]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time.c
Merge branches 'release', 'acpica', 'bugzilla-10224', 'bugzilla-9772', 'bugzilla...
[mirror_ubuntu-artful-kernel.git] / kernel / time.c
1 /*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10 /*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30 #include <linux/module.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/clocksource.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
41
42 #include "timeconst.h"
43
44 /*
45 * The timezone where the local system is located. Used as a default by some
46 * programs who obtain this value by using gettimeofday.
47 */
48 struct timezone sys_tz;
49
50 EXPORT_SYMBOL(sys_tz);
51
52 #ifdef __ARCH_WANT_SYS_TIME
53
54 /*
55 * sys_time() can be implemented in user-level using
56 * sys_gettimeofday(). Is this for backwards compatibility? If so,
57 * why not move it into the appropriate arch directory (for those
58 * architectures that need it).
59 */
60 asmlinkage long sys_time(time_t __user * tloc)
61 {
62 time_t i = get_seconds();
63
64 if (tloc) {
65 if (put_user(i,tloc))
66 i = -EFAULT;
67 }
68 return i;
69 }
70
71 /*
72 * sys_stime() can be implemented in user-level using
73 * sys_settimeofday(). Is this for backwards compatibility? If so,
74 * why not move it into the appropriate arch directory (for those
75 * architectures that need it).
76 */
77
78 asmlinkage long sys_stime(time_t __user *tptr)
79 {
80 struct timespec tv;
81 int err;
82
83 if (get_user(tv.tv_sec, tptr))
84 return -EFAULT;
85
86 tv.tv_nsec = 0;
87
88 err = security_settime(&tv, NULL);
89 if (err)
90 return err;
91
92 do_settimeofday(&tv);
93 return 0;
94 }
95
96 #endif /* __ARCH_WANT_SYS_TIME */
97
98 asmlinkage long sys_gettimeofday(struct timeval __user *tv,
99 struct timezone __user *tz)
100 {
101 if (likely(tv != NULL)) {
102 struct timeval ktv;
103 do_gettimeofday(&ktv);
104 if (copy_to_user(tv, &ktv, sizeof(ktv)))
105 return -EFAULT;
106 }
107 if (unlikely(tz != NULL)) {
108 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
109 return -EFAULT;
110 }
111 return 0;
112 }
113
114 /*
115 * Adjust the time obtained from the CMOS to be UTC time instead of
116 * local time.
117 *
118 * This is ugly, but preferable to the alternatives. Otherwise we
119 * would either need to write a program to do it in /etc/rc (and risk
120 * confusion if the program gets run more than once; it would also be
121 * hard to make the program warp the clock precisely n hours) or
122 * compile in the timezone information into the kernel. Bad, bad....
123 *
124 * - TYT, 1992-01-01
125 *
126 * The best thing to do is to keep the CMOS clock in universal time (UTC)
127 * as real UNIX machines always do it. This avoids all headaches about
128 * daylight saving times and warping kernel clocks.
129 */
130 static inline void warp_clock(void)
131 {
132 write_seqlock_irq(&xtime_lock);
133 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
134 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
135 update_xtime_cache(0);
136 write_sequnlock_irq(&xtime_lock);
137 clock_was_set();
138 }
139
140 /*
141 * In case for some reason the CMOS clock has not already been running
142 * in UTC, but in some local time: The first time we set the timezone,
143 * we will warp the clock so that it is ticking UTC time instead of
144 * local time. Presumably, if someone is setting the timezone then we
145 * are running in an environment where the programs understand about
146 * timezones. This should be done at boot time in the /etc/rc script,
147 * as soon as possible, so that the clock can be set right. Otherwise,
148 * various programs will get confused when the clock gets warped.
149 */
150
151 int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
152 {
153 static int firsttime = 1;
154 int error = 0;
155
156 if (tv && !timespec_valid(tv))
157 return -EINVAL;
158
159 error = security_settime(tv, tz);
160 if (error)
161 return error;
162
163 if (tz) {
164 /* SMP safe, global irq locking makes it work. */
165 sys_tz = *tz;
166 update_vsyscall_tz();
167 if (firsttime) {
168 firsttime = 0;
169 if (!tv)
170 warp_clock();
171 }
172 }
173 if (tv)
174 {
175 /* SMP safe, again the code in arch/foo/time.c should
176 * globally block out interrupts when it runs.
