]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/time.c
convert a few do_div users
[mirror_ubuntu-zesty-kernel.git] / kernel / time.c
1 /*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10 /*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30 #include <linux/module.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/clocksource.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/slab.h>
39 #include <linux/math64.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43
44 #include "timeconst.h"
45
46 /*
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
49 */
50 struct timezone sys_tz;
51
52 EXPORT_SYMBOL(sys_tz);
53
54 #ifdef __ARCH_WANT_SYS_TIME
55
56 /*
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
61 */
62 asmlinkage long sys_time(time_t __user * tloc)
63 {
64 time_t i = get_seconds();
65
66 if (tloc) {
67 if (put_user(i,tloc))
68 i = -EFAULT;
69 }
70 return i;
71 }
72
73 /*
74 * sys_stime() can be implemented in user-level using
75 * sys_settimeofday(). Is this for backwards compatibility? If so,
76 * why not move it into the appropriate arch directory (for those
77 * architectures that need it).
78 */
79
80 asmlinkage long sys_stime(time_t __user *tptr)
81 {
82 struct timespec tv;
83 int err;
84
85 if (get_user(tv.tv_sec, tptr))
86 return -EFAULT;
87
88 tv.tv_nsec = 0;
89
90 err = security_settime(&tv, NULL);
91 if (err)
92 return err;
93
94 do_settimeofday(&tv);
95 return 0;
96 }
97
98 #endif /* __ARCH_WANT_SYS_TIME */
99
100 asmlinkage long sys_gettimeofday(struct timeval __user *tv,
101 struct timezone __user *tz)
102 {
103 if (likely(tv != NULL)) {
104 struct timeval ktv;
105 do_gettimeofday(&ktv);
106 if (copy_to_user(tv, &ktv, sizeof(ktv)))
107 return -EFAULT;
108 }
109 if (unlikely(tz != NULL)) {
110 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
111 return -EFAULT;
112 }
113 return 0;
114 }
115
116 /*
117 * Adjust the time obtained from the CMOS to be UTC time instead of
118 * local time.
119 *
120 * This is ugly, but preferable to the alternatives. Otherwise we
121 * would either need to write a program to do it in /etc/rc (and risk
122 * confusion if the program gets run more than once; it would also be
123 * hard to make the program warp the clock precisely n hours) or
124 * compile in the timezone information into the kernel. Bad, bad....
125 *
126 * - TYT, 1992-01-01
127 *
128 * The best thing to do is to keep the CMOS clock in universal time (UTC)
129 * as real UNIX machines always do it. This avoids all headaches about
130 * daylight saving times and warping kernel clocks.
131 */
132 static inline void warp_clock(void)
133 {
134 write_seqlock_irq(&xtime_lock);
135 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
136 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
137 update_xtime_cache(0);
138 write_sequnlock_irq(&xtime_lock);
139 clock_was_set();
140 }
141
142 /*
143 * In case for some reason the CMOS clock has not already been running
144 * in UTC, but in some local time: The first time we set the timezone,
145 * we will warp the clock so that it is ticking UTC time instead of
146 * local time. Presumably, if someone is setting the timezone then we
147 * are running in an environment where the programs understand about
148 * timezones. This should be done at boot time in the /etc/rc script,
149 * as soon as possible, so that the clock can be set right. Otherwise,
150 * various programs will get confused when the clock gets warped.
151 */
152
153 int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
154 {
155 static int firsttime = 1;
156 int error = 0;
157
158 if (tv && !timespec_valid(tv))
159 return -EINVAL;
160
161 error = security_settime(tv, tz);
162 if (error)
163 return error;
164
165 if (tz) {
166 /* SMP safe, global irq locking makes it work. */
167 sys_tz = *tz;
168 update_vsyscall_tz();
169 if (firsttime) {
170 firsttime = 0;
171 if (!tv)
172 warp_clock();
173 }
174 }
175 if (tv)
176 {
177 /* SMP safe, again the code in arch/foo/time.c should
178 * globally block out interrupts when it runs.
179 */
180 return do_settimeofday(tv);
181 }
182 return 0;
183 }
184
185 asmlinkage long sys_settimeofday(struct timeval __user *tv,
186 struct timezone __user *tz)
187 {
188 struct timeval user_tv;
189 struct timespec new_ts;
190 struct timezone new_tz;
191
192 if (tv) {
193 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
194 return -EFAULT;
195 new_ts.tv_sec = user_tv.tv_sec;
196 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
197 }
198 if (tz) {
199 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
200 return -EFAULT;
201 }
202
203 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
204 }
205
206 asmlinkage long sys_adjtimex(struct timex __user *txc_p)
207 {
208 struct timex txc; /* Local copy of parameter */
209 int ret;
210
211 /* Copy the user data space into the kernel copy
212 * structure. But bear in mind that the structures
213 * may change
214 */
215 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
216 return -EFAULT;
217 ret = do_adjtimex(&txc);
218 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
219 }
220
221 /**
222 * current_fs_time - Return FS time
223 * @sb: Superblock.
