]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/timer.c
stifb: check fb_alloc_cmap return value and handle failure properly
[mirror_ubuntu-artful-kernel.git] / kernel / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43 #include <asm/div64.h>
44 #include <asm/timex.h>
45 #include <asm/io.h>
46
47 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
48
49 EXPORT_SYMBOL(jiffies_64);
50
51 /*
52 * per-CPU timer vector definitions:
53 */
54 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
55 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
56 #define TVN_SIZE (1 << TVN_BITS)
57 #define TVR_SIZE (1 << TVR_BITS)
58 #define TVN_MASK (TVN_SIZE - 1)
59 #define TVR_MASK (TVR_SIZE - 1)
60
61 struct tvec {
62 struct list_head vec[TVN_SIZE];
63 };
64
65 struct tvec_root {
66 struct list_head vec[TVR_SIZE];
67 };
68
69 struct tvec_base {
70 spinlock_t lock;
71 struct timer_list *running_timer;
72 unsigned long timer_jiffies;
73 struct tvec_root tv1;
74 struct tvec tv2;
75 struct tvec tv3;
76 struct tvec tv4;
77 struct tvec tv5;
78 } ____cacheline_aligned;
79
80 struct tvec_base boot_tvec_bases;
81 EXPORT_SYMBOL(boot_tvec_bases);
82 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
83
84 /*
85 * Note that all tvec_bases are 2 byte aligned and lower bit of
86 * base in timer_list is guaranteed to be zero. Use the LSB for
87 * the new flag to indicate whether the timer is deferrable
88 */
89 #define TBASE_DEFERRABLE_FLAG (0x1)
90
91 /* Functions below help us manage 'deferrable' flag */
92 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
93 {
94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
95 }
96
97 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
98 {
99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
100 }
101
102 static inline void timer_set_deferrable(struct timer_list *timer)
103 {
104 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
105 TBASE_DEFERRABLE_FLAG));
106 }
107
108 static inline void
109 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
110 {
111 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
112 tbase_get_deferrable(timer->base));
113 }
114
115 static unsigned long round_jiffies_common(unsigned long j, int cpu,
116 bool force_up)
117 {
118 int rem;
119 unsigned long original = j;
120
121 /*
122 * We don't want all cpus firing their timers at once hitting the
123 * same lock or cachelines, so we skew each extra cpu with an extra
124 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
125 * already did this.
126 * The skew is done by adding 3*cpunr, then round, then subtract this
127 * extra offset again.
128 */
129 j += cpu * 3;
130
131 rem = j % HZ;
132
133 /*
134 * If the target jiffie is just after a whole second (which can happen
135 * due to delays of the timer irq, long irq off times etc etc) then
136 * we should round down to the whole second, not up. Use 1/4th second
137 * as cutoff for this rounding as an extreme upper bound for this.
138 * But never round down if @force_up is set.
139 */
140 if (rem < HZ/4 && !force_up) /* round down */
141 j = j - rem;
142 else /* round up */
143 j = j - rem + HZ;
144
145 /* now that we have rounded, subtract the extra skew again */
146 j -= cpu * 3;
147
148 if (j <= jiffies) /* rounding ate our timeout entirely; */
149 return original;
150 return j;
151 }
152
153 /**
154 * __round_jiffies - function to round jiffies to a full second
155 * @j: the time in (absolute) jiffies that should be rounded
156 * @cpu: the processor number on which the timeout will happen
157 *
158 * __round_jiffies() rounds an absolute time in the future (in jiffies)
159 * up or down to (approximately) full seconds. This is useful for timers
160 * for which the exact time they fire does not matter too much, as long as
161 * they fire approximately every X seconds.
162 *
163 * By rounding these timers to whole seconds, all such timers will fire
164 * at the same time, rather than at various times spread out. The goal
165 * of this is to have the CPU wake up less, which saves power.
166 *
167 * The exact rounding is skewed for each processor to avoid all
168 * processors firing at the exact same time, which could lead
169 * to lock contention or spurious cache line bouncing.
170 *
171 * The return value is the rounded version of the @j parameter.
172 */
173 unsigned long __round_jiffies(unsigned long j, int cpu)
174 {
175 return round_jiffies_common(j, cpu, false);
176 }
177 EXPORT_SYMBOL_GPL(__round_jiffies);
178
179 /**
180 * __round_jiffies_relative - function to round jiffies to a full second
181 * @j: the time in (relative) jiffies that should be rounded
182 * @cpu: the processor number on which the timeout will happen
183 *
184 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
185 * up or down to (approximately) full seconds. This is useful for timers
186 * for which the exact time they fire does not matter too much, as long as
187 * they fire approximately every X seconds.
188 *
189 * By rounding these timers to whole seconds, all such timers will fire
190 * at the same time, rather than at various times spread out. The goal
191 * of this is to have the CPU wake up less, which saves power.
192 *
193 * The exact rounding is skewed for each processor to avoid all
194 * processors firing at the exact same time, which could lead
195 * to lock contention or spurious cache line bouncing.
196 *
197 * The return value is the rounded version of the @j parameter.
198 */
199 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
200 {
201 unsigned long j0 = jiffies;
202
203 /* Use j0 because jiffies might change while we run */
204 return round_jiffies_common(j + j0, cpu, false) - j0;
205 }
206 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
207
208 /**
209 * round_jiffies - function to round jiffies to a full second
210 * @j: the time in (absolute) jiffies that should be rounded
211 *
212 * round_jiffies() rounds an absolute time in the future (in jiffies)
213 * up or down to (approximately) full seconds. This is useful for timers
214 * for which the exact time they fire does not matter too much, as long as
215 * they fire approximately every X seconds.
216 *
217 * By rounding these timers to whole seconds, all such timers will fire
218 * at the same time, rather than at various times spread out. The goal
219 * of this is to have the CPU wake up less, which saves power.
220 *
221 * The return value is the rounded version of the @j parameter.
222 */
223 unsigned long round_jiffies(unsigned long j)
224 {
225 return round_jiffies_common(j, raw_smp_processor_id(), false);
226 }
227 EXPORT_SYMBOL_GPL(round_jiffies);
228
229 /**
230 * round_jiffies_relative - function to round jiffies to a full second
231 * @j: the time in (relative) jiffies that should be rounded
232 *
233 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
234 * up or down to (approximately) full seconds. This is useful for timers
235 * for which the exact time they fire does not matter too much, as long as
236 * they fire approximately every X seconds.