177 */
178 return do_settimeofday(tv);
179 }
180 return 0;
181 }
182
183 asmlinkage long sys_settimeofday(struct timeval __user *tv,
184 struct timezone __user *tz)
185 {
186 struct timeval user_tv;
187 struct timespec new_ts;
188 struct timezone new_tz;
189
190 if (tv) {
191 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
192 return -EFAULT;
193 new_ts.tv_sec = user_tv.tv_sec;
194 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
195 }
196 if (tz) {
197 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
198 return -EFAULT;
199 }
200
201 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
202 }
203
204 asmlinkage long sys_adjtimex(struct timex __user *txc_p)
205 {
206 struct timex txc; /* Local copy of parameter */
207 int ret;
208
209 /* Copy the user data space into the kernel copy
210 * structure. But bear in mind that the structures
211 * may change
212 */
213 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
214 return -EFAULT;
215 ret = do_adjtimex(&txc);
216 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
217 }
218
219 /**
220 * current_fs_time - Return FS time
221 * @sb: Superblock.
222 *
223 * Return the current time truncated to the time granularity supported by
224 * the fs.
225 */
226 struct timespec current_fs_time(struct super_block *sb)
227 {
228 struct timespec now = current_kernel_time();
229 return timespec_trunc(now, sb->s_time_gran);
230 }
231 EXPORT_SYMBOL(current_fs_time);
232
233 /*
234 * Convert jiffies to milliseconds and back.
235 *
236 * Avoid unnecessary multiplications/divisions in the
237 * two most common HZ cases:
238 */
239 unsigned int inline jiffies_to_msecs(const unsigned long j)
240 {
241 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
242 return (MSEC_PER_SEC / HZ) * j;
243 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
244 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
245 #else
246 # if BITS_PER_LONG == 32
247 return ((u64)HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
248 # else
249 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
250 # endif
251 #endif
252 }
253 EXPORT_SYMBOL(jiffies_to_msecs);
254
255 unsigned int inline jiffies_to_usecs(const unsigned long j)
256 {
257 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
258 return (USEC_PER_SEC / HZ) * j;
259 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
260 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
261 #else
262 # if BITS_PER_LONG == 32
263 return ((u64)HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
264 # else
265 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
266 # endif
267 #endif
268 }
269 EXPORT_SYMBOL(jiffies_to_usecs);
270
271 /**
272 * timespec_trunc - Truncate timespec to a granularity
273 * @t: Timespec
274 * @gran: Granularity in ns.
275 *
276 * Truncate a timespec to a granularity. gran must be smaller than a second.
277 * Always rounds down.
278 *
279 * This function should be only used for timestamps returned by
280 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
281 * it doesn't handle the better resolution of the latter.
282 */
283 struct timespec timespec_trunc(struct timespec t, unsigned gran)
284 {
285 /*
286 * Division is pretty slow so avoid it for common cases.
287 * Currently current_kernel_time() never returns better than
288 * jiffies resolution. Exploit that.
289 */
290 if (gran <= jiffies_to_usecs(1) * 1000) {
291 /* nothing */
292 } else if (gran == 1000000000) {
293 t.tv_nsec = 0;
294 } else {
295 t.tv_nsec -= t.tv_nsec % gran;
296 }
297 return t;
298 }
299 EXPORT_SYMBOL(timespec_trunc);
300
301 #ifndef CONFIG_GENERIC_TIME
302 /*
303 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
304 * and therefore only yields usec accuracy
305 */
306 void getnstimeofday(struct timespec *tv)
307 {
308 struct timeval x;
309
310 do_gettimeofday(&x);
311 tv->tv_sec = x.tv_sec;
312 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
313 }
314 EXPORT_SYMBOL_GPL(getnstimeofday);
315 #endif
316
317 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
318 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
319 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
320 *
321 * [For the Julian calendar (which was used in Russia before 1917,
322 * Britain & colonies before 1752, anywhere else before 1582,
323 * and is still in use by some communities) leave out the
324 * -year/100+year/400 terms, and add 10.]
325 *
326 * This algorithm was first published by Gauss (I think).
327 *
328 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
329 * machines where long is 32-bit! (However, as time_t is signed, we
330 * will already get problems at other places on 2038-01-19 03:14:08)
331 */
332 unsigned long
333 mktime(const unsigned int year0, const unsigned int mon0,
334 const unsigned int day, const unsigned int hour,
335 const unsigned int min, const unsigned int sec)
336 {
337 unsigned int mon = mon0, year = year0;
338
339 /* 1..12 -> 11,12,1..10 */
340 if (0 >= (int) (mon -= 2)) {
341 mon += 12; /* Puts Feb last since it has leap day */
342 year -= 1;
343 }
344
345 return ((((unsigned long)
346 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
347 year*365 - 719499
348 )*24 + hour /* now have hours */
349 )*60 + min /* now have minutes */
350 )*60 + sec; /* finally seconds */
351 }
352
353 EXPORT_SYMBOL(mktime);
354
355 /**
356 * set_normalized_timespec - set timespec sec and nsec parts and normalize
357 *
358 * @ts: pointer to timespec variable to be set
359 * @sec: seconds to set
360 * @nsec: nanoseconds to set
361 *
362 * Set seconds and nanoseconds field of a timespec variable and
363 * normalize to the timespec storage format
364 *
365 * Note: The tv_nsec part is always in the range of
366 * 0 <= tv_nsec < NSEC_PER_SEC
367 * For negative values only the tv_sec field is negative !