224 *
225 * Return the current time truncated to the time granularity supported by
226 * the fs.
227 */
228 struct timespec current_fs_time(struct super_block *sb)
229 {
230 struct timespec now = current_kernel_time();
231 return timespec_trunc(now, sb->s_time_gran);
232 }
233 EXPORT_SYMBOL(current_fs_time);
234
235 /*
236 * Convert jiffies to milliseconds and back.
237 *
238 * Avoid unnecessary multiplications/divisions in the
239 * two most common HZ cases:
240 */
241 unsigned int inline jiffies_to_msecs(const unsigned long j)
242 {
243 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
244 return (MSEC_PER_SEC / HZ) * j;
245 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
246 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
247 #else
248 # if BITS_PER_LONG == 32
249 return ((u64)HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
250 # else
251 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
252 # endif
253 #endif
254 }
255 EXPORT_SYMBOL(jiffies_to_msecs);
256
257 unsigned int inline jiffies_to_usecs(const unsigned long j)
258 {
259 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
260 return (USEC_PER_SEC / HZ) * j;
261 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
262 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
263 #else
264 # if BITS_PER_LONG == 32
265 return ((u64)HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
266 # else
267 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
268 # endif
269 #endif
270 }
271 EXPORT_SYMBOL(jiffies_to_usecs);
272
273 /**
274 * timespec_trunc - Truncate timespec to a granularity
275 * @t: Timespec
276 * @gran: Granularity in ns.
277 *
278 * Truncate a timespec to a granularity. gran must be smaller than a second.
279 * Always rounds down.
280 *
281 * This function should be only used for timestamps returned by
282 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
283 * it doesn't handle the better resolution of the latter.
284 */
285 struct timespec timespec_trunc(struct timespec t, unsigned gran)
286 {
287 /*
288 * Division is pretty slow so avoid it for common cases.
289 * Currently current_kernel_time() never returns better than
290 * jiffies resolution. Exploit that.
291 */
292 if (gran <= jiffies_to_usecs(1) * 1000) {
293 /* nothing */
294 } else if (gran == 1000000000) {
295 t.tv_nsec = 0;
296 } else {
297 t.tv_nsec -= t.tv_nsec % gran;
298 }
299 return t;
300 }
301 EXPORT_SYMBOL(timespec_trunc);
302
303 #ifndef CONFIG_GENERIC_TIME
304 /*
305 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
306 * and therefore only yields usec accuracy
307 */
308 void getnstimeofday(struct timespec *tv)
309 {
310 struct timeval x;
311
312 do_gettimeofday(&x);
313 tv->tv_sec = x.tv_sec;
314 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
315 }
316 EXPORT_SYMBOL_GPL(getnstimeofday);
317 #endif
318
319 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
320 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
321 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
322 *
323 * [For the Julian calendar (which was used in Russia before 1917,
324 * Britain & colonies before 1752, anywhere else before 1582,
325 * and is still in use by some communities) leave out the
326 * -year/100+year/400 terms, and add 10.]
327 *
328 * This algorithm was first published by Gauss (I think).
329 *
330 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
331 * machines where long is 32-bit! (However, as time_t is signed, we
332 * will already get problems at other places on 2038-01-19 03:14:08)
333 */
334 unsigned long
335 mktime(const unsigned int year0, const unsigned int mon0,
336 const unsigned int day, const unsigned int hour,
337 const unsigned int min, const unsigned int sec)
338 {
339 unsigned int mon = mon0, year = year0;
340
341 /* 1..12 -> 11,12,1..10 */
342 if (0 >= (int) (mon -= 2)) {
343 mon += 12; /* Puts Feb last since it has leap day */
344 year -= 1;
345 }
346
347 return ((((unsigned long)
348 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
349 year*365 - 719499
350 )*24 + hour /* now have hours */
351 )*60 + min /* now have minutes */
352 )*60 + sec; /* finally seconds */
353 }
354
355 EXPORT_SYMBOL(mktime);
356
357 /**
358 * set_normalized_timespec - set timespec sec and nsec parts and normalize
359 *
360 * @ts: pointer to timespec variable to be set
361 * @sec: seconds to set
362 * @nsec: nanoseconds to set
363 *
364 * Set seconds and nanoseconds field of a timespec variable and
365 * normalize to the timespec storage format
366 *
367 * Note: The tv_nsec part is always in the range of
368 * 0 <= tv_nsec < NSEC_PER_SEC
369 * For negative values only the tv_sec field is negative !
