base {
198 raw_spinlock_t lock;
199 struct timer_list *running_timer;
200 unsigned long clk;
201 unsigned long next_expiry;
202 unsigned int cpu;
203 bool migration_enabled;
204 bool nohz_active;
205 bool is_idle;
206 bool must_forward_clk;
207 DECLARE_BITMAP(pending_map, WHEEL_SIZE);
208 struct hlist_head vectors[WHEEL_SIZE];
209 } ____cacheline_aligned;
210
211 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
212
213 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
214 unsigned int sysctl_timer_migration = 1;
215
216 void timers_update_migration(bool update_nohz)
217 {
218 bool on = sysctl_timer_migration && tick_nohz_active;
219 unsigned int cpu;
220
221 /* Avoid the loop, if nothing to update */
222 if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
223 return;
224
225 for_each_possible_cpu(cpu) {
226 per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
227 per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
228 per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
229 if (!update_nohz)
230 continue;
231 per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
232 per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
233 per_cpu(hrtimer_bases.nohz_active, cpu) = true;
234 }
235 }
236
237 int timer_migration_handler(struct ctl_table *table, int write,
238 void __user *buffer, size_t *lenp,
239 loff_t *ppos)
240 {
241 static DEFINE_MUTEX(mutex);
242 int ret;
243
244 mutex_lock(&mutex);
245 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
246 if (!ret && write)
247 timers_update_migration(false);
248 mutex_unlock(&mutex);
249 return ret;
250 }
251 #endif
252
253 static unsigned long round_jiffies_common(unsigned long j, int cpu,
254 bool force_up)
255 {
256 int rem;
257 unsigned long original = j;
258
259 /*
260 * We don't want all cpus firing their timers at once hitting the
261 * same lock or cachelines, so we skew each extra cpu with an extra
262 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
263 * already did this.
264 * The skew is done by adding 3*cpunr, then round, then subtract this
265 * extra offset again.
266 */
267 j += cpu * 3;
268
269 rem = j % HZ;
270
271 /*
272 * If the target jiffie is just after a whole second (which can happen
273 * due to delays of the timer irq, long irq off times etc etc) then
274 * we should round down to the whole second, not up. Use 1/4th second
275 * as cutoff for this rounding as an extreme upper bound for this.
276 * But never round down if @force_up is set.
277 */
278 if (rem < HZ/4 && !force_up) /* round down */
279 j = j - rem;
280 else /* round up */
281 j = j - rem + HZ;
282
283 /* now that we have rounded, subtract the extra skew again */
284 j -= cpu * 3;
285
286 /*
287 * Make sure j is still in the future. Otherwise return the
288 * unmodified value.
289 */
290 return time_is_after_jiffies(j) ? j : original;
291 }
292
293 /**
294 * __round_jiffies - function to round jiffies to a full second
295 * @j: the time in (absolute) jiffies that should be rounded
296 * @cpu: the processor number on which the timeout will happen
297 *
298 * __round_jiffies() rounds an absolute time in the future (in jiffies)
299 * up or down to (approximately) full seconds. This is useful for timers
300 * for which the exact time they fire does not matter too much, as long as
301 * they fire approximately every X seconds.
302 *
303 * By rounding these timers to whole seconds, all such timers will fire
304 * at the same time, rather than at various times spread out. The goal
305 * of this is to have the CPU wake up less, which saves power.
306 *
307 * The exact rounding is skewed for each processor to avoid all
308 * processors firing at the exact same time, which could lead
309 * to lock contention or spurious cache line bouncing.
310 *
311 * The return value is the rounded version of the @j parameter.
312 */
313 unsigned long __round_jiffies(unsigned long j, int cpu)
314 {
315 return round_jiffies_common(j, cpu, false);
316 }
317 EXPORT_SYMBOL_GPL(__round_jiffies);
318
319 /**
320 * __round_jiffies_relative - function to round jiffies to a full second
321 * @j: the time in (relative) jiffies that should be rounded
322 * @cpu: the processor number on which the timeout will happen
323 *
324 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
325 * up or down to (approximately) full seconds. This is useful for timers
326 * for which the exact time they fire does not matter too much, as long as
327 * they fire approximately every X seconds.
328 *
329 * By rounding these timers to whole seconds, all such timers will fire
330 * at the same time, rather than at various times spread out. The goal
331 * of this is to have the CPU wake up less, which saves power.
332 *
333 * The exact rounding is skewed for each processor to avoid all
334 * processors firing at the exact same time, which could lead
335 * to lock contention or spurious cache line bouncing.
336 *
337 * The return value is the rounded version of the @j parameter.
338 */
339 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
340 {
341 unsigned long j0 = jiffies;
342
343 /* Use j0 because jiffies might change while we run */
344 return round_jiffies_common(j + j0, cpu, false) - j0;
345 }
346 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
347
348 /**
349 * round_jiffies - function to round jiffies to a full second
350 * @j: the time in (absolute) jiffies that should be rounded
351 *
352 * round_jiffies() rounds an absolute time in the future (in jiffies)
353 * up or down to (approximately) full seconds. This is useful for timers
354 * for which the exact time they fire does not matter too much, as long as
355 * they fire approximately every X seconds.
356 *
357 * By rounding these timers to whole seconds, all such timers will fire
358 * at the same time, rather than at various times spread out. The goal
359 * of this is to have the CPU wake up less, which saves power.
360 *
361 * The return value is the rounded version of the @j parameter.
362 */
363 unsigned long round_jiffies(unsigned long j)
364 {
365 return round_jiffies_common(j, raw_smp_processor_id(), false);
366 }
367 EXPORT_SYMBOL_GPL(round_jiffies);
368
369 /**
370 * round_jiffies_relative - function to round jiffies to a full second
371 * @j: the time in (relative) jiffies that should be rounded
372 *
373 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
374 * up or down to (approximately) full seconds. This is useful for timers
375 * for which the exact time they fire does not matter too much, as long as
376 * they fire approximately every X seconds.
377 *
378 * By rounding these timers to whole seconds, all such timers will fire
379 * at the same time, rather than at various times spread out. The goal
380 * of this is to have the CPU wake up less, which saves power.
381 *
382 * The return value is the rounded version of the @j parameter.
383 */
384 unsigned long round_jiffies_relative(unsigned long j)
385 {
386 return __round_jiffies_relative(j, raw_smp_processor_id());
387 }
388 EXPORT_SYMBOL_GPL(round_jiffies_relative);
389
390 /**
391 * __round_jiffies_up - function to round jiffies up to a full second
392 * @j: the time in (absolute) jiffies that should be rounded
393 * @cpu: the processor number on which the timeout will happen
394 *
395 * This is the same as __round_jiffies() except that it will never
396 * round down. This is useful for timeouts for which the exact time
397 * of firing does not matter too much, as long as they don't fire too
398 * early.