368 */
369 void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
370 {
371 while (nsec >= NSEC_PER_SEC) {
372 nsec -= NSEC_PER_SEC;
373 ++sec;
374 }
375 while (nsec < 0) {
376 nsec += NSEC_PER_SEC;
377 --sec;
378 }
379 ts->tv_sec = sec;
380 ts->tv_nsec = nsec;
381 }
382 EXPORT_SYMBOL(set_normalized_timespec);
383
384 /**
385 * ns_to_timespec - Convert nanoseconds to timespec
386 * @nsec: the nanoseconds value to be converted
387 *
388 * Returns the timespec representation of the nsec parameter.
389 */
390 struct timespec ns_to_timespec(const s64 nsec)
391 {
392 struct timespec ts;
393
394 if (!nsec)
395 return (struct timespec) {0, 0};
396
397 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
398 if (unlikely(nsec < 0))
399 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
400
401 return ts;
402 }
403 EXPORT_SYMBOL(ns_to_timespec);
404
405 /**
406 * ns_to_timeval - Convert nanoseconds to timeval
407 * @nsec: the nanoseconds value to be converted
408 *
409 * Returns the timeval representation of the nsec parameter.
410 */
411 struct timeval ns_to_timeval(const s64 nsec)
412 {
413 struct timespec ts = ns_to_timespec(nsec);
414 struct timeval tv;
415
416 tv.tv_sec = ts.tv_sec;
417 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
418
419 return tv;
420 }
421 EXPORT_SYMBOL(ns_to_timeval);
422
423 /*
424 * When we convert to jiffies then we interpret incoming values
425 * the following way:
426 *
427 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
428 *
429 * - 'too large' values [that would result in larger than
430 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
431 *
432 * - all other values are converted to jiffies by either multiplying
433 * the input value by a factor or dividing it with a factor
434 *
435 * We must also be careful about 32-bit overflows.
436 */
437 unsigned long msecs_to_jiffies(const unsigned int m)
438 {
439 /*
440 * Negative value, means infinite timeout:
441 */
442 if ((int)m < 0)
443 return MAX_JIFFY_OFFSET;
444
445 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
446 /*
447 * HZ is equal to or smaller than 1000, and 1000 is a nice
448 * round multiple of HZ, divide with the factor between them,
449 * but round upwards:
450 */
451 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
452 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
453 /*
454 * HZ is larger than 1000, and HZ is a nice round multiple of
455 * 1000 - simply multiply with the factor between them.
456 *
457 * But first make sure the multiplication result cannot
458 * overflow:
459 */
460 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
461 return MAX_JIFFY_OFFSET;
462
463 return m * (HZ / MSEC_PER_SEC);
464 #else
465 /*
466 * Generic case - multiply, round and divide. But first
467 * check that if we are doing a net multiplication, that
468 * we wouldn't overflow:
469 */
470 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
471 return MAX_JIFFY_OFFSET;
472
473 return ((u64)MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
474 >> MSEC_TO_HZ_SHR32;
475 #endif
476 }
477 EXPORT_SYMBOL(msecs_to_jiffies);
478
479 unsigned long usecs_to_jiffies(const unsigned int u)
480 {
481 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
482 return MAX_JIFFY_OFFSET;
483 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
484 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
485 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
486 return u * (HZ / USEC_PER_SEC);
487 #else
488 return ((u64)USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
489 >> USEC_TO_HZ_SHR32;
490 #endif
491 }
492 EXPORT_SYMBOL(usecs_to_jiffies);
493
494 /*
495 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
496 * that a remainder subtract here would not do the right thing as the
497 * resolution values don't fall on second boundries. I.e. the line:
498 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
499 *
500 * Rather, we just shift the bits off the right.
501 *
502 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
503 * value to a scaled second value.
504 */
505 unsigned long
506 timespec_to_jiffies(const struct timespec *value)
507 {
508 unsigned long sec = value->tv_sec;
509 long nsec = value->tv_nsec + TICK_NSEC - 1;
510
511 if (sec >= MAX_SEC_IN_JIFFIES){
512 sec = MAX_SEC_IN_JIFFIES;
513 nsec = 0;
514 }
515 return (((u64)sec * SEC_CONVERSION) +
516 (((u64)nsec * NSEC_CONVERSION) >>
517 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
518
519 }
520 EXPORT_SYMBOL(timespec_to_jiffies);
521
522 void
523 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
524 {
525 /*
526 * Convert jiffies to nanoseconds and separate with
527 * one divide.