237 *
238 * By rounding these timers to whole seconds, all such timers will fire
239 * at the same time, rather than at various times spread out. The goal
240 * of this is to have the CPU wake up less, which saves power.
241 *
242 * The return value is the rounded version of the @j parameter.
243 */
244 unsigned long round_jiffies_relative(unsigned long j)
245 {
246 return __round_jiffies_relative(j, raw_smp_processor_id());
247 }
248 EXPORT_SYMBOL_GPL(round_jiffies_relative);
249
250 /**
251 * __round_jiffies_up - function to round jiffies up to a full second
252 * @j: the time in (absolute) jiffies that should be rounded
253 * @cpu: the processor number on which the timeout will happen
254 *
255 * This is the same as __round_jiffies() except that it will never
256 * round down. This is useful for timeouts for which the exact time
257 * of firing does not matter too much, as long as they don't fire too
258 * early.
259 */
260 unsigned long __round_jiffies_up(unsigned long j, int cpu)
261 {
262 return round_jiffies_common(j, cpu, true);
263 }
264 EXPORT_SYMBOL_GPL(__round_jiffies_up);
265
266 /**
267 * __round_jiffies_up_relative - function to round jiffies up to a full second
268 * @j: the time in (relative) jiffies that should be rounded
269 * @cpu: the processor number on which the timeout will happen
270 *
271 * This is the same as __round_jiffies_relative() except that it will never
272 * round down. This is useful for timeouts for which the exact time
273 * of firing does not matter too much, as long as they don't fire too
274 * early.
275 */
276 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
277 {
278 unsigned long j0 = jiffies;
279
280 /* Use j0 because jiffies might change while we run */
281 return round_jiffies_common(j + j0, cpu, true) - j0;
282 }
283 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
284
285 /**
286 * round_jiffies_up - function to round jiffies up to a full second
287 * @j: the time in (absolute) jiffies that should be rounded
288 *
289 * This is the same as round_jiffies() except that it will never
290 * round down. This is useful for timeouts for which the exact time
291 * of firing does not matter too much, as long as they don't fire too
292 * early.
293 */
294 unsigned long round_jiffies_up(unsigned long j)
295 {
296 return round_jiffies_common(j, raw_smp_processor_id(), true);
297 }
298 EXPORT_SYMBOL_GPL(round_jiffies_up);
299
300 /**
301 * round_jiffies_up_relative - function to round jiffies up to a full second
302 * @j: the time in (relative) jiffies that should be rounded
303 *
304 * This is the same as round_jiffies_relative() except that it will never
305 * round down. This is useful for timeouts for which the exact time
306 * of firing does not matter too much, as long as they don't fire too
307 * early.
308 */
309 unsigned long round_jiffies_up_relative(unsigned long j)
310 {
311 return __round_jiffies_up_relative(j, raw_smp_processor_id());
312 }
313 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
314
315
316 static inline void set_running_timer(struct tvec_base *base,
317 struct timer_list *timer)
318 {
319 #ifdef CONFIG_SMP
320 base->running_timer = timer;
321 #endif
322 }
323
324 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
325 {
326 unsigned long expires = timer->expires;
327 unsigned long idx = expires - base->timer_jiffies;
328 struct list_head *vec;
329
330 if (idx < TVR_SIZE) {
331 int i = expires & TVR_MASK;
332 vec = base->tv1.vec + i;
333 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
334 int i = (expires >> TVR_BITS) & TVN_MASK;
335 vec = base->tv2.vec + i;
336 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
337 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
338 vec = base->tv3.vec + i;
339 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
340 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
341 vec = base->tv4.vec + i;
342 } else if ((signed long) idx < 0) {
343 /*
344 * Can happen if you add a timer with expires == jiffies,
345 * or you set a timer to go off in the past
346 */
347 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
348 } else {
349 int i;
350 /* If the timeout is larger than 0xffffffff on 64-bit
351 * architectures then we use the maximum timeout:
352 */
353 if (idx > 0xffffffffUL) {
354 idx = 0xffffffffUL;
355 expires = idx + base->timer_jiffies;
356 }
357 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
358 vec = base->tv5.vec + i;
359 }
360 /*
361 * Timers are FIFO:
362 */
363 list_add_tail(&timer->entry, vec);
364 }
365
366 #ifdef CONFIG_TIMER_STATS
367 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
368 {
369 if (timer->start_site)
370 return;
371
372 timer->start_site = addr;
373 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
374 timer->start_pid = current->pid;
375 }
376
377 static void timer_stats_account_timer(struct timer_list *timer)
378 {
379 unsigned int flag = 0;
380
381 if (unlikely(tbase_get_deferrable(timer->base)))
382 flag |= TIMER_STATS_FLAG_DEFERRABLE;
383
384 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
385 timer->function, timer->start_comm, flag);
386 }
387
388 #else
389 static void timer_stats_account_timer(struct timer_list *timer) {}
390 #endif
391
392 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
393
394 static struct debug_obj_descr timer_debug_descr;
395
396 /*
397 * fixup_init is called when:
398 * - an active object is initialized
399 */
400 static int timer_fixup_init(void *addr, enum debug_obj_state state)
401 {
402 struct timer_list *timer = addr;
403
404 switch (state) {
405 case ODEBUG_STATE_ACTIVE:
406 del_timer_sync(timer);
407 debug_object_init(timer, &timer_debug_descr);
408 return 1;
409 default:
410 return 0;
411 }
412 }
413
414 /*
415 * fixup_activate is called when:
416 * - an active object is activated
417 * - an unknown object is activated (might be a statically initialized object)
418 */
419 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
420 {
421 struct timer_list *timer = addr;
422
423 switch (state) {
424
425 case ODEBUG_STATE_NOTAVAILABLE:
426 /*
427 * This is not really a fixup. The timer was
428 * statically initialized. We just make sure that it
429 * is tracked in the object tracker.