399 */
400 unsigned long __round_jiffies_up(unsigned long j, int cpu)
401 {
402 return round_jiffies_common(j, cpu, true);
403 }
404 EXPORT_SYMBOL_GPL(__round_jiffies_up);
405
406 /**
407 * __round_jiffies_up_relative - function to round jiffies up to a full second
408 * @j: the time in (relative) jiffies that should be rounded
409 * @cpu: the processor number on which the timeout will happen
410 *
411 * This is the same as __round_jiffies_relative() except that it will never
412 * round down. This is useful for timeouts for which the exact time
413 * of firing does not matter too much, as long as they don't fire too
414 * early.
415 */
416 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
417 {
418 unsigned long j0 = jiffies;
419
420 /* Use j0 because jiffies might change while we run */
421 return round_jiffies_common(j + j0, cpu, true) - j0;
422 }
423 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
424
425 /**
426 * round_jiffies_up - function to round jiffies up to a full second
427 * @j: the time in (absolute) jiffies that should be rounded
428 *
429 * This is the same as round_jiffies() except that it will never
430 * round down. This is useful for timeouts for which the exact time
431 * of firing does not matter too much, as long as they don't fire too
432 * early.
433 */
434 unsigned long round_jiffies_up(unsigned long j)
435 {
436 return round_jiffies_common(j, raw_smp_processor_id(), true);
437 }
438 EXPORT_SYMBOL_GPL(round_jiffies_up);
439
440 /**
441 * round_jiffies_up_relative - function to round jiffies up to a full second
442 * @j: the time in (relative) jiffies that should be rounded
443 *
444 * This is the same as round_jiffies_relative() except that it will never
445 * round down. This is useful for timeouts for which the exact time
446 * of firing does not matter too much, as long as they don't fire too
447 * early.
448 */
449 unsigned long round_jiffies_up_relative(unsigned long j)
450 {
451 return __round_jiffies_up_relative(j, raw_smp_processor_id());
452 }
453 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
454
455
456 static inline unsigned int timer_get_idx(struct timer_list *timer)
457 {
458 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
459 }
460
461 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
462 {
463 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
464 idx << TIMER_ARRAYSHIFT;
465 }
466
467 /*
468 * Helper function to calculate the array index for a given expiry
469 * time.
470 */
471 static inline unsigned calc_index(unsigned expires, unsigned lvl)
472 {
473 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
474 return LVL_OFFS(lvl) + (expires & LVL_MASK);
475 }
476
477 static int calc_wheel_index(unsigned long expires, unsigned long clk)
478 {
479 unsigned long delta = expires - clk;
480 unsigned int idx;
481
482 if (delta < LVL_START(1)) {
483 idx = calc_index(expires, 0);
484 } else if (delta < LVL_START(2)) {
485 idx = calc_index(expires, 1);
486 } else if (delta < LVL_START(3)) {
487 idx = calc_index(expires, 2);
488 } else if (delta < LVL_START(4)) {
489 idx = calc_index(expires, 3);
490 } else if (delta < LVL_START(5)) {
491 idx = calc_index(expires, 4);
492 } else if (delta < LVL_START(6)) {
493 idx = calc_index(expires, 5);
494 } else if (delta < LVL_START(7)) {
495 idx = calc_index(expires, 6);
496 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
497 idx = calc_index(expires, 7);
498 } else if ((long) delta < 0) {
499 idx = clk & LVL_MASK;
500 } else {
501 /*
502 * Force expire obscene large timeouts to expire at the
503 * capacity limit of the wheel.
504 */
505 if (expires >= WHEEL_TIMEOUT_CUTOFF)
506 expires = WHEEL_TIMEOUT_MAX;
507
508 idx = calc_index(expires, LVL_DEPTH - 1);
509 }
510 return idx;
511 }
512
513 /*
514 * Enqueue the timer into the hash bucket, mark it pending in
515 * the bitmap and store the index in the timer flags.
516 */
517 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
518 unsigned int idx)
519 {
520 hlist_add_head(&timer->entry, base->vectors + idx);
521 __set_bit(idx, base->pending_map);
522 timer_set_idx(timer, idx);
523 }
524
525 static void
526 __internal_add_timer(struct timer_base *base, struct timer_list *timer)
527 {
528 unsigned int idx;
529
530 idx = calc_wheel_index(timer->expires, base->clk);
531 enqueue_timer(base, timer, idx);
532 }
533
534 static void
535 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
536 {
537 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
538 return;
539
540 /*
541 * TODO: This wants some optimizing similar to the code below, but we
542 * will do that when we switch from push to pull for deferrable timers.
543 */
544 if (timer->flags & TIMER_DEFERRABLE) {
545 if (tick_nohz_full_cpu(base->cpu))
546 wake_up_nohz_cpu(base->cpu);
547 return;
548 }
549
550 /*
551 * We might have to IPI the remote CPU if the base is idle and the
552 * timer is not deferrable. If the other CPU is on the way to idle
553 * then it can't set base->is_idle as we hold the base lock:
554 */
555 if (!base->is_idle)
556 return;
557
558 /* Check whether this is the new first expiring timer: */
559 if (time_after_eq(timer->expires, base->next_expiry))
560 return;
561
562 /*
563 * Set the next expiry time and kick the CPU so it can reevaluate the
564 * wheel:
565 */
566 base->next_expiry = timer->expires;
567 wake_up_nohz_cpu(base->cpu);
568 }
569
570 static void
571 internal_add_timer(struct timer_base *base, struct timer_list *timer)
572 {
573 __internal_add_timer(base, timer);
574 trigger_dyntick_cpu(base, timer);
575 }
576
577 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
578
579 static struct debug_obj_descr timer_debug_descr;
580
581 static void *timer_debug_hint(void *addr)
582 {
583 return ((struct timer_list *) addr)->function;
584 }
585
586 static bool timer_is_static_object(void *addr)
587 {
588 struct timer_list *timer = addr;
589
590 return (timer->entry.pprev == NULL &&
591 timer->entry.next == TIMER_ENTRY_STATIC);
592 }
593
594 /*
595 * fixup_init is called when:
596 * - an active object is initialized
597 */
598 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
599 {
600 struct timer_list *timer = addr;
601
602 switch (state) {
603 case ODEBUG_STATE_ACTIVE:
604 del_timer_sync(timer);
605 debug_object_init(timer, &timer_debug_descr);
606 return true;
607 default:
608 return false;
609 }
610 }
611
612 /* Stub timer callback for improperly used timers. */
613 static void stub_timer(struct timer_list *unused)
614 {
615 WARN_ON(1);
616 }
617
618 /*
619 * fixup_activate is called when:
620 * - an active object is activated
621 * - an unknown non-static object is activated
622 */
623 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
624 {
625 struct timer_list *timer = addr;
626
627 switch (state) {
628 case ODEBUG_STATE_NOTAVAILABLE:
629 timer_setup(timer, stub_timer, 0);
630 return true;
631
632 case ODEBUG_STATE_ACTIVE:
633 WARN_ON(1);
634
635 default:
636 return false;
637 }
638 }
639
640 /*
641 * fixup_free is called when:
642 * - an active object is freed
643 */
644 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
645 {
646 struct timer_list *timer = addr;
647
648 switch (state) {
649 case ODEBUG_STATE_ACTIVE:
650 del_timer_sync(timer);
651 debug_object_free(timer, &timer_debug_descr);
652 return true;
653 default:
654 return false;
655 }
656 }
657
658 /*
659 * fixup_assert_init is called when:
660 * - an untracked/uninit-ed object is found
661 */
662 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
663 {
664 struct timer_list *timer = addr;
665
666 switch (state) {
667 case ODEBUG_STATE_NOTAVAILABLE:
668 timer_setup(timer, stub_timer, 0);
669 return true;
670 default:
671 return false;
672 }
673 }
674
675 static struct debug_obj_descr timer_debug_descr = {
676 .name = "timer_list",
677 .debug_hint = timer_debug_hint,
678 .is_static_object = timer_is_static_object,
679 .fixup_init = timer_fixup_init,
680 .fixup_activate = timer_fixup_activate,
681 .fixup_free = timer_fixup_free,
682 .fixup_assert_init = timer_fixup_assert_init,
683 };
684
685 static inline void debug_timer_init(struct timer_list *timer)
686 {
687 debug_object_init(timer, &timer_debug_descr);
688 }
689
690 static inline void debug_timer_activate(struct timer_list *timer)
691 {
692 debug_object_activate(timer, &timer_debug_descr);
693 }
694
695 static inline void debug_timer_deactivate(struct timer_list *timer)
696 {
697 debug_object_deactivate(timer, &timer_debug_descr);
698 }
699
700 static inline void debug_timer_free(struct timer_list *timer)
701 {
702 debug_object_free(timer, &timer_debug_descr);
703 }
704
705 static inline void debug_timer_assert_init(struct timer_list *timer)
706 {
707 debug_object_assert_init(timer, &timer_debug_descr);
708 }
709
710 static void do_init_timer(struct timer_list *timer, unsigned int flags,
711 const char *name, struct lock_class_key *key);
712
713 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
714 const char *name, struct lock_class_key *key)
715 {
716 debug_object_init_on_stack(timer, &timer_debug_descr);
717 do_init_timer(timer, flags, name, key);
718 }
719 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
720
721 void destroy_timer_on_stack(struct timer_list *timer)
722 {
723 debug_object_free(timer, &timer_debug_descr);
724 }
725 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
726
727 #else
728 static inline void debug_timer_init(struct timer_list *timer) { }
729 static inline void debug_timer_activate(struct timer_list *timer) { }
730 static inline void debug_timer_deactivate(struct timer_list *timer) { }
731 static inline void debug_timer_assert_init(struct timer_list *timer) { }
732 #endif
733
734 static inline void debug_init(struct timer_list *timer)
735 {
736 debug_timer_init(timer);
737 trace_timer_init(timer);
738 }
739
740 static inline void
741 debug_activate(struct timer_list *timer, unsigned long expires)
742 {
743 debug_timer_activate(timer);
744 trace_timer_start(timer, expires, timer->flags);
745 }
746
747 static inline void debug_deactivate(struct timer_list *timer)
748 {
749 debug_timer_deactivate(timer);
750 trace_timer_cancel(timer);
751 }
752
753 static inline void debug_assert_init(struct timer_list *timer)
754 {
755 debug_timer_assert_init(timer);
756 }
757
758 static void do_init_timer(struct timer_list *timer, unsigned int flags,
759 const char *name, struct lock_class_key *key)
760 {
761 timer->entry.pprev = NULL;
762 timer->flags = flags | raw_smp_processor_id();
763 lockdep_init_map(&timer->lockdep_map, name, key, 0);
764 }
765
766 /**
767 * init_timer_key - initialize a timer
768 * @timer: the timer to be initialized
769 * @flags: timer flags
770 * @name: name of the timer
771 * @key: lockdep class key of the fake lock used for tracking timer
772 * sync lock dependencies
773 *
774 * init_timer_key() must be done to a timer prior calling *any* of the
775 * other timer functions.
776 */
777 void init_timer_key(struct timer_list *timer, unsigned int flags,
778 const char *name, struct lock_class_key *key)
779 {
780 debug_init(timer);
781 do_init_timer(timer, flags, name, key);
782 }
783 EXPORT_SYMBOL(init_timer_key);
784
785 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
786 {
787 struct hlist_node *entry = &timer->entry;
788
789 debug_deactivate(timer);
790
791 __hlist_del(entry);
792 if (clear_pending)
793 entry->pprev = NULL;
794 entry->next = LIST_POISON2;
795 }
796
797 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
798 bool clear_pending)
799 {
800 unsigned idx = timer_get_idx(timer);
801
802 if (!timer_pending(timer))
803 return 0;
804
805 if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
806 __clear_bit(idx, base->pending_map);
807
808 detach_timer(timer, clear_pending);
809 return 1;
810 }
811
812 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
813 {
814 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
815
816 /*
817 * If the timer is deferrable and nohz is active then we need to use
818 * the deferrable base.
819 */
820 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
821 (tflags & TIMER_DEFERRABLE))
822 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
823 return base;
824 }
825
826 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
827 {
828 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
829
830 /*
831 * If the timer is deferrable and nohz is active then we need to use
832 * the deferrable base.
833 */
834 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
835 (tflags & TIMER_DEFERRABLE))
836 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
837 return base;
838 }
839
840 static inline struct timer_base *get_timer_base(u32 tflags)
841 {
842 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
843 }
844
845 #ifdef CONFIG_NO_HZ_COMMON
846 static inline struct timer_base *
847 get_target_base(struct timer_base *base, unsigned tflags)
848 {
849 #ifdef CONFIG_SMP
850 if ((tflags & TIMER_PINNED) || !base->migration_enabled)
851 return get_timer_this_cpu_base(tflags);
852 return get_timer_cpu_base(tflags, get_nohz_timer_target());
853 #else
854 return get_timer_this_cpu_base(tflags);
855 #endif
856 }
857
858 static inline void forward_timer_base(struct timer_base *base)
859 {
860 unsigned long jnow;
861
862 /*
863 * We only forward the base when we are idle or have just come out of
864 * idle (must_forward_clk logic), and have a delta between base clock
865 * and jiffies. In the common case, run_timers will take care of it.
866 */
867 if (likely(!base->must_forward_clk))
868 return;
869
870 jnow = READ_ONCE(jiffies);
871 base->must_forward_clk = base->is_idle;
872 if ((long)(jnow - base->clk) < 2)
873 return;
874
875 /*
876 * If the next expiry value is > jiffies, then we fast forward to
877 * jiffies otherwise we forward to the next expiry value.