370 */
371 void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
372 {
373 while (nsec >= NSEC_PER_SEC) {
374 nsec -= NSEC_PER_SEC;
375 ++sec;
376 }
377 while (nsec < 0) {
378 nsec += NSEC_PER_SEC;
379 --sec;
380 }
381 ts->tv_sec = sec;
382 ts->tv_nsec = nsec;
383 }
384 EXPORT_SYMBOL(set_normalized_timespec);
385
386 /**
387 * ns_to_timespec - Convert nanoseconds to timespec
388 * @nsec: the nanoseconds value to be converted
389 *
390 * Returns the timespec representation of the nsec parameter.
391 */
392 struct timespec ns_to_timespec(const s64 nsec)
393 {
394 struct timespec ts;
395
396 if (!nsec)
397 return (struct timespec) {0, 0};
398
399 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
400 if (unlikely(nsec < 0))
401 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
402
403 return ts;
404 }
405 EXPORT_SYMBOL(ns_to_timespec);
406
407 /**
408 * ns_to_timeval - Convert nanoseconds to timeval
409 * @nsec: the nanoseconds value to be converted
410 *
411 * Returns the timeval representation of the nsec parameter.
412 */
413 struct timeval ns_to_timeval(const s64 nsec)
414 {
415 struct timespec ts = ns_to_timespec(nsec);
416 struct timeval tv;
417
418 tv.tv_sec = ts.tv_sec;
419 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
420
421 return tv;
422 }
423 EXPORT_SYMBOL(ns_to_timeval);
424
425 /*
426 * When we convert to jiffies then we interpret incoming values
427 * the following way:
428 *
429 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
430 *
431 * - 'too large' values [that would result in larger than
432 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
433 *
434 * - all other values are converted to jiffies by either multiplying
435 * the input value by a factor or dividing it with a factor
436 *
437 * We must also be careful about 32-bit overflows.
438 */
439 unsigned long msecs_to_jiffies(const unsigned int m)
440 {
441 /*
442 * Negative value, means infinite timeout:
443 */
444 if ((int)m < 0)
445 return MAX_JIFFY_OFFSET;
446
447 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
448 /*
449 * HZ is equal to or smaller than 1000, and 1000 is a nice
450 * round multiple of HZ, divide with the factor between them,
451 * but round upwards:
452 */
453 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
454 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
455 /*
456 * HZ is larger than 1000, and HZ is a nice round multiple of
457 * 1000 - simply multiply with the factor between them.
458 *
459 * But first make sure the multiplication result cannot
460 * overflow:
461 */
462 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
463 return MAX_JIFFY_OFFSET;
464
465 return m * (HZ / MSEC_PER_SEC);
466 #else
467 /*
468 * Generic case - multiply, round and divide. But first
469 * check that if we are doing a net multiplication, that
470 * we wouldn't overflow:
471 */
472 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
473 return MAX_JIFFY_OFFSET;
474
475 return ((u64)MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
476 >> MSEC_TO_HZ_SHR32;
477 #endif
478 }
479 EXPORT_SYMBOL(msecs_to_jiffies);
480
481 unsigned long usecs_to_jiffies(const unsigned int u)
482 {
483 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
484 return MAX_JIFFY_OFFSET;
485 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
486 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
487 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
488 return u * (HZ / USEC_PER_SEC);
489 #else
490 return ((u64)USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
491 >> USEC_TO_HZ_SHR32;
492 #endif
493 }
494 EXPORT_SYMBOL(usecs_to_jiffies);
495
496 /*
497 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
498 * that a remainder subtract here would not do the right thing as the
499 * resolution values don't fall on second boundries. I.e. the line:
500 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
501 *
502 * Rather, we just shift the bits off the right.
503 *
504 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
505 * value to a scaled second value.