528 */
529 u64 nsec = (u64)jiffies * TICK_NSEC;
530 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
531 }
532 EXPORT_SYMBOL(jiffies_to_timespec);
533
534 /* Same for "timeval"
535 *
536 * Well, almost. The problem here is that the real system resolution is
537 * in nanoseconds and the value being converted is in micro seconds.
538 * Also for some machines (those that use HZ = 1024, in-particular),
539 * there is a LARGE error in the tick size in microseconds.
540
541 * The solution we use is to do the rounding AFTER we convert the
542 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
543 * Instruction wise, this should cost only an additional add with carry
544 * instruction above the way it was done above.
545 */
546 unsigned long
547 timeval_to_jiffies(const struct timeval *value)
548 {
549 unsigned long sec = value->tv_sec;
550 long usec = value->tv_usec;
551
552 if (sec >= MAX_SEC_IN_JIFFIES){
553 sec = MAX_SEC_IN_JIFFIES;
554 usec = 0;
555 }
556 return (((u64)sec * SEC_CONVERSION) +
557 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
558 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
559 }
560 EXPORT_SYMBOL(timeval_to_jiffies);
561
562 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
563 {
564 /*
565 * Convert jiffies to nanoseconds and separate with
566 * one divide.
567 */
568 u64 nsec = (u64)jiffies * TICK_NSEC;
569 long tv_usec;
570
571 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
572 tv_usec /= NSEC_PER_USEC;
573 value->tv_usec = tv_usec;
574 }
575 EXPORT_SYMBOL(jiffies_to_timeval);
576
577 /*
578 * Convert jiffies/jiffies_64 to clock_t and back.
579 */
580 clock_t jiffies_to_clock_t(long x)
581 {
582 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
583 # if HZ < USER_HZ
584 return x * (USER_HZ / HZ);
585 # else
586 return x / (HZ / USER_HZ);
587 # endif
588 #else
589 u64 tmp = (u64)x * TICK_NSEC;
590 do_div(tmp, (NSEC_PER_SEC / USER_HZ));
591 return (long)tmp;
592 #endif
593 }
594 EXPORT_SYMBOL(jiffies_to_clock_t);
595
596 unsigned long clock_t_to_jiffies(unsigned long x)
597 {
598 #if (HZ % USER_HZ)==0
599 if (x >= ~0UL / (HZ / USER_HZ))
600 return ~0UL;
601 return x * (HZ / USER_HZ);
602 #else
603 u64 jif;
604
605 /* Don't worry about loss of precision here .. */
606 if (x >= ~0UL / HZ * USER_HZ)
607 return ~0UL;
608
609 /* .. but do try to contain it here */
610 jif = x * (u64) HZ;
611 do_div(jif, USER_HZ);
612 return jif;
613 #endif
614 }
615 EXPORT_SYMBOL(clock_t_to_jiffies);
616
617 u64 jiffies_64_to_clock_t(u64 x)
618 {
619 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
620 # if HZ < USER_HZ
621 x *= USER_HZ;
622 do_div(x, HZ);
623 # elif HZ > USER_HZ
624 do_div(x, HZ / USER_HZ);
625 # else
626 /* Nothing to do */
627 # endif
628 #else
629 /*
630 * There are better ways that don't overflow early,
631 * but even this doesn't overflow in hundreds of years
632 * in 64 bits, so..
633 */
634 x *= TICK_NSEC;
635 do_div(x, (NSEC_PER_SEC / USER_HZ));
636 #endif
637 return x;
638 }
639 EXPORT_SYMBOL(jiffies_64_to_clock_t);
640
641 u64 nsec_to_clock_t(u64 x)
642 {
643 #if (NSEC_PER_SEC % USER_HZ) == 0
644 do_div(x, (NSEC_PER_SEC / USER_HZ));
645 #elif (USER_HZ % 512) == 0
646 x *= USER_HZ/512;
647 do_div(x, (NSEC_PER_SEC / 512));
648 #else
649 /*
650 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
651 * overflow after 64.99 years.
652 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
653 */
654 x *= 9;
655 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
656 USER_HZ));
657 #endif
658 return x;
659 }
660
661 #if (BITS_PER_LONG < 64)
662 u64 get_jiffies_64(void)
663 {
664 unsigned long seq;
665 u64 ret;
666
667 do {
668 seq = read_seqbegin(&xtime_lock);
669 ret = jiffies_64;
670 } while (read_seqretry(&xtime_lock, seq));
671 return ret;
672 }
673 EXPORT_SYMBOL(get_jiffies_64);
674 #endif
675
676 EXPORT_SYMBOL(jiffies);