878 */
879 if (time_after(base->next_expiry, jnow))
880 base->clk = jnow;
881 else
882 base->clk = base->next_expiry;
883 }
884 #else
885 static inline struct timer_base *
886 get_target_base(struct timer_base *base, unsigned tflags)
887 {
888 return get_timer_this_cpu_base(tflags);
889 }
890
891 static inline void forward_timer_base(struct timer_base *base) { }
892 #endif
893
894
895 /*
896 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
897 * that all timers which are tied to this base are locked, and the base itself
898 * is locked too.
899 *
900 * So __run_timers/migrate_timers can safely modify all timers which could
901 * be found in the base->vectors array.
902 *
903 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
904 * to wait until the migration is done.
905 */
906 static struct timer_base *lock_timer_base(struct timer_list *timer,
907 unsigned long *flags)
908 __acquires(timer->base->lock)
909 {
910 for (;;) {
911 struct timer_base *base;
912 u32 tf;
913
914 /*
915 * We need to use READ_ONCE() here, otherwise the compiler
916 * might re-read @tf between the check for TIMER_MIGRATING
917 * and spin_lock().
918 */
919 tf = READ_ONCE(timer->flags);
920
921 if (!(tf & TIMER_MIGRATING)) {
922 base = get_timer_base(tf);
923 raw_spin_lock_irqsave(&base->lock, *flags);
924 if (timer->flags == tf)
925 return base;
926 raw_spin_unlock_irqrestore(&base->lock, *flags);
927 }
928 cpu_relax();
929 }
930 }
931
932 #define MOD_TIMER_PENDING_ONLY 0x01
933 #define MOD_TIMER_REDUCE 0x02
934
935 static inline int
936 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
937 {
938 struct timer_base *base, *new_base;
939 unsigned int idx = UINT_MAX;
940 unsigned long clk = 0, flags;
941 int ret = 0;
942
943 BUG_ON(!timer->function);
944
945 /*
946 * This is a common optimization triggered by the networking code - if
947 * the timer is re-modified to have the same timeout or ends up in the
948 * same array bucket then just return:
949 */
950 if (timer_pending(timer)) {
951 /*
952 * The downside of this optimization is that it can result in
953 * larger granularity than you would get from adding a new
954 * timer with this expiry.
955 */
956 long diff = timer->expires - expires;
957
958 if (!diff)
959 return 1;
960 if (options & MOD_TIMER_REDUCE && diff <= 0)
961 return 1;
962
963 /*
964 * We lock timer base and calculate the bucket index right
965 * here. If the timer ends up in the same bucket, then we
966 * just update the expiry time and avoid the whole
967 * dequeue/enqueue dance.
968 */
969 base = lock_timer_base(timer, &flags);
970 forward_timer_base(base);
971
972 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
973 time_before_eq(timer->expires, expires)) {
974 ret = 1;
975 goto out_unlock;
976 }
977
978 clk = base->clk;
979 idx = calc_wheel_index(expires, clk);
980
981 /*
982 * Retrieve and compare the array index of the pending
983 * timer. If it matches set the expiry to the new value so a
984 * subsequent call will exit in the expires check above.
985 */
986 if (idx == timer_get_idx(timer)) {
987 if (!(options & MOD_TIMER_REDUCE))
988 timer->expires = expires;
989 else if (time_after(timer->expires, expires))
990 timer->expires = expires;
991 ret = 1;
992 goto out_unlock;
993 }
994 } else {
995 base = lock_timer_base(timer, &flags);
996 forward_timer_base(base);
997 }
998
999 ret = detach_if_pending(timer, base, false);
1000 if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1001 goto out_unlock;
1002
1003 debug_activate(timer, expires);
1004
1005 new_base = get_target_base(base, timer->flags);
1006
1007 if (base != new_base) {
1008 /*
1009 * We are trying to schedule the timer on the new base.
1010 * However we can't change timer's base while it is running,
1011 * otherwise del_timer_sync() can't detect that the timer's
1012 * handler yet has not finished. This also guarantees that the
1013 * timer is serialized wrt itself.
1014 */
1015 if (likely(base->running_timer != timer)) {
1016 /* See the comment in lock_timer_base() */
1017 timer->flags |= TIMER_MIGRATING;
1018
1019 raw_spin_unlock(&base->lock);
1020 base = new_base;
1021 raw_spin_lock(&base->lock);
1022 WRITE_ONCE(timer->flags,
1023 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1024 forward_timer_base(base);
1025 }
1026 }
1027
1028 timer->expires = expires;
1029 /*
1030 * If 'idx' was calculated above and the base time did not advance
1031 * between calculating 'idx' and possibly switching the base, only
1032 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1033 * we need to (re)calculate the wheel index via
1034 * internal_add_timer().
1035 */
1036 if (idx != UINT_MAX && clk == base->clk) {
1037 enqueue_timer(base, timer, idx);
1038 trigger_dyntick_cpu(base, timer);
1039 } else {
1040 internal_add_timer(base, timer);
1041 }
1042
1043 out_unlock:
1044 raw_spin_unlock_irqrestore(&base->lock, flags);
1045
1046 return ret;
1047 }
1048
1049 /**
1050 * mod_timer_pending - modify a pending timer's timeout
1051 * @timer: the pending timer to be modified
1052 * @expires: new timeout in jiffies
1053 *
1054 * mod_timer_pending() is the same for pending timers as mod_timer(),
1055 * but will not re-activate and modify already deleted timers.
1056 *
1057 * It is useful for unserialized use of timers.
1058 */
1059 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1060 {
1061 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1062 }
1063 EXPORT_SYMBOL(mod_timer_pending);
1064
1065 /**
1066 * mod_timer - modify a timer's timeout
1067 * @timer: the timer to be modified
1068 * @expires: new timeout in jiffies
1069 *
1070 * mod_timer() is a more efficient way to update the expire field of an
1071 * active timer (if the timer is inactive it will be activated)
1072 *
1073 * mod_timer(timer, expires) is equivalent to:
1074 *
1075 * del_timer(timer); timer->expires = expires; add_timer(timer);
1076 *
1077 * Note that if there are multiple unserialized concurrent users of the
1078 * same timer, then mod_timer() is the only safe way to modify the timeout,
1079 * since add_timer() cannot modify an already running timer.
1080 *
1081 * The function returns whether it has modified a pending timer or not.
1082 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1083 * active timer returns 1.)
1084 */
1085 int mod_timer(struct timer_list *timer, unsigned long expires)
1086 {
1087 return __mod_timer(timer, expires, 0);
1088 }
1089 EXPORT_SYMBOL(mod_timer);
1090
1091 /**
1092 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1093 * @timer: The timer to be modified
1094 * @expires: New timeout in jiffies
1095 *
1096 * timer_reduce() is very similar to mod_timer(), except that it will only
1097 * modify a running timer if that would reduce the expiration time (it will
1098 * start a timer that isn't running).
1099 */
1100 int timer_reduce(struct timer_list *timer, unsigned long expires)
1101 {
1102 return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1103 }
1104 EXPORT_SYMBOL(timer_reduce);
1105
1106 /**
1107 * add_timer - start a timer
1108 * @timer: the timer to be added
1109 *
1110 * The kernel will do a ->function(->data) callback from the
1111 * timer interrupt at the ->expires point in the future. The
1112 * current time is 'jiffies'.