506 */
507 unsigned long
508 timespec_to_jiffies(const struct timespec *value)
509 {
510 unsigned long sec = value->tv_sec;
511 long nsec = value->tv_nsec + TICK_NSEC - 1;
512
513 if (sec >= MAX_SEC_IN_JIFFIES){
514 sec = MAX_SEC_IN_JIFFIES;
515 nsec = 0;
516 }
517 return (((u64)sec * SEC_CONVERSION) +
518 (((u64)nsec * NSEC_CONVERSION) >>
519 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
520
521 }
522 EXPORT_SYMBOL(timespec_to_jiffies);
523
524 void
525 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
526 {
527 /*
528 * Convert jiffies to nanoseconds and separate with
529 * one divide.
530 */
531 u64 nsec = (u64)jiffies * TICK_NSEC;
532 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
533 }
534 EXPORT_SYMBOL(jiffies_to_timespec);
535
536 /* Same for "timeval"
537 *
538 * Well, almost. The problem here is that the real system resolution is
539 * in nanoseconds and the value being converted is in micro seconds.
540 * Also for some machines (those that use HZ = 1024, in-particular),
541 * there is a LARGE error in the tick size in microseconds.
542
543 * The solution we use is to do the rounding AFTER we convert the
544 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
545 * Instruction wise, this should cost only an additional add with carry
546 * instruction above the way it was done above.
547 */
548 unsigned long
549 timeval_to_jiffies(const struct timeval *value)
550 {
551 unsigned long sec = value->tv_sec;
552 long usec = value->tv_usec;
553
554 if (sec >= MAX_SEC_IN_JIFFIES){
555 sec = MAX_SEC_IN_JIFFIES;
556 usec = 0;
557 }
558 return (((u64)sec * SEC_CONVERSION) +
559 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
560 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
561 }
562 EXPORT_SYMBOL(timeval_to_jiffies);
563
564 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
565 {
566 /*
567 * Convert jiffies to nanoseconds and separate with
568 * one divide.
569 */
570 u64 nsec = (u64)jiffies * TICK_NSEC;
571 long tv_usec;
572
573 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
574 tv_usec /= NSEC_PER_USEC;
575 value->tv_usec = tv_usec;
576 }
577 EXPORT_SYMBOL(jiffies_to_timeval);
578
579 /*
580 * Convert jiffies/jiffies_64 to clock_t and back.
581 */
582 clock_t jiffies_to_clock_t(long x)
583 {
584 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
585 # if HZ < USER_HZ
586 return x * (USER_HZ / HZ);
587 # else
588 return x / (HZ / USER_HZ);
589 # endif
590 #else
591 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
592 #endif
593 }
594 EXPORT_SYMBOL(jiffies_to_clock_t);
595
596 unsigned long clock_t_to_jiffies(unsigned long x)
597 {
598 #if (HZ % USER_HZ)==0
599 if (x >= ~0UL / (HZ / USER_HZ))
600 return ~0UL;
601 return x * (HZ / USER_HZ);
602 #else
603 /* Don't worry about loss of precision here .. */
604 if (x >= ~0UL / HZ * USER_HZ)
605 return ~0UL;
606
607 /* .. but do try to contain it here */
608 return div_u64((u64)x * HZ, USER_HZ);
609 #endif
610 }
611 EXPORT_SYMBOL(clock_t_to_jiffies);
612
613 u64 jiffies_64_to_clock_t(u64 x)
614 {
615 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
616 # if HZ < USER_HZ
617 x = div_u64(x * USER_HZ, HZ);
618 # elif HZ > USER_HZ
619 x = div_u64(x, HZ / USER_HZ);
620 # else
621 /* Nothing to do */
622 # endif
623 #else
624 /*
625 * There are better ways that don't overflow early,
626 * but even this doesn't overflow in hundreds of years
627 * in 64 bits, so..
628 */
629 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
630 #endif
631 return x;
632 }
633 EXPORT_SYMBOL(jiffies_64_to_clock_t);
634
635 u64 nsec_to_clock_t(u64 x)
636 {
637 #if (NSEC_PER_SEC % USER_HZ) == 0
638 return div_u64(x, NSEC_PER_SEC / USER_HZ);
639 #elif (USER_HZ % 512) == 0
640 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
641 #else
642 /*
643 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
644 * overflow after 64.99 years.
645 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
646 */
647 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
648 #endif
649 }
650
651 #if (BITS_PER_LONG < 64)
652 u64 get_jiffies_64(void)
653 {
654 unsigned long seq;
655 u64 ret;
656
657 do {
658 seq = read_seqbegin(&xtime_lock);
659 ret = jiffies_64;
660 } while (read_seqretry(&xtime_lock, seq));
661 return ret;
662 }
663 EXPORT_SYMBOL(get_jiffies_64);
664 #endif
665
666 EXPORT_SYMBOL(jiffies);