430 */
431 if (timer->entry.next == NULL &&
432 timer->entry.prev == TIMER_ENTRY_STATIC) {
433 debug_object_init(timer, &timer_debug_descr);
434 debug_object_activate(timer, &timer_debug_descr);
435 return 0;
436 } else {
437 WARN_ON_ONCE(1);
438 }
439 return 0;
440
441 case ODEBUG_STATE_ACTIVE:
442 WARN_ON(1);
443
444 default:
445 return 0;
446 }
447 }
448
449 /*
450 * fixup_free is called when:
451 * - an active object is freed
452 */
453 static int timer_fixup_free(void *addr, enum debug_obj_state state)
454 {
455 struct timer_list *timer = addr;
456
457 switch (state) {
458 case ODEBUG_STATE_ACTIVE:
459 del_timer_sync(timer);
460 debug_object_free(timer, &timer_debug_descr);
461 return 1;
462 default:
463 return 0;
464 }
465 }
466
467 static struct debug_obj_descr timer_debug_descr = {
468 .name = "timer_list",
469 .fixup_init = timer_fixup_init,
470 .fixup_activate = timer_fixup_activate,
471 .fixup_free = timer_fixup_free,
472 };
473
474 static inline void debug_timer_init(struct timer_list *timer)
475 {
476 debug_object_init(timer, &timer_debug_descr);
477 }
478
479 static inline void debug_timer_activate(struct timer_list *timer)
480 {
481 debug_object_activate(timer, &timer_debug_descr);
482 }
483
484 static inline void debug_timer_deactivate(struct timer_list *timer)
485 {
486 debug_object_deactivate(timer, &timer_debug_descr);
487 }
488
489 static inline void debug_timer_free(struct timer_list *timer)
490 {
491 debug_object_free(timer, &timer_debug_descr);
492 }
493
494 static void __init_timer(struct timer_list *timer,
495 const char *name,
496 struct lock_class_key *key);
497
498 void init_timer_on_stack_key(struct timer_list *timer,
499 const char *name,
500 struct lock_class_key *key)
501 {
502 debug_object_init_on_stack(timer, &timer_debug_descr);
503 __init_timer(timer, name, key);
504 }
505 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
506
507 void destroy_timer_on_stack(struct timer_list *timer)
508 {
509 debug_object_free(timer, &timer_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
512
513 #else
514 static inline void debug_timer_init(struct timer_list *timer) { }
515 static inline void debug_timer_activate(struct timer_list *timer) { }
516 static inline void debug_timer_deactivate(struct timer_list *timer) { }
517 #endif
518
519 static void __init_timer(struct timer_list *timer,
520 const char *name,
521 struct lock_class_key *key)
522 {
523 timer->entry.next = NULL;
524 timer->base = __raw_get_cpu_var(tvec_bases);
525 #ifdef CONFIG_TIMER_STATS
526 timer->start_site = NULL;
527 timer->start_pid = -1;
528 memset(timer->start_comm, 0, TASK_COMM_LEN);
529 #endif
530 lockdep_init_map(&timer->lockdep_map, name, key, 0);
531 }
532
533 /**
534 * init_timer - initialize a timer.
535 * @timer: the timer to be initialized
536 *
537 * init_timer() must be done to a timer prior calling *any* of the
538 * other timer functions.
539 */
540 void init_timer_key(struct timer_list *timer,
541 const char *name,
542 struct lock_class_key *key)
543 {
544 debug_timer_init(timer);
545 __init_timer(timer, name, key);
546 }
547 EXPORT_SYMBOL(init_timer_key);
548
549 void init_timer_deferrable_key(struct timer_list *timer,
550 const char *name,
551 struct lock_class_key *key)
552 {
553 init_timer_key(timer, name, key);
554 timer_set_deferrable(timer);
555 }
556 EXPORT_SYMBOL(init_timer_deferrable_key);
557
558 static inline void detach_timer(struct timer_list *timer,
559 int clear_pending)
560 {
561 struct list_head *entry = &timer->entry;
562
563 debug_timer_deactivate(timer);
564
565 __list_del(entry->prev, entry->next);
566 if (clear_pending)
567 entry->next = NULL;
568 entry->prev = LIST_POISON2;
569 }
570
571 /*
572 * We are using hashed locking: holding per_cpu(tvec_bases).lock
573 * means that all timers which are tied to this base via timer->base are
574 * locked, and the base itself is locked too.
575 *
576 * So __run_timers/migrate_timers can safely modify all timers which could
577 * be found on ->tvX lists.
578 *
579 * When the timer's base is locked, and the timer removed from list, it is
580 * possible to set timer->base = NULL and drop the lock: the timer remains
581 * locked.
582 */
583 static struct tvec_base *lock_timer_base(struct timer_list *timer,
584 unsigned long *flags)
585 __acquires(timer->base->lock)
586 {
587 struct tvec_base *base;
588
589 for (;;) {
590 struct tvec_base *prelock_base = timer->base;
591 base = tbase_get_base(prelock_base);
592 if (likely(base != NULL)) {
593 spin_lock_irqsave(&base->lock, *flags);
594 if (likely(prelock_base == timer->base))
595 return base;
596 /* The timer has migrated to another CPU */
597 spin_unlock_irqrestore(&base->lock, *flags);
598 }
599 cpu_relax();
600 }
601 }
602
603 static inline int
604 __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
605 {
606 struct tvec_base *base, *new_base;
607 unsigned long flags;
608 int ret;
609
610 ret = 0;
611
612 timer_stats_timer_set_start_info(timer);
613 BUG_ON(!timer->function);
614
615 base = lock_timer_base(timer, &flags);
616
617 if (timer_pending(timer)) {
618 detach_timer(timer, 0);
619 ret = 1;
620 } else {
621 if (pending_only)
622 goto out_unlock;
623 }
624
625 debug_timer_activate(timer);
626
627 new_base = __get_cpu_var(tvec_bases);
628
629 if (base != new_base) {
630 /*
631 * We are trying to schedule the timer on the local CPU.
632 * However we can't change timer's base while it is running,
633 * otherwise del_timer_sync() can't detect that the timer's
634 * handler yet has not finished. This also guarantees that
635 * the timer is serialized wrt itself.
636 */
637 if (likely(base->running_timer != timer)) {
638 /* See the comment in lock_timer_base() */
639 timer_set_base(timer, NULL);
640 spin_unlock(&base->lock);
641 base = new_base;
642 spin_lock(&base->lock);
643 timer_set_base(timer, base);
644 }
645 }
646
647 timer->expires = expires;
648 internal_add_timer(base, timer);
649
650 out_unlock:
651 spin_unlock_irqrestore(&base->lock, flags);
652
653 return ret;
654 }
655
656 /**
657 * mod_timer_pending - modify a pending timer's timeout
658 * @timer: the pending timer to be modified
659 * @expires: new timeout in jiffies
660 *
661 * mod_timer_pending() is the same for pending timers as mod_timer(),
662 * but will not re-activate and modify already deleted timers.