1113 *
1114 * The timer's ->expires, ->function (and if the handler uses it, ->data)
1115 * fields must be set prior calling this function.
1116 *
1117 * Timers with an ->expires field in the past will be executed in the next
1118 * timer tick.
1119 */
1120 void add_timer(struct timer_list *timer)
1121 {
1122 BUG_ON(timer_pending(timer));
1123 mod_timer(timer, timer->expires);
1124 }
1125 EXPORT_SYMBOL(add_timer);
1126
1127 /**
1128 * add_timer_on - start a timer on a particular CPU
1129 * @timer: the timer to be added
1130 * @cpu: the CPU to start it on
1131 *
1132 * This is not very scalable on SMP. Double adds are not possible.
1133 */
1134 void add_timer_on(struct timer_list *timer, int cpu)
1135 {
1136 struct timer_base *new_base, *base;
1137 unsigned long flags;
1138
1139 BUG_ON(timer_pending(timer) || !timer->function);
1140
1141 new_base = get_timer_cpu_base(timer->flags, cpu);
1142
1143 /*
1144 * If @timer was on a different CPU, it should be migrated with the
1145 * old base locked to prevent other operations proceeding with the
1146 * wrong base locked. See lock_timer_base().
1147 */
1148 base = lock_timer_base(timer, &flags);
1149 if (base != new_base) {
1150 timer->flags |= TIMER_MIGRATING;
1151
1152 raw_spin_unlock(&base->lock);
1153 base = new_base;
1154 raw_spin_lock(&base->lock);
1155 WRITE_ONCE(timer->flags,
1156 (timer->flags & ~TIMER_BASEMASK) | cpu);
1157 }
1158 forward_timer_base(base);
1159
1160 debug_activate(timer, timer->expires);
1161 internal_add_timer(base, timer);
1162 raw_spin_unlock_irqrestore(&base->lock, flags);
1163 }
1164 EXPORT_SYMBOL_GPL(add_timer_on);
1165
1166 /**
1167 * del_timer - deactivate a timer.
1168 * @timer: the timer to be deactivated
1169 *
1170 * del_timer() deactivates a timer - this works on both active and inactive
1171 * timers.
1172 *
1173 * The function returns whether it has deactivated a pending timer or not.
1174 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1175 * active timer returns 1.)
1176 */
1177 int del_timer(struct timer_list *timer)
1178 {
1179 struct timer_base *base;
1180 unsigned long flags;
1181 int ret = 0;
1182
1183 debug_assert_init(timer);
1184
1185 if (timer_pending(timer)) {
1186 base = lock_timer_base(timer, &flags);
1187 ret = detach_if_pending(timer, base, true);
1188 raw_spin_unlock_irqrestore(&base->lock, flags);
1189 }
1190
1191 return ret;
1192 }
1193 EXPORT_SYMBOL(del_timer);
1194
1195 /**
1196 * try_to_del_timer_sync - Try to deactivate a timer
1197 * @timer: timer to delete
1198 *
1199 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1200 * exit the timer is not queued and the handler is not running on any CPU.
1201 */
1202 int try_to_del_timer_sync(struct timer_list *timer)
1203 {
1204 struct timer_base *base;
1205 unsigned long flags;
1206 int ret = -1;
1207
1208 debug_assert_init(timer);
1209
1210 base = lock_timer_base(timer, &flags);
1211
1212 if (base->running_timer != timer)
1213 ret = detach_if_pending(timer, base, true);
1214
1215 raw_spin_unlock_irqrestore(&base->lock, flags);
1216
1217 return ret;
1218 }
1219 EXPORT_SYMBOL(try_to_del_timer_sync);
1220
1221 #ifdef CONFIG_SMP
1222 /**
1223 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1224 * @timer: the timer to be deactivated
1225 *
1226 * This function only differs from del_timer() on SMP: besides deactivating
1227 * the timer it also makes sure the handler has finished executing on other
1228 * CPUs.
1229 *
1230 * Synchronization rules: Callers must prevent restarting of the timer,
1231 * otherwise this function is meaningless. It must not be called from
1232 * interrupt contexts unless the timer is an irqsafe one. The caller must
1233 * not hold locks which would prevent completion of the timer's
1234 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1235 * timer is not queued and the handler is not running on any CPU.
1236 *
1237 * Note: For !irqsafe timers, you must not hold locks that are held in
1238 * interrupt context while calling this function. Even if the lock has
1239 * nothing to do with the timer in question. Here's why:
1240 *
1241 * CPU0 CPU1
1242 * ---- ----
1243 * <SOFTIRQ>
1244 * call_timer_fn();
1245 * base->running_timer = mytimer;
1246 * spin_lock_irq(somelock);
1247 * <IRQ>
1248 * spin_lock(somelock);
1249 * del_timer_sync(mytimer);
1250 * while (base->running_timer == mytimer);
1251 *
1252 * Now del_timer_sync() will never return and never release somelock.
1253 * The interrupt on the other CPU is waiting to grab somelock but
1254 * it has interrupted the softirq that CPU0 is waiting to finish.
1255 *
1256 * The function returns whether it has deactivated a pending timer or not.
1257 */
1258 int del_timer_sync(struct timer_list *timer)
1259 {
1260 #ifdef CONFIG_LOCKDEP
1261 unsigned long flags;
1262
1263 /*
1264 * If lockdep gives a backtrace here, please reference
1265 * the synchronization rules above.
1266 */
1267 local_irq_save(flags);
1268 lock_map_acquire(&timer->lockdep_map);
1269 lock_map_release(&timer->lockdep_map);
1270 local_irq_restore(flags);
1271 #endif
1272 /*
1273 * don't use it in hardirq context, because it
1274 * could lead to deadlock.
1275 */
1276 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1277 for (;;) {
1278 int ret = try_to_del_timer_sync(timer);
1279 if (ret >= 0)
1280 return ret;
1281 cpu_relax();
1282 }
1283 }
1284 EXPORT_SYMBOL(del_timer_sync);
1285 #endif
1286
1287 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1288 unsigned long data)
1289 {
1290 int count = preempt_count();
1291
1292 #ifdef CONFIG_LOCKDEP
1293 /*
1294 * It is permissible to free the timer from inside the
1295 * function that is called from it, this we need to take into
1296 * account for lockdep too. To avoid bogus "held lock freed"
1297 * warnings as well as problems when looking into
1298 * timer->lockdep_map, make a copy and use that here.
1299 */
1300 struct lockdep_map lockdep_map;
1301
1302 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1303 #endif
1304 /*
1305 * Couple the lock chain with the lock chain at
1306 * del_timer_sync() by acquiring the lock_map around the fn()
1307 * call here and in del_timer_sync().
1308 */
1309 lock_map_acquire(&lockdep_map);
1310
1311 trace_timer_expire_entry(timer);
1312 fn(data);
1313 trace_timer_expire_exit(timer);
1314
1315 lock_map_release(&lockdep_map);
1316
1317 if (count != preempt_count()) {
1318 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1319 fn, count, preempt_count());
1320 /*
1321 * Restore the preempt count. That gives us a decent
1322 * chance to survive and extract information. If the
1323 * callback kept a lock held, bad luck, but not worse
1324 * than the BUG() we had.
1325 */
1326 preempt_count_set(count);
1327 }
1328 }
1329
1330 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1331 {
1332 while (!hlist_empty(head)) {
1333 struct timer_list *timer;
1334 void (*fn)(unsigned long);
1335 unsigned long data;
1336
1337 timer = hlist_entry(head->first, struct timer_list, entry);
1338
1339 base->running_timer = timer;
1340 detach_timer(timer, true);
1341
1342 fn = timer->function;
1343 data = timer->data;
1344
1345 if (timer->flags & TIMER_IRQSAFE) {
1346 raw_spin_unlock(&base->lock);
1347 call_timer_fn(timer, fn, data);
1348 raw_spin_lock(&base->lock);
1349 } else {
1350 raw_spin_unlock_irq(&base->lock);
1351 call_timer_fn(timer, fn, data);
1352 raw_spin_lock_irq(&base->lock);
1353 }
1354 }
1355 }
1356
1357 static int __collect_expired_timers(struct timer_base *base,
1358 struct hlist_head *heads)
1359 {
1360 unsigned long clk = base->clk;
1361 struct hlist_head *vec;
1362 int i, levels = 0;
1363 unsigned int idx;
1364
1365 for (i = 0; i < LVL_DEPTH; i++) {
1366 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1367
1368 if (__test_and_clear_bit(idx, base->pending_map)) {
1369 vec = base->vectors + idx;
1370 hlist_move_list(vec, heads++);
1371 levels++;
1372 }
1373 /* Is it time to look at the next level? */
1374 if (clk & LVL_CLK_MASK)
1375 break;
1376 /* Shift clock for the next level granularity */
1377 clk >>= LVL_CLK_SHIFT;
1378 }
1379 return levels;
1380 }
1381
1382 #ifdef CONFIG_NO_HZ_COMMON
1383 /*
1384 * Find the next pending bucket of a level. Search from level start (@offset)
1385 * + @clk upwards and if nothing there, search from start of the level
1386 * (@offset) up to @offset + clk.
1387 */
1388 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1389 unsigned clk)
1390 {
1391 unsigned pos, start = offset + clk;
1392 unsigned end = offset + LVL_SIZE;
1393
1394 pos = find_next_bit(base->pending_map, end, start);
1395 if (pos < end)
1396 return pos - start;
1397
1398 pos = find_next_bit(base->pending_map, start, offset);
1399 return pos < start ? pos + LVL_SIZE - start : -1;
1400 }
1401
1402 /*
1403 * Search the first expiring timer in the various clock levels. Caller must
1404 * hold base->lock.
1405 */
1406 static unsigned long __next_timer_interrupt(struct timer_base *base)
1407 {
1408 unsigned long clk, next, adj;
1409 unsigned lvl, offset = 0;
1410
1411 next = base->clk + NEXT_TIMER_MAX_DELTA;
1412 clk = base->clk;
1413 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1414 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1415
1416 if (pos >= 0) {
1417 unsigned long tmp = clk + (unsigned long) pos;
1418
1419 tmp <<= LVL_SHIFT(lvl);
1420 if (time_before(tmp, next))
1421 next = tmp;
1422 }
1423 /*
1424 * Clock for the next level. If the current level clock lower
1425 * bits are zero, we look at the next level as is. If not we
1426 * need to advance it by one because that's going to be the
1427 * next expiring bucket in that level. base->clk is the next
1428 * expiring jiffie. So in case of:
1429 *
1430 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1431 * 0 0 0 0 0 0
1432 *
1433 * we have to look at all levels @index 0. With
1434 *
1435 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1436 * 0 0 0 0 0 2
1437 *
1438 * LVL0 has the next expiring bucket @index 2. The upper
1439 * levels have the next expiring bucket @index 1.
1440 *
1441 * In case that the propagation wraps the next level the same
1442 * rules apply:
1443 *
1444 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1445 * 0 0 0 0 F 2
1446 *
1447 * So after looking at LVL0 we get:
1448 *
1449 * LVL5 LVL4 LVL3 LVL2 LVL1
1450 * 0 0 0 1 0
1451 *
1452 * So no propagation from LVL1 to LVL2 because that happened
1453 * with the add already, but then we need to propagate further
1454 * from LVL2 to LVL3.
1455 *
1456 * So the simple check whether the lower bits of the current
1457 * level are 0 or not is sufficient for all cases.
1458 */
1459 adj = clk & LVL_CLK_MASK ? 1 : 0;
1460 clk >>= LVL_CLK_SHIFT;
1461 clk += adj;
1462 }
1463 return next;
1464 }
1465
1466 /*
1467 * Check, if the next hrtimer event is before the next timer wheel
1468 * event:
1469 */
1470 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1471 {
1472 u64 nextevt = hrtimer_get_next_event();
1473
1474 /*
1475 * If high resolution timers are enabled
1476 * hrtimer_get_next_event() returns KTIME_MAX.
1477 */
1478 if (expires <= nextevt)
1479 return expires;
1480
1481 /*
1482 * If the next timer is already expired, return the tick base
1483 * time so the tick is fired immediately.
1484 */
1485 if (nextevt <= basem)
1486 return basem;
1487
1488 /*
1489 * Round up to the next jiffie. High resolution timers are
1490 * off, so the hrtimers are expired in the tick and we need to
1491 * make sure that this tick really expires the timer to avoid
1492 * a ping pong of the nohz stop code.
1493 *
1494 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1495 */
1496 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1497 }
1498
1499 /**
1500 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1501 * @basej: base time jiffies
1502 * @basem: base time clock monotonic
1503 *
1504 * Returns the tick aligned clock monotonic time of the next pending
1505 * timer or KTIME_MAX if no timer is pending.
1506 */
1507 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1508 {
1509 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1510 u64 expires = KTIME_MAX;
1511 unsigned long nextevt;
1512 bool is_max_delta;
1513
1514 /*
1515 * Pretend that there is no timer pending if the cpu is offline.
1516 * Possible pending timers will be migrated later to an active cpu.
1517 */
1518 if (cpu_is_offline(smp_processor_id()))
1519 return expires;
1520
1521 raw_spin_lock(&base->lock);
1522 nextevt = __next_timer_interrupt(base);
1523 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1524 base->next_expiry = nextevt;
1525 /*
1526 * We have a fresh next event. Check whether we can forward the
1527 * base. We can only do that when @basej is past base->clk
1528 * otherwise we might rewind base->clk.