663 *
664 * It is useful for unserialized use of timers.
665 */
666 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
667 {
668 return __mod_timer(timer, expires, true);
669 }
670 EXPORT_SYMBOL(mod_timer_pending);
671
672 /**
673 * mod_timer - modify a timer's timeout
674 * @timer: the timer to be modified
675 * @expires: new timeout in jiffies
676 *
677 * mod_timer() is a more efficient way to update the expire field of an
678 * active timer (if the timer is inactive it will be activated)
679 *
680 * mod_timer(timer, expires) is equivalent to:
681 *
682 * del_timer(timer); timer->expires = expires; add_timer(timer);
683 *
684 * Note that if there are multiple unserialized concurrent users of the
685 * same timer, then mod_timer() is the only safe way to modify the timeout,
686 * since add_timer() cannot modify an already running timer.
687 *
688 * The function returns whether it has modified a pending timer or not.
689 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
690 * active timer returns 1.)
691 */
692 int mod_timer(struct timer_list *timer, unsigned long expires)
693 {
694 /*
695 * This is a common optimization triggered by the
696 * networking code - if the timer is re-modified
697 * to be the same thing then just return:
698 */
699 if (timer->expires == expires && timer_pending(timer))
700 return 1;
701
702 return __mod_timer(timer, expires, false);
703 }
704 EXPORT_SYMBOL(mod_timer);
705
706 /**
707 * add_timer - start a timer
708 * @timer: the timer to be added
709 *
710 * The kernel will do a ->function(->data) callback from the
711 * timer interrupt at the ->expires point in the future. The
712 * current time is 'jiffies'.
713 *
714 * The timer's ->expires, ->function (and if the handler uses it, ->data)
715 * fields must be set prior calling this function.
716 *
717 * Timers with an ->expires field in the past will be executed in the next
718 * timer tick.
719 */
720 void add_timer(struct timer_list *timer)
721 {
722 BUG_ON(timer_pending(timer));
723 mod_timer(timer, timer->expires);
724 }
725 EXPORT_SYMBOL(add_timer);
726
727 /**
728 * add_timer_on - start a timer on a particular CPU
729 * @timer: the timer to be added
730 * @cpu: the CPU to start it on
731 *
732 * This is not very scalable on SMP. Double adds are not possible.
733 */
734 void add_timer_on(struct timer_list *timer, int cpu)
735 {
736 struct tvec_base *base = per_cpu(tvec_bases, cpu);
737 unsigned long flags;
738
739 timer_stats_timer_set_start_info(timer);
740 BUG_ON(timer_pending(timer) || !timer->function);
741 spin_lock_irqsave(&base->lock, flags);
742 timer_set_base(timer, base);
743 debug_timer_activate(timer);
744 internal_add_timer(base, timer);
745 /*
746 * Check whether the other CPU is idle and needs to be
747 * triggered to reevaluate the timer wheel when nohz is
748 * active. We are protected against the other CPU fiddling
749 * with the timer by holding the timer base lock. This also
750 * makes sure that a CPU on the way to idle can not evaluate
751 * the timer wheel.
752 */
753 wake_up_idle_cpu(cpu);
754 spin_unlock_irqrestore(&base->lock, flags);
755 }
756
757 /**
758 * del_timer - deactive a timer.
759 * @timer: the timer to be deactivated
760 *
761 * del_timer() deactivates a timer - this works on both active and inactive
762 * timers.
763 *
764 * The function returns whether it has deactivated a pending timer or not.
765 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
766 * active timer returns 1.)
767 */
768 int del_timer(struct timer_list *timer)
769 {
770 struct tvec_base *base;
771 unsigned long flags;
772 int ret = 0;
773
774 timer_stats_timer_clear_start_info(timer);
775 if (timer_pending(timer)) {
776 base = lock_timer_base(timer, &flags);
777 if (timer_pending(timer)) {
778 detach_timer(timer, 1);
779 ret = 1;
780 }
781 spin_unlock_irqrestore(&base->lock, flags);
782 }
783
784 return ret;
785 }
786 EXPORT_SYMBOL(del_timer);
787
788 #ifdef CONFIG_SMP
789 /**
790 * try_to_del_timer_sync - Try to deactivate a timer
791 * @timer: timer do del
792 *
793 * This function tries to deactivate a timer. Upon successful (ret >= 0)
794 * exit the timer is not queued and the handler is not running on any CPU.
795 *
796 * It must not be called from interrupt contexts.
797 */
798 int try_to_del_timer_sync(struct timer_list *timer)
799 {
800 struct tvec_base *base;
801 unsigned long flags;
802 int ret = -1;
803
804 base = lock_timer_base(timer, &flags);
805
806 if (base->running_timer == timer)
807 goto out;
808
809 ret = 0;
810 if (timer_pending(timer)) {
811 detach_timer(timer, 1);
812 ret = 1;
813 }
814 out:
815 spin_unlock_irqrestore(&base->lock, flags);
816
817 return ret;
818 }
819 EXPORT_SYMBOL(try_to_del_timer_sync);
820
821 /**
822 * del_timer_sync - deactivate a timer and wait for the handler to finish.
823 * @timer: the timer to be deactivated
824 *
825 * This function only differs from del_timer() on SMP: besides deactivating
826 * the timer it also makes sure the handler has finished executing on other
827 * CPUs.
828 *
829 * Synchronization rules: Callers must prevent restarting of the timer,
830 * otherwise this function is meaningless. It must not be called from
831 * interrupt contexts. The caller must not hold locks which would prevent
832 * completion of the timer's handler. The timer's handler must not call
833 * add_timer_on(). Upon exit the timer is not queued and the handler is
834 * not running on any CPU.
835 *
836 * The function returns whether it has deactivated a pending timer or not.
837 */
838 int del_timer_sync(struct timer_list *timer)
839 {
840 #ifdef CONFIG_LOCKDEP
841 unsigned long flags;
842
843 local_irq_save(flags);
844 lock_map_acquire(&timer->lockdep_map);
845 lock_map_release(&timer->lockdep_map);
846 local_irq_restore(flags);
847 #endif
848
849 for (;;) {
850 int ret = try_to_del_timer_sync(timer);
851 if (ret >= 0)
852 return ret;
853 cpu_relax();
854 }
855 }
856 EXPORT_SYMBOL(del_timer_sync);
857 #endif
858
859 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
860 {
861 /* cascade all the timers from tv up one level */
862 struct timer_list *timer, *tmp;
863 struct list_head tv_list;
864
865 list_replace_init(tv->vec + index, &tv_list);
866
867 /*
868 * We are removing _all_ timers from the list, so we
869 * don't have to detach them individually.
870 */
871 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
872 BUG_ON(tbase_get_base(timer->base) != base);
873 internal_add_timer(base, timer);
874 }
875
876 return index;
877 }
878
879 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
880
881 /**
882 * __run_timers - run all expired timers (if any) on this CPU.
883 * @base: the timer vector to be processed.
884 *
885 * This function cascades all vectors and executes all expired timer
886 * vectors.
887 */
888 static inline void __run_timers(struct tvec_base *base)
889 {
890 struct timer_list *timer;
891
892 spin_lock_irq(&base->lock);
893 while (time_after_eq(jiffies, base->timer_jiffies)) {
894 struct list_head work_list;
895 struct list_head *head = &work_list;
896 int index = base->timer_jiffies & TVR_MASK;
897
898 /*
899 * Cascade timers:
900 */
901 if (!index &&
902 (!cascade(base, &base->tv2, INDEX(0))) &&
903 (!cascade(base, &base->tv3, INDEX(1))) &&
904 !cascade(base, &base->tv4, INDEX(2)))
905 cascade(base, &base->tv5, INDEX(3));
906 ++base->timer_jiffies;
907 list_replace_init(base->tv1.vec + index, &work_list);
908 while (!list_empty(head)) {
909 void (*fn)(unsigned long);
910 unsigned long data;
911
912 timer = list_first_entry(head, struct timer_list,entry);
913 fn = timer->function;
914 data = timer->data;
915
916 timer_stats_account_timer(timer);
917
918 set_running_timer(base, timer);
919 detach_timer(timer, 1);
920
921 spin_unlock_irq(&base->lock);
922 {
923 int preempt_count = preempt_count();
924
925 #ifdef CONFIG_LOCKDEP
926 /*
927 * It is permissible to free the timer from
928 * inside the function that is called from
929 * it, this we need to take into account for
930 * lockdep too. To avoid bogus "held lock
931 * freed" warnings as well as problems when
932 * looking into timer->lockdep_map, make a
933 * copy and use that here.
934 */
935 struct lockdep_map lockdep_map =
936 timer->lockdep_map;
937 #endif
938 /*
939 * Couple the lock chain with the lock chain at
940 * del_timer_sync() by acquiring the lock_map
941 * around the fn() call here and in
942 * del_timer_sync().
943 */
944 lock_map_acquire(&lockdep_map);
945
946 fn(data);
947
948 lock_map_release(&lockdep_map);
949
950 if (preempt_count != preempt_count()) {
951 printk(KERN_ERR "huh, entered %p "
952 "with preempt_count %08x, exited"
953 " with %08x?\n",
954 fn, preempt_count,
955 preempt_count());
956 BUG();
957 }
958 }
959 spin_lock_irq(&base->lock);
960 }
961 }
962 set_running_timer(base, NULL);
963 spin_unlock_irq(&base->lock);
964 }
965
966 #ifdef CONFIG_NO_HZ
967 /*
968 * Find out when the next timer event is due to happen. This
969 * is used on S/390 to stop all activity when a cpus is idle.
970 * This functions needs to be called disabled.
971 */
972 static unsigned long __next_timer_interrupt(struct tvec_base *base)
973 {
974 unsigned long timer_jiffies = base->timer_jiffies;
975 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
976 int index, slot, array, found = 0;
977 struct timer_list *nte;
978 struct tvec *varray[4];
979
980 /* Look for timer events in tv1. */
981 index = slot = timer_jiffies & TVR_MASK;
982 do {
983 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
984 if (tbase_get_deferrable(nte->base))
985 continue;
986
987 found = 1;
988 expires = nte->expires;
989 /* Look at the cascade bucket(s)? */
990 if (!index || slot < index)
991 goto cascade;
992 return expires;
993 }
994 slot = (slot + 1) & TVR_MASK;
995 } while (slot != index);
996
997 cascade:
998 /* Calculate the next cascade event */
999 if (index)
1000 timer_jiffies += TVR_SIZE - index;
1001 timer_jiffies >>= TVR_BITS;
1002
1003 /* Check tv2-tv5. */
1004 varray[0] = &base->tv2;
1005 varray[1] = &base->tv3;
1006 varray[2] = &base->tv4;
1007 varray[3] = &base->tv5;
1008
1009 for (array = 0; array < 4; array++) {
1010 struct tvec *varp = varray[array];
1011
1012 index = slot = timer_jiffies & TVN_MASK;
1013 do {
1014 list_for_each_entry(nte, varp->vec + slot, entry) {
1015 found = 1;
1016 if (time_before(nte->expires, expires))
1017 expires = nte->expires;
1018 }
1019 /*
1020 * Do we still search for the first timer or are
1021 * we looking up the cascade buckets ?
1022 */
1023 if (found) {
1024 /* Look at the cascade bucket(s)? */
1025 if (!index || slot < index)
1026 break;
1027 return expires;
1028 }
1029 slot = (slot + 1) & TVN_MASK;
1030 } while (slot != index);
1031
1032 if (index)
1033 timer_jiffies += TVN_SIZE - index;
1034 timer_jiffies >>= TVN_BITS;
1035 }
1036 return expires;
1037 }
1038
1039 /*
1040 * Check, if the next hrtimer event is before the next timer wheel
1041 * event:
1042 */
1043 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1044 unsigned long expires)
1045 {
1046 ktime_t hr_delta = hrtimer_get_next_event();
1047 struct timespec tsdelta;
1048 unsigned long delta;
1049
1050 if (hr_delta.tv64 == KTIME_MAX)
1051 return expires;
1052
1053 /*
1054 * Expired timer available, let it expire in the next tick
1055 */
1056 if (hr_delta.tv64 <= 0)
1057 return now + 1;
1058
1059 tsdelta = ktime_to_timespec(hr_delta);
1060 delta = timespec_to_jiffies(&tsdelta);
1061
1062 /*
1063 * Limit the delta to the max value, which is checked in
1064 * tick_nohz_stop_sched_tick():
1065 */
1066 if (delta > NEXT_TIMER_MAX_DELTA)
1067 delta = NEXT_TIMER_MAX_DELTA;
1068
1069 /*
1070 * Take rounding errors in to account and make sure, that it
1071 * expires in the next tick. Otherwise we go into an endless
1072 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1073 * the timer softirq
1074 */
1075 if (delta < 1)
1076 delta = 1;
1077 now += delta;
1078 if (time_before(now, expires))
1079 return now;
1080 return expires;
1081 }
1082
1083 /**
1084 * get_next_timer_interrupt - return the jiffy of the next pending timer
1085 * @now: current time (in jiffies)
1086 */
1087 unsigned long get_next_timer_interrupt(unsigned long now)
1088 {
1089 struct tvec_base *base = __get_cpu_var(tvec_bases);
1090 unsigned long expires;
1091
1092 spin_lock(&base->lock);
1093 expires = __next_timer_interrupt(base);
1094 spin_unlock(&base->lock);
1095
1096 if (time_before_eq(expires, now))
1097 return now;
1098
1099 return cmp_next_hrtimer_event(now, expires);
1100 }
1101 #endif
1102
1103 /*
1104 * Called from the timer interrupt handler to charge one tick to the current
1105 * process. user_tick is 1 if the tick is user time, 0 for system.
1106 */
1107 void update_process_times(int user_tick)
1108 {
1109 struct task_struct *p = current;
1110 int cpu = smp_processor_id();
1111
1112 /* Note: this timer irq context must be accounted for as well. */
1113 account_process_tick(p, user_tick);
1114 run_local_timers();
1115 if (rcu_pending(cpu))
1116 rcu_check_callbacks(cpu, user_tick);
1117 printk_tick();
1118 scheduler_tick();
1119 run_posix_cpu_timers(p);
1120 }
1121
1122 /*
1123 * Nr of active tasks - counted in fixed-point numbers
1124 */
1125 static unsigned long count_active_tasks(void)
1126 {
1127 return nr_active() * FIXED_1;
1128 }
1129
1130 /*
1131 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1132 * imply that avenrun[] is the standard name for this kind of thing.
1133 * Nothing else seems to be standardized: the fractional size etc
1134 * all seem to differ on different machines.
1135 *
1136 * Requires xtime_lock to access.
1137 */
1138 unsigned long avenrun[3];
1139
1140 EXPORT_SYMBOL(avenrun);
1141
1142 /*
1143 * calc_load - given tick count, update the avenrun load estimates.
1144 * This is called while holding a write_lock on xtime_lock.
1145 */
1146 static inline void calc_load(unsigned long ticks)
1147 {
1148 unsigned long active_tasks; /* fixed-point */
1149 static int count = LOAD_FREQ;
1150
1151 count -= ticks;
1152 if (unlikely(count < 0)) {
1153 active_tasks = count_active_tasks();
1154 do {
1155 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1156 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1157 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1158 count += LOAD_FREQ;
1159 } while (count < 0);
1160 }
1161 }
1162
1163 /*
1164 * This function runs timers and the timer-tq in bottom half context.
1165 */
1166 static void run_timer_softirq(struct softirq_action *h)
1167 {
1168 struct tvec_base *base = __get_cpu_var(tvec_bases);
1169
1170 hrtimer_run_pending();
1171
1172 if (time_after_eq(jiffies, base->timer_jiffies))
1173 __run_timers(base);
1174 }
1175
1176 /*
1177 * Called by the local, per-CPU timer interrupt on SMP.
1178 */
1179 void run_local_timers(void)
1180 {
1181 hrtimer_run_queues();
1182 raise_softirq(TIMER_SOFTIRQ);
1183 softlockup_tick();
1184 }
1185
1186 /*
1187 * Called by the timer interrupt. xtime_lock must already be taken
1188 * by the timer IRQ!
1189 */
1190 static inline void update_times(unsigned long ticks)
1191 {
1192 update_wall_time();
1193 calc_load(ticks);
1194 }
1195
1196 /*
1197 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1198 * without sampling the sequence number in xtime_lock.
1199 * jiffies is defined in the linker script...
1200 */
1201
1202 void do_timer(unsigned long ticks)
1203 {
1204 jiffies_64 += ticks;
1205 update_times(ticks);
1206 }
1207
1208 #ifdef __ARCH_WANT_SYS_ALARM
1209
1210 /*
1211 * For backwards compatibility? This can be done in libc so Alpha
1212 * and all newer ports shouldn't need it.
1213 */
1214 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1215 {
1216 return alarm_setitimer(seconds);
1217 }
1218
1219 #endif
1220
1221 #ifndef __alpha__
1222
1223 /*
1224 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1225 * should be moved into arch/i386 instead?
1226 */
1227
1228 /**
1229 * sys_getpid - return the thread group id of the current process
1230 *
1231 * Note, despite the name, this returns the tgid not the pid. The tgid and
1232 * the pid are identical unless CLONE_THREAD was specified on clone() in
1233 * which case the tgid is the same in all threads of the same group.
1234 *
1235 * This is SMP safe as current->tgid does not change.
1236 */
1237 SYSCALL_DEFINE0(getpid)
1238 {
1239 return task_tgid_vnr(current);
1240 }
1241
1242 /*
1243 * Accessing ->real_parent is not SMP-safe, it could
1244 * change from under us. However, we can use a stale
1245 * value of ->real_parent under rcu_read_lock(), see
1246 * release_task()->call_rcu(delayed_put_task_struct).
1247 */
1248 SYSCALL_DEFINE0(getppid)
1249 {
1250 int pid;
1251
1252 rcu_read_lock();
1253 pid = task_tgid_vnr(current->real_parent);
1254 rcu_read_unlock();
1255
1256 return pid;
1257 }
1258
1259 SYSCALL_DEFINE0(getuid)
1260 {
1261 /* Only we change this so SMP safe */
1262 return current_uid();
1263 }
1264
1265 SYSCALL_DEFINE0(geteuid)
1266 {
1267 /* Only we change this so SMP safe */
1268 return current_euid();
1269 }
1270
1271 SYSCALL_DEFINE0(getgid)
1272 {
1273 /* Only we change this so SMP safe */
1274 return current_gid();
1275 }
1276
1277 SYSCALL_DEFINE0(getegid)
1278 {
1279 /* Only we change this so SMP safe */
1280 return current_egid();
1281 }
1282
1283 #endif
1284
1285 static void process_timeout(unsigned long __data)
1286 {
1287 wake_up_process((struct task_struct *)__data);
1288 }
1289
1290 /**
1291 * schedule_timeout - sleep until timeout
1292 * @timeout: timeout value in jiffies
1293 *
1294 * Make the current task sleep until @timeout jiffies have
1295 * elapsed. The routine will return immediately unless
1296 * the current task state has been set (see set_current_state()).
1297 *
1298 * You can set the task state as follows -
1299 *
1300 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1301 * pass before the routine returns. The routine will return 0
1302 *
1303 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1304 * delivered to the current task. In this case the remaining time
1305 * in jiffies will be returned, or 0 if the timer expired in time
1306 *
1307 * The current task state is guaranteed to be TASK_RUNNING when this
1308 * routine returns.
1309 *
1310 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1311 * the CPU away without a bound on the timeout. In this case the return
1312 * value will be %MAX_SCHEDULE_TIMEOUT.
1313 *
1314 * In all cases the return value is guaranteed to be non-negative.
1315 */
1316 signed long __sched schedule_timeout(signed long timeout)
1317 {
1318 struct timer_list timer;
1319 unsigned long expire;
1320
1321 switch (timeout)
1322 {
1323 case MAX_SCHEDULE_TIMEOUT:
1324 /*
1325 * These two special cases are useful to be comfortable
1326 * in the caller. Nothing more. We could take
1327 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1328 * but I' d like to return a valid offset (>=0) to allow
1329 * the caller to do everything it want with the retval.
1330 */
1331 schedule();
1332 goto out;
1333 default:
1334 /*
1335 * Another bit of PARANOID. Note that the retval will be
1336 * 0 since no piece of kernel is supposed to do a check
1337 * for a negative retval of schedule_timeout() (since it
1338 * should never happens anyway). You just have the printk()
1339 * that will tell you if something is gone wrong and where.
1340 */
1341 if (timeout < 0) {
1342 printk(KERN_ERR "schedule_timeout: wrong timeout "
1343 "value %lx\n", timeout);
1344 dump_stack();
1345 current->state = TASK_RUNNING;
1346 goto out;
1347 }
1348 }
1349
1350 expire = timeout + jiffies;
1351
1352 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1353 __mod_timer(&timer, expire, false);
1354 schedule();
1355 del_singleshot_timer_sync(&timer);
1356
1357 /* Remove the timer from the object tracker */
1358 destroy_timer_on_stack(&timer);
1359
1360 timeout = expire - jiffies;
1361
1362 out:
1363 return timeout < 0 ? 0 : timeout;
1364 }
1365 EXPORT_SYMBOL(schedule_timeout);
1366
1367 /*
1368 * We can use __set_current_state() here because schedule_timeout() calls
1369 * schedule() unconditionally.
1370 */
1371 signed long __sched schedule_timeout_interruptible(signed long timeout)
1372 {
1373 __set_current_state(TASK_INTERRUPTIBLE);
1374 return schedule_timeout(timeout);
1375 }
1376 EXPORT_SYMBOL(schedule_timeout_interruptible);
1377
1378 signed long __sched schedule_timeout_killable(signed long timeout)
1379 {
1380 __set_current_state(TASK_KILLABLE);
1381 return schedule_timeout(timeout);
1382 }
1383 EXPORT_SYMBOL(schedule_timeout_killable);
1384
1385 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1386 {
1387 __set_current_state(TASK_UNINTERRUPTIBLE);
1388 return schedule_timeout(timeout);
1389 }
1390 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1391
1392 /* Thread ID - the internal kernel "pid" */
1393 SYSCALL_DEFINE0(gettid)
1394 {
1395 return task_pid_vnr(current);
1396 }
1397
1398 /**
1399 * do_sysinfo - fill in sysinfo struct
1400 * @info: pointer to buffer to fill
1401 */
1402 int do_sysinfo(struct sysinfo *info)
1403 {
1404 unsigned long mem_total, sav_total;
1405 unsigned int mem_unit, bitcount;
1406 unsigned long seq;
1407
1408 memset(info, 0, sizeof(struct sysinfo));
1409
1410 do {
1411 struct timespec tp;
1412 seq = read_seqbegin(&xtime_lock);
1413
1414 /*
1415 * This is annoying. The below is the same thing
1416 * posix_get_clock_monotonic() does, but it wants to
1417 * take the lock which we want to cover the loads stuff
1418 * too.
1419 */
1420
1421 getnstimeofday(&tp);
1422 tp.tv_sec += wall_to_monotonic.tv_sec;
1423 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1424 monotonic_to_bootbased(&tp);
1425 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1426 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1427 tp.tv_sec++;
1428 }
1429 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1430
1431 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1432 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1433 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1434
1435 info->procs = nr_threads;
1436 } while (read_seqretry(&xtime_lock, seq));
1437
1438 si_meminfo(info);
1439 si_swapinfo(info);
1440
1441 /*
1442 * If the sum of all the available memory (i.e. ram + swap)
1443 * is less than can be stored in a 32 bit unsigned long then
1444 * we can be binary compatible with 2.2.x kernels. If not,
1445 * well, in that case 2.2.x was broken anyways...
1446 *
1447 * -Erik Andersen <andersee@debian.org>
1448 */
1449
1450 mem_total = info->totalram + info->totalswap;
1451 if (mem_total < info->totalram || mem_total < info->totalswap)
1452 goto out;
1453 bitcount = 0;
1454 mem_unit = info->mem_unit;
1455 while (mem_unit > 1) {
1456 bitcount++;
1457 mem_unit >>= 1;
1458 sav_total = mem_total;
1459 mem_total <<= 1;
1460 if (mem_total < sav_total)
1461 goto out;
1462 }
1463
1464 /*
1465 * If mem_total did not overflow, multiply all memory values by
1466 * info->mem_unit and set it to 1. This leaves things compatible
1467 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1468 * kernels...
1469 */
1470
1471 info->mem_unit = 1;
1472 info->totalram <<= bitcount;
1473 info->freeram <<= bitcount;
1474 info->sharedram <<= bitcount;
1475 info->bufferram <<= bitcount;
1476 info->totalswap <<= bitcount;
1477 info->freeswap <<= bitcount;
1478 info->totalhigh <<= bitcount;
1479 info->freehigh <<= bitcount;
1480
1481 out:
1482 return 0;
1483 }
1484
1485 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1486 {
1487 struct sysinfo val;
1488
1489 do_sysinfo(&val);
1490
1491 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1492 return -EFAULT;
1493
1494 return 0;
1495 }
1496
1497 static int __cpuinit init_timers_cpu(int cpu)
1498 {
1499 int j;
1500 struct tvec_base *base;
1501 static char __cpuinitdata tvec_base_done[NR_CPUS];
1502
1503 if (!tvec_base_done[cpu]) {
1504 static char boot_done;
1505
1506 if (boot_done) {
1507 /*
1508 * The APs use this path later in boot
1509 */
1510 base = kmalloc_node(sizeof(*base),
1511 GFP_KERNEL | __GFP_ZERO,
1512 cpu_to_node(cpu));
1513 if (!base)
1514 return -ENOMEM;
1515
1516 /* Make sure that tvec_base is 2 byte aligned */
1517 if (tbase_get_deferrable(base)) {
1518 WARN_ON(1);
1519 kfree(base);
1520 return -ENOMEM;
1521 }
1522 per_cpu(tvec_bases, cpu) = base;
1523 } else {
1524 /*
1525 * This is for the boot CPU - we use compile-time
1526 * static initialisation because per-cpu memory isn't
1527 * ready yet and because the memory allocators are not
1528 * initialised either.
1529 */
1530 boot_done = 1;
1531 base = &boot_tvec_bases;
1532 }
1533 tvec_base_done[cpu] = 1;
1534 } else {
1535 base = per_cpu(tvec_bases, cpu);
1536 }
1537
1538 spin_lock_init(&base->lock);
1539
1540 for (j = 0; j < TVN_SIZE; j++) {
1541 INIT_LIST_HEAD(base->tv5.vec + j);
1542 INIT_LIST_HEAD(base->tv4.vec + j);
1543 INIT_LIST_HEAD(base->tv3.vec + j);
1544 INIT_LIST_HEAD(base->tv2.vec + j);
1545 }
1546 for (j = 0; j < TVR_SIZE; j++)
1547 INIT_LIST_HEAD(base->tv1.vec + j);
1548
1549 base->timer_jiffies = jiffies;
1550 return 0;
1551 }
1552
1553 #ifdef CONFIG_HOTPLUG_CPU
1554 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1555 {
1556 struct timer_list *timer;
1557
1558 while (!list_empty(head)) {
1559 timer = list_first_entry(head, struct timer_list, entry);
1560 detach_timer(timer, 0);
1561 timer_set_base(timer, new_base);
1562 internal_add_timer(new_base, timer);
1563 }
1564 }
1565
1566 static void __cpuinit migrate_timers(int cpu)
1567 {
1568 struct tvec_base *old_base;
1569 struct tvec_base *new_base;
1570 int i;
1571
1572 BUG_ON(cpu_online(cpu));
1573 old_base = per_cpu(tvec_bases, cpu);
1574 new_base = get_cpu_var(tvec_bases);
1575 /*
1576 * The caller is globally serialized and nobody else
1577 * takes two locks at once, deadlock is not possible.
1578 */
1579 spin_lock_irq(&new_base->lock);
1580 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1581
1582 BUG_ON(old_base->running_timer);
1583
1584 for (i = 0; i < TVR_SIZE; i++)
1585 migrate_timer_list(new_base, old_base->tv1.vec + i);
1586 for (i = 0; i < TVN_SIZE; i++) {
1587 migrate_timer_list(new_base, old_base->tv2.vec + i);
1588 migrate_timer_list(new_base, old_base->tv3.vec + i);
1589 migrate_timer_list(new_base, old_base->tv4.vec + i);
1590 migrate_timer_list(new_base, old_base->tv5.vec + i);
1591 }
1592
1593 spin_unlock(&old_base->lock);
1594 spin_unlock_irq(&new_base->lock);
1595 put_cpu_var(tvec_bases);
1596 }
1597 #endif /* CONFIG_HOTPLUG_CPU */
1598
1599 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1600 unsigned long action, void *hcpu)
1601 {
1602 long cpu = (long)hcpu;
1603 switch(action) {
1604 case CPU_UP_PREPARE:
1605 case CPU_UP_PREPARE_FROZEN:
1606 if (init_timers_cpu(cpu) < 0)
1607 return NOTIFY_BAD;
1608 break;
1609 #ifdef CONFIG_HOTPLUG_CPU
1610 case CPU_DEAD:
1611 case CPU_DEAD_FROZEN:
1612 migrate_timers(cpu);
1613 break;
1614 #endif
1615 default:
1616 break;
1617 }
1618 return NOTIFY_OK;
1619 }
1620
1621 static struct notifier_block __cpuinitdata timers_nb = {
1622 .notifier_call = timer_cpu_notify,
1623 };
1624
1625
1626 void __init init_timers(void)
1627 {
1628 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1629 (void *)(long)smp_processor_id());
1630
1631 init_timer_stats();
1632
1633 BUG_ON(err == NOTIFY_BAD);
1634 register_cpu_notifier(&timers_nb);
1635 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1636 }
1637
1638 /**
1639 * msleep - sleep safely even with waitqueue interruptions
1640 * @msecs: Time in milliseconds to sleep for
1641 */
1642 void msleep(unsigned int msecs)
1643 {
1644 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1645
1646 while (timeout)
1647 timeout = schedule_timeout_uninterruptible(timeout);
1648 }
1649
1650 EXPORT_SYMBOL(msleep);
1651
1652 /**
1653 * msleep_interruptible - sleep waiting for signals
1654 * @msecs: Time in milliseconds to sleep for
1655 */
1656 unsigned long msleep_interruptible(unsigned int msecs)
1657 {
1658 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1659
1660 while (timeout && !signal_pending(current))
1661 timeout = schedule_timeout_interruptible(timeout);
1662 return jiffies_to_msecs(timeout);
1663 }
1664
1665 EXPORT_SYMBOL(msleep_interruptible);