1529 */
1530 if (time_after(basej, base->clk)) {
1531 if (time_after(nextevt, basej))
1532 base->clk = basej;
1533 else if (time_after(nextevt, base->clk))
1534 base->clk = nextevt;
1535 }
1536
1537 if (time_before_eq(nextevt, basej)) {
1538 expires = basem;
1539 base->is_idle = false;
1540 } else {
1541 if (!is_max_delta)
1542 expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1543 /*
1544 * If we expect to sleep more than a tick, mark the base idle.
1545 * Also the tick is stopped so any added timer must forward
1546 * the base clk itself to keep granularity small. This idle
1547 * logic is only maintained for the BASE_STD base, deferrable
1548 * timers may still see large granularity skew (by design).
1549 */
1550 if ((expires - basem) > TICK_NSEC) {
1551 base->must_forward_clk = true;
1552 base->is_idle = true;
1553 }
1554 }
1555 raw_spin_unlock(&base->lock);
1556
1557 return cmp_next_hrtimer_event(basem, expires);
1558 }
1559
1560 /**
1561 * timer_clear_idle - Clear the idle state of the timer base
1562 *
1563 * Called with interrupts disabled
1564 */
1565 void timer_clear_idle(void)
1566 {
1567 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1568
1569 /*
1570 * We do this unlocked. The worst outcome is a remote enqueue sending
1571 * a pointless IPI, but taking the lock would just make the window for
1572 * sending the IPI a few instructions smaller for the cost of taking
1573 * the lock in the exit from idle path.
1574 */
1575 base->is_idle = false;
1576 }
1577
1578 static int collect_expired_timers(struct timer_base *base,
1579 struct hlist_head *heads)
1580 {
1581 /*
1582 * NOHZ optimization. After a long idle sleep we need to forward the
1583 * base to current jiffies. Avoid a loop by searching the bitfield for
1584 * the next expiring timer.
1585 */
1586 if ((long)(jiffies - base->clk) > 2) {
1587 unsigned long next = __next_timer_interrupt(base);
1588
1589 /*
1590 * If the next timer is ahead of time forward to current
1591 * jiffies, otherwise forward to the next expiry time:
1592 */
1593 if (time_after(next, jiffies)) {
1594 /*
1595 * The call site will increment base->clk and then
1596 * terminate the expiry loop immediately.
1597 */
1598 base->clk = jiffies;
1599 return 0;
1600 }
1601 base->clk = next;
1602 }
1603 return __collect_expired_timers(base, heads);
1604 }
1605 #else
1606 static inline int collect_expired_timers(struct timer_base *base,
1607 struct hlist_head *heads)
1608 {
1609 return __collect_expired_timers(base, heads);
1610 }
1611 #endif
1612
1613 /*
1614 * Called from the timer interrupt handler to charge one tick to the current
1615 * process. user_tick is 1 if the tick is user time, 0 for system.
1616 */
1617 void update_process_times(int user_tick)
1618 {
1619 struct task_struct *p = current;
1620
1621 /* Note: this timer irq context must be accounted for as well. */
1622 account_process_tick(p, user_tick);
1623 run_local_timers();
1624 rcu_check_callbacks(user_tick);
1625 #ifdef CONFIG_IRQ_WORK
1626 if (in_irq())
1627 irq_work_tick();
1628 #endif
1629 scheduler_tick();
1630 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1631 run_posix_cpu_timers(p);
1632 }
1633
1634 /**
1635 * __run_timers - run all expired timers (if any) on this CPU.
1636 * @base: the timer vector to be processed.
1637 */
1638 static inline void __run_timers(struct timer_base *base)
1639 {
1640 struct hlist_head heads[LVL_DEPTH];
1641 int levels;
1642
1643 if (!time_after_eq(jiffies, base->clk))
1644 return;
1645
1646 raw_spin_lock_irq(&base->lock);
1647
1648 while (time_after_eq(jiffies, base->clk)) {
1649
1650 levels = collect_expired_timers(base, heads);
1651 base->clk++;
1652
1653 while (levels--)
1654 expire_timers(base, heads + levels);
1655 }
1656 base->running_timer = NULL;
1657 raw_spin_unlock_irq(&base->lock);
1658 }
1659
1660 /*
1661 * This function runs timers and the timer-tq in bottom half context.
1662 */
1663 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1664 {
1665 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1666
1667 /*
1668 * must_forward_clk must be cleared before running timers so that any
1669 * timer functions that call mod_timer will not try to forward the
1670 * base. idle trcking / clock forwarding logic is only used with
1671 * BASE_STD timers.
1672 *
1673 * The deferrable base does not do idle tracking at all, so we do
1674 * not forward it. This can result in very large variations in
1675 * granularity for deferrable timers, but they can be deferred for
1676 * long periods due to idle.
1677 */
1678 base->must_forward_clk = false;
1679
1680 __run_timers(base);
1681 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active)
1682 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1683 }
1684
1685 /*
1686 * Called by the local, per-CPU timer interrupt on SMP.
1687 */
1688 void run_local_timers(void)
1689 {
1690 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1691
1692 hrtimer_run_queues();
1693 /* Raise the softirq only if required. */
1694 if (time_before(jiffies, base->clk)) {
1695 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
1696 return;
1697 /* CPU is awake, so check the deferrable base. */
1698 base++;
1699 if (time_before(jiffies, base->clk))
1700 return;
1701 }
1702 raise_softirq(TIMER_SOFTIRQ);
1703 }
1704
1705 /*
1706 * Since schedule_timeout()'s timer is defined on the stack, it must store
1707 * the target task on the stack as well.
1708 */
1709 struct process_timer {
1710 struct timer_list timer;
1711 struct task_struct *task;
1712 };
1713
1714 static void process_timeout(struct timer_list *t)
1715 {
1716 struct process_timer *timeout = from_timer(timeout, t, timer);
1717
1718 wake_up_process(timeout->task);
1719 }
1720
1721 /**
1722 * schedule_timeout - sleep until timeout
1723 * @timeout: timeout value in jiffies
1724 *
1725 * Make the current task sleep until @timeout jiffies have
1726 * elapsed. The routine will return immediately unless
1727 * the current task state has been set (see set_current_state()).
1728 *
1729 * You can set the task state as follows -
1730 *
1731 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1732 * pass before the routine returns unless the current task is explicitly
1733 * woken up, (e.g. by wake_up_process())".
1734 *
1735 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1736 * delivered to the current task or the current task is explicitly woken
1737 * up.
1738 *
1739 * The current task state is guaranteed to be TASK_RUNNING when this
1740 * routine returns.
1741 *
1742 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1743 * the CPU away without a bound on the timeout. In this case the return
1744 * value will be %MAX_SCHEDULE_TIMEOUT.
1745 *
1746 * Returns 0 when the timer has expired otherwise the remaining time in
1747 * jiffies will be returned. In all cases the return value is guaranteed
1748 * to be non-negative.
1749 */
1750 signed long __sched schedule_timeout(signed long timeout)
1751 {
1752 struct process_timer timer;
1753 unsigned long expire;
1754
1755 switch (timeout)
1756 {
1757 case MAX_SCHEDULE_TIMEOUT:
1758 /*
1759 * These two special cases are useful to be comfortable
1760 * in the caller. Nothing more. We could take
1761 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1762 * but I' d like to return a valid offset (>=0) to allow
1763 * the caller to do everything it want with the retval.
1764 */
1765 schedule();
1766 goto out;
1767 default:
1768 /*
1769 * Another bit of PARANOID. Note that the retval will be
1770 * 0 since no piece of kernel is supposed to do a check
1771 * for a negative retval of schedule_timeout() (since it
1772 * should never happens anyway). You just have the printk()
1773 * that will tell you if something is gone wrong and where.
1774 */
1775 if (timeout < 0) {
1776 printk(KERN_ERR "schedule_timeout: wrong timeout "
1777 "value %lx\n", timeout);
1778 dump_stack();
1779 current->state = TASK_RUNNING;
1780 goto out;
1781 }
1782 }
1783
1784 expire = timeout + jiffies;
1785
1786 timer.task = current;
1787 timer_setup_on_stack(&timer.timer, process_timeout, 0);
1788 __mod_timer(&timer.timer, expire, 0);
1789 schedule();
1790 del_singleshot_timer_sync(&timer.timer);
1791
1792 /* Remove the timer from the object tracker */
1793 destroy_timer_on_stack(&timer.timer);
1794
1795 timeout = expire - jiffies;
1796
1797 out:
1798 return timeout < 0 ? 0 : timeout;
1799 }
1800 EXPORT_SYMBOL(schedule_timeout);
1801
1802 /*
1803 * We can use __set_current_state() here because schedule_timeout() calls
1804 * schedule() unconditionally.
1805 */
1806 signed long __sched schedule_timeout_interruptible(signed long timeout)
1807 {
1808 __set_current_state(TASK_INTERRUPTIBLE);
1809 return schedule_timeout(timeout);
1810 }
1811 EXPORT_SYMBOL(schedule_timeout_interruptible);
1812
1813 signed long __sched schedule_timeout_killable(signed long timeout)
1814 {
1815 __set_current_state(TASK_KILLABLE);
1816 return schedule_timeout(timeout);
1817 }
1818 EXPORT_SYMBOL(schedule_timeout_killable);
1819
1820 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1821 {
1822 __set_current_state(TASK_UNINTERRUPTIBLE);
1823 return schedule_timeout(timeout);
1824 }
1825 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1826
1827 /*
1828 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1829 * to load average.
1830 */
1831 signed long __sched schedule_timeout_idle(signed long timeout)
1832 {
1833 __set_current_state(TASK_IDLE);
1834 return schedule_timeout(timeout);
1835 }
1836 EXPORT_SYMBOL(schedule_timeout_idle);
1837
1838 #ifdef CONFIG_HOTPLUG_CPU
1839 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1840 {
1841 struct timer_list *timer;
1842 int cpu = new_base->cpu;
1843
1844 while (!hlist_empty(head)) {
1845 timer = hlist_entry(head->first, struct timer_list, entry);
1846 detach_timer(timer, false);
1847 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1848 internal_add_timer(new_base, timer);
1849 }
1850 }
1851
1852 int timers_dead_cpu(unsigned int cpu)
1853 {
1854 struct timer_base *old_base;
1855 struct timer_base *new_base;
1856 int b, i;
1857
1858 BUG_ON(cpu_online(cpu));
1859
1860 for (b = 0; b < NR_BASES; b++) {
1861 old_base = per_cpu_ptr(&timer_bases[b], cpu);
1862 new_base = get_cpu_ptr(&timer_bases[b]);
1863 /*
1864 * The caller is globally serialized and nobody else
1865 * takes two locks at once, deadlock is not possible.
1866 */
1867 raw_spin_lock_irq(&new_base->lock);
1868 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1869
1870 BUG_ON(old_base->running_timer);
1871
1872 for (i = 0; i < WHEEL_SIZE; i++)
1873 migrate_timer_list(new_base, old_base->vectors + i);
1874
1875 raw_spin_unlock(&old_base->lock);
1876 raw_spin_unlock_irq(&new_base->lock);
1877 put_cpu_ptr(&timer_bases);
1878 }
1879 return 0;
1880 }
1881
1882 #endif /* CONFIG_HOTPLUG_CPU */
1883
1884 static void __init init_timer_cpu(int cpu)
1885 {
1886 struct timer_base *base;
1887 int i;
1888
1889 for (i = 0; i < NR_BASES; i++) {
1890 base = per_cpu_ptr(&timer_bases[i], cpu);
1891 base->cpu = cpu;
1892 raw_spin_lock_init(&base->lock);
1893 base->clk = jiffies;
1894 }
1895 }
1896
1897 static void __init init_timer_cpus(void)
1898 {
1899 int cpu;
1900
1901 for_each_possible_cpu(cpu)
1902 init_timer_cpu(cpu);
1903 }
1904
1905 void __init init_timers(void)
1906 {
1907 init_timer_cpus();
1908 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1909 }
1910
1911 /**
1912 * msleep - sleep safely even with waitqueue interruptions
1913 * @msecs: Time in milliseconds to sleep for
1914 */
1915 void msleep(unsigned int msecs)
1916 {
1917 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1918
1919 while (timeout)
1920 timeout = schedule_timeout_uninterruptible(timeout);
1921 }
1922
1923 EXPORT_SYMBOL(msleep);
1924
1925 /**
1926 * msleep_interruptible - sleep waiting for signals
1927 * @msecs: Time in milliseconds to sleep for
1928 */
1929 unsigned long msleep_interruptible(unsigned int msecs)
1930 {
1931 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1932
1933 while (timeout && !signal_pending(current))
1934 timeout = schedule_timeout_interruptible(timeout);
1935 return jiffies_to_msecs(timeout);
1936 }
1937
1938 EXPORT_SYMBOL(msleep_interruptible);
1939
1940 /**
1941 * usleep_range - Sleep for an approximate time
1942 * @min: Minimum time in usecs to sleep
1943 * @max: Maximum time in usecs to sleep
1944 *
1945 * In non-atomic context where the exact wakeup time is flexible, use
1946 * usleep_range() instead of udelay(). The sleep improves responsiveness
1947 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1948 * power usage by allowing hrtimers to take advantage of an already-
1949 * scheduled interrupt instead of scheduling a new one just for this sleep.
1950 */
1951 void __sched usleep_range(unsigned long min, unsigned long max)
1952 {
1953 ktime_t exp = ktime_add_us(ktime_get(), min);
1954 u64 delta = (u64)(max - min) * NSEC_PER_USEC;
1955
1956 for (;;) {
1957 __set_current_state(TASK_UNINTERRUPTIBLE);
1958 /* Do not return before the requested sleep time has elapsed */
1959 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
1960 break;
1961 }
1962 }
1963 EXPORT_SYMBOL(usleep